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ABSTRACT 

The interplay and mutual influence between mathematics and physics all along their history and their deep 

epistemological affinity are explored and summarized in three theses with a basic didactical moral: In teaching 

and learning either of them, neither history should be ignored, nor the close interrelation of the two disciplines 

should be circumvented or bypassed. Moreover, the key issues of the integration of history in mathematics or 

physics education are addressed and a common framework is outlined based on work done in the past. These 

ideas are illustrated by means of three examples: (a) measuring the distance of inaccessible objects; (b) rotations, 

space-time and special relativity; (c) differential equations, functional analysis and quantum mechanics.         

1 Introduction  

At all levels of education, teaching and learning mathematics is usually kept separated from 

physics, and vice versa, corresponding to a distinction between the two sciences at the 

research level: mathematicians are supposed to stay in a universe of ideal logical rigor, while 

physicists are simply users of (possibly very sophisticated) mathematics (Tzanakis 2000, §2). 

This is reflected in physics education (PE), where mathematics is merely a tool to describe 

and calculate, whereas, in mathematics education (ME), physics is only a possible context for 

applying mathematics previously conceived abstractly (Tzanakis & Thomaidis 2000, p.49). 

Overcoming this dichotomy (which creates significant learning problems for the students of 

both disciplines) demands systematic research in different fields, especially when aiming at 

informing educational practices by reflecting on historical, philosophical and sociological 

aspects of scientific knowledge (Karam 2015).  

However, the historical development of the two sciences, does not verify this separation. On 

the contrary, it is a relatively recent fact, not older than 100 years (or, even less; Arnold 1998, 

p.229), characterizing their development up to the 1960-70s at the peak of the effort to 

extremely formalize mathematics (reflected in ME in the “New Math” reform). No such clear-

cut separation existed before, whereas, in the last decades there is a strong tendency to 

overcome it, reflected in the often deeply interwoven research in both sciences
1
. I believe this 

historical fact is due to the deep epistemological affinity of the two sciences, concisely 

expressed by numerous famous mathematicians and physicists; Galileo’s phrase that “this 

grand book, the Universe, … is written in the language of Mathematics”
2
; Wigner’s (1960) 

view of the “unreasonable effectiveness of mathematics in the natural sciences”; or Hilbert’s 

                                                           
1
 E.g. Casacuberta & Castellet 1992, where 5 of the 7 (Fields medallists) authors think that developments in 

mathematics will be in areas related to problems in physics.  
2
 The Assayer (1623); in Drake 1957. 



6
th

 problem in his famous 1900 list of problems
3
. 

On the other hand, over the last 40 years, there has been an increasing awareness of the 

educational community that integrating history of mathematics in ME could be a promising 

possible way to teach and learn mathematics because, in principle, it provides the opportunity to 

appreciate the evolutionary nature of mathematical knowledge, hence, to go beyond its 

conventional understanding as a corpus of finished deductively structured intellectual products. 

Especially in the context of the international HPM Study Group, this has evolved into a 

worldwide intensively studied area of new pedagogical practices and specific research activities 

(Fasanelli & Fauvel 2006 for an account up to 2000; Furinghetti 2012, Barbin 2013, Barbin & 

Tzanakis 2014 for later developments). However, the educational value of history outlined 

above is not restricted to mathematics. It is also valid for physics, because physics - just like 

mathematics - is not only a deductively structured corpus of knowledge (additionally 

constrained by its compatibility with experiment), but has been ever-changing and evolving.   

These comments will be further detailed in section 2 as three main theses on the 

ontological status of mathematics and physics, their historical interrelation, and their 

epistemological affinity as scientific disciplines, constituting a historical-epistemological 

framework with a basic didactical moral: In teaching and learning mathematics or physics, 

neither history can be ignored, nor their close interrelation can be circumvented or bypassed. 

In section 3, this general point of view is elaborated by addressing the main issues related to a 

history-pedagogy-mathematics/physics (HPM/Ph) perspective (§2.1): Which history for 

didactical purposes, with which role(s) and in which way(s) to be realized in practice? Here 

much work has been done in recent years, to be briefly reviewed mainly in the light of and 

aiming to support an interactive interplay in the teaching and learning of mathematics with/for 

physics, and vice versa. In section 4 the framework of sections 2, 3 is illustrated by three 

examples of increasing sophistication - from junior high school to advanced undergraduate or 

graduate level - each one pinpointing equally well the main issues raised, presented and 

advocated in sections 2 & 3. The paper’s main points are summarized in section 5. 

2 Historical-epistemological framework  

2.1 What is mathematics? What is physics? 

It is customary to think of mathematics as a deductively structured, logically self-consistent 

corpus of knowledge; a point of view deeply influencing education and getting stronger at its 

higher levels. It is adopted by many mathematicians and mathematics teachers either because 

it leads to the quickest way of presentation (lectures, books etc), or/and because the logical 

clarity thus obtained, is often thought identical with the complete understanding of the 

subject. Similar comments hold for physics, additionally requiring this knowledge to be 

consistent with known empirical facts.  

But because mathematics and physics are intellectual enterprises with a long history and a 

                                                           
3
 “Mathematical treatment of the axioms of physics: To treat in the same manner, by means of axioms, those 

physical sciences in which mathematics plays an important part; in the first rank are the theory of probabilities 

and mechanics” (Hilbert 1902, p.454). 



vivid present, knowledge gained in their context is determined not only by the circumstances in 

which this knowledge becomes a deductively structured theory and/or supported by experiments, 

but also by the procedures that originally led or may lead to it. Thus learning mathematics or 

physics includes not only the “polished products” of the associated intellectual activity, but also 

the understanding of implicit motivations, the sense-making actions and the reflective processes 

of scientists, which aim to the construction of meaning. Although the “polished products” of both 

disciplines form the part of this knowledge that is communicated and criticized, and forms the 

basis for new work, didactically the processes producing this knowledge are equally important. 

Perceiving mathematics or physics both as a logically structured collection of intellectual 

products and as knowledge-producing endeavours
4
 should be the core of their teaching and 

central to their image communicated to the outside world. Along these lines, putting emphasis on 

integrating historical and epistemological issues in the teaching and learning of mathematics and 

physics constitutes a possible natural way for exposing them in the making that may lead to a 

better understanding of their specific parts, and to a deeper awareness of what they are as 

disciplines. This is very important from an educational viewpoint: It helps to realize that they have 

been undergoing changes over time as a result of contributions from many different cultures, in 

uninterrupted dialogue with other scientific disciplines, philosophy, the arts and technology; a 

constant force for stimulating and supporting scientific, technical, artistic and social development. 

The last paragraph frames the HPM/Ph perspective (Clark et al. 2016, §1.1), summarized 

in the following thesis on the ontological status of both disciplines and its educational 

implications (cf. Tzanakis & Thomaidis 2000, p.45). 

Thesis A: Mathematics and physics should be conceived (hence, taught and learnt) both as 

the result of intellectual enterprises and as the procedures leading to these results. Knowledge 

gained in their context has an evolutionary character; by its very nature, historicity
5
 is a 

deeply-rooted characteristic. 

2.2 The interrelated historical development of mathematics and physics 

Numerous important historical examples attest the following 

Thesis B: Throughout their historical development from antiquity to the present, 

mathematics and physics have been evolving in a close, continuous, uninterrupted, 

bidirectional, multifaceted and fruitful way.   

It goes from Hero’s geometrical proof of the law of reflection, Eratosthenes’ estimation of 

the earth’s circumference, and Archimedes’ “mechanical arguments” to compute areas and 

volumes in his Method, to Poincaré’s derivation of the Lorentz transformations in special 

relativity using group-theoretic arguments, Hilbert’s deduction of General Relativity’s field 

equations from a variational principle
6
, von Neumann’s rigorous formulation of quantum 

                                                           
4
 Kjeldsen & Lützen 2015, p.552. 

5
 Barbin & Bénard 2007; Barbin 2010. 

6
 Both Poincaré and Hilbert got their results before Einstein’s physically-oriented work, by following 

mathematically-oriented and totally different approaches from his. Though curious at first sight, this is due to the fact 

that these great mathematicians followed closely every development in physics of their time, which they knew deeply 

(Tzanakis 1999a, pp.114-115; Mehra 1973); just one striking example supporting Theses B & C of this paper.  



mechanics, to more recent examples, like Penrose’s singularity theorems in general relativity, 

Feynman’s path-integrals in quantum mechanics and functional integration, Thom’s 

Catastrophe Theory, or Connes’ Non-commutative Geometry and its relation to quantum field 

theory (Tzanakis 1999b, §§4, 5; 2002, §3). 

A simplified scheme of 3 scenarios highlights this relation (Tzanakis 2000, §2; 2002 §1.2): 

(S1) Parallel development: The physical problems asking for solution and the formulation 

of appropriate mathematics (concepts, methods, or theories) evolve in parallel.  

Typical examples: Infinitesimal calculus and classical mechanics in the 17
th

 century; the 

interrelated development of vector analysis, electromagnetic theory, and fluid mechanics in 

the 19
th

 century (Crowe 1967); the multifaceted development in the 19
th

 century of  statistical 

concepts and methods, error theory in celestial mechanics, kinetic theory, and social statistics 

(Kourkoulos & Tzanakis 2010); Hamilton’s unified treatment of geometrical optics and 

classical mechanics and the solution of 1
st
 order partial differential equations (§ 4.3 below). 

(S2) Mathematical concepts, methods or theories precede their integration into physics: The 

corresponding physical problems naturally stress the need for the appropriate mathematics. 

Typical examples: Riemannian geometry and tensor calculus as the indispensable 

framework for Einstein’s formulation of General Relativity (Tzanakis 1999b, §4.3); matrix 

algebra and Heisenberg’s experimentally-induced matrix mechanics (§4.3 below). 

(S3) Physical problems precede the formulation of mathematics appropriate to tackle 

them: Partially intuitive, formal or experimentally-induced models, and logically incomplete 

or ill-defined concepts, motivate and/or guide the development of new mathematics. 

Typical examples: Langevin’s equation modelling Brownian motion in statistical physics 

and the development of stochastic differential equations (Tzanakis 1999b, §5.3); Dirac’s 

introduction and use of his δ-function in quantum mechanics as a key initial step for the 

development of distribution theory (Lützen 1982); Feynman’s path-integral approach to 

quantum mechanics and the development of functional integration (Gelfand & Yaglom 1960).  

A word of caution: This simplified picture aims just to emphasize the historically rich and 

bidirectional relation of the two disciplines. In fact, none of the three “pure” scenarios appears 

isolated. If one appears as the original step in the historical development, it is usually followed 

by fruitful feedback in the context of the others. This is supported by the examples in section 4. 

2.3 The epistemological affinity of mathematics and physics 

The conventional view of the epistemological relation between mathematics and physics, shared 

by many mathematicians, physicists and teachers of these disciplines, is that  mathematics is 

simply the language of physics, and physics is an exterior to mathematics source of problems to 

be solved mathematically and/or a domain to apply already available mathematical tools. At 

least indirectly, this means that mathematics is simply a toolkit for handling physical problems, 

but otherwise is extrinsic to it, whereas physics is a huge, but external reservoir of a priori non-

mathematical problems, which are nonetheless capable of mathematical formulation. If this were 

so, it would be difficult to understand the interrelation of the two sciences (§2.2). In fact, this 



conventional viewpoint has been challenged by distinguished mathematicians and physicists.  

Maxwell stated his “… opinion as to the necessity of mathematics for the study of Natural 

Philosophy…” as “Natural philosophy is, and ought to be, Mathematics… the greatest 

advances in mathematics have been due to enquirers into physical laws” (in Harman 1990). 

Hilbert wrote that “… while the creative power of pure reason is at work, the outer world 

… comes into play, forces upon us new questions from actual experience, opens up new 

branches of mathematics, and while we seek to conquer these new fields of knowledge for the 

realm of pure thought, we often find the answers to old unsolved problems and thus … 

advance most successfully the old theories. … the numerous and surprising analogies and 

that apparently prearranged harmony which the mathematician so often perceives in the 

questions, methods and ideas of the various branches of his science, have their origin in this 

ever-recurring interplay between thought and experience” (Hilbert 1902, p.440; my 

emphasis).  

Weyl declared that “…gaz[ing] up… towards the stars is… to strengthen faith in reason, to 

realise the “harmonia mundi” that transfuses all phenomena... it was my wish to present this 

great subject [the general theory of relativity] as an illustration of the intermingling of 

philosophical, mathematical, and physical thought...” (Weyl 1952, pp.x, ix) and that “We 

shall see more and more clearly… that Geometry, Mechanics, and Physics form an 

inseparable theoretical whole” (ibid, p.67, my emphasis; cf. Pyenson 1982).  

Einstein was convinced that “…pure mathematical construction enables us to discover 

the concepts and the laws … which give us the key to the understanding of the phenomena 

of Nature. Experience can… guide us in our choice of serviceable mathematical concepts… 

[and] remains the sole criterion of the serviceablility of a mathematical construction for 

physics, but the truly creative principle resides in mathematics” (Einstein 1934) and 

stressed the criterion of “naturalness” (or “inner perfection”) for trusting a physical theory 

(Einstein 1969). 

Wigner argued that the unreasonable effectiveness of mathematics in the natural sciences 

“…shows that it is in a very real sense, the correct language…” and its predictions, often in 

amazing agreement with experimental data, indicate that “[s]urely… we ‘got something out’ of 

the equations that we did not put in” (Wigner 1960, pp.8, 9; my emphasis)
7
, whereas, Dirac 

(referring to General Relativity) argued that “Anyone who appreciates the fundamental harmony 

connecting the way nature runs, and general mathematical principles, must feel that a theory 

with… beauty and elegance… has to be substantially correct” (Dirac 1979, my emphasis).  

These quotations suggest that mathematics is the language of physics in the deepest sense, 

often determining the content and meaning of physical concepts and theories (Tzanakis 

1999b, §3), or even instigating revolutions in physics (Brush 2015, pp.495, 511). Conversely, 

physics furnishes and provides to mathematics, not only problems, but also ideas, methods 

                                                           
7
 In Tzanakis 1997 §5, this is called “naturality”, meaning “… that the explanation of known unintelligible facts, 

or the prediction of new ones, is not originally in the intentions of the founders of the theory, whose starting 

point may be quite independent of these facts” (ibid, p.2101).   



and concepts, crucial for many mathematical innovations (Tzanakis 1999b, §3; Kragh 2015, 

particularly §8). These comments are summarized in the first part of the following 

Thesis C(a): Mathematics and physics have always been closely interwoven in the sense of 

a bidirectional
8
 process:  

From mathematics to physics: Mathematics is the language of physics, not only as a tool 

for expressing, handling and developing logically physical concepts, methods and theories, 

but also as an indispensable, formative characteristic that shapes them, by deepening, 

sharpening, and extending their meaning, or even endowing them with meaning. 

From physics to mathematics: Physics constitutes a (or maybe, the) natural framework for 

testing, applying and elaborating mathematical theories, methods and concepts, or even 

motivating, stimulating, instigating  and creating all kinds of mathematical innovations.
9
    

This historically-evidenced mutual process of dialectical interplay between mathematics and 

physics helps to moderate Wigner’s puzzlement (Kjeldsen & Lützen 2015, p.544) and seems to 

be based on a deeper epistemological affinity of the two disciplines. Arnold (1998, p.231) has 

claimed that “…the scheme of construction of a mathematical theory is exactly the same as that in 

any other natural science”. Detailed analysis suggests that both disciplines use the same 

procedures as invention/discovery patterns, or for (partial, in general) justification of results: 

logical reasoning (by deduction, induction, or analogy), algorithmic procedures, and experimental 

investigations (Tzanakis & Kourkoulos 2000, §2; Tzanakis 1998, §1). In fact, the supposedly key 

difference between the two disciplines, namely, what constitutes a “true” statement (logical self-

consistency and consistency with available empirical data, respectively) is less sharp than 

conventionally claimed (Tzanakis & Kourkoulos 2000, §3; Tzanakis & Thomaidis 2000, §2), a 

point of view (at least indirectly) adopted by important physicists and mathematicians. Dirac 

claimed that “A theory with mathematical beauty is more likely to be correct than an ugly one that 

fits some experimental data” (Dirac 1970; see also Brush 2015, §9; Kragh 1990) and Weyl 

declared that “[his] work always tried to unite the true with the beautiful; but when [he] had to 

choose one or the other [he] usually chose the beautiful” (quoted in Chandrasekhar 1987). Arnold 

went further arguing that “Mathematics is a part of physics… the part of physics where 

experiments are cheap” (Arnold 1998, p.229). Thus, we are led to the second part of  

Thesis C(b): Mathematics and physics as embodiments of general attitudes in regard to the 

description, exploration, and understanding of empirically and/or mentally conceived objects, 

are so closely interwoven, that any distinction between them is related more to the point of 

view adopted while studying particular aspects of an object, than to the object itself.
10

. 

Theses A-C will be further illustrated and supported by examples in section 4. A basic 

educational conclusion to be drawn from this analysis is summarized as follows: 

By Thesis A, history cannot be ignored in the teaching and learning either of mathematics, or 

                                                           
8
 Kragh has called it “dialectical, or loop-like” reflecting the historical interaction between the two disciplines 

which “… is multifarious and cannot be encapsulated by a single formula” (Kragh 2015, p.525).  
9
 In Tzanakis 1999b, these two aspects are called “mathematical physics” & “physical mathematics”, respectively.  

10
 Tzanakis & Thomaidis 2000, §4. This is close to Weyl’s view of an “inseparable, theoretical whole” above. 



physics; By Theses B & C the teaching and learning one of the two should take into account, be 

supported, or include aspects of the other
11

; Thesis C gives general orientation to motivate, 

stimulate, support, deepen and widen the teaching and learning of either discipline specialized 

for particular examples into precise guidelines with the aid and/or in the light of Thesis B. 

For the actual implementation of this conclusion, a sufficiently clear framework for the 

HPM/Ph perspective is needed, which is the subject of the following section.       

3 The HPM/Ph issues and framework   

To proceed further having adopted Theses A-C, some fundamental issues should be faced 

related to the integration of history in ME and/or PE. Although much of what follows originated 

in the context of mathematics, it is equally valid for physics, which is reasonable in view of the 

close interrelation of the two disciplines. The presentation is based on Clark et al 2016, §2.3. 

3.1 Which history is suitable, pertinent, and relevant for didactical purposes? 

This has been a permanent issue of debate among historians and educators with an interest in 

the HPM/Ph perspective. Implicit to some objections against the introduction of history in ME 

or PE is the idea that the term “history” is used in the same sense by historians, mathematicians, 

physicists, or teachers. That this is not so was stressed early by Grattan-Guinness, in relation to 

the history of mathematics (Grattan-Guinness 1973)
12

. On the other hand, it is undeniable that 

often history followed a complicated zig-zag path, led to dead ends, included notions, methods 

and problems no longer used in mathematics or physics today etc. Thus, its integration in 

education is nontrivial, posing the question why it must be done at all, since in this way history 

may be forced “…to serve aims not only foreign to its own but even antithetical to them” (Fried 

2011). In other words, there is real danger of either unacceptably simplify or/and distort history 

to serve education as still another of its tools by adopting a “Whig” (approach to) history, in 

which “…the present is the measure of the past. Hence, what one considers significant in 

history is precisely what leads to something deemed significant today” (Fried 2001).  

An important step to clarify existing conflicts and tensions between a mathematician’s and 

a historian’s approach to mathematical knowledge, with due attention to the relevance of 

history to ME, was Grattan-Guiness’ distinction between History and Heritage (Grattan-

Guiness 2004a, b): The History of a particular mathematical subject N refers to 

“… the development of N during a particular period: its launch and early forms, its 

impact [in the following years and decades], and applications in and/or outside 

mathematics. It addresses the question ‘What happened in the past?’ by offering 

descriptions. Maybe some kinds of explanation will also be attempted to answer the 

companion question ‘Why did it happen?’”... “[It] should also address the dual 

questions ‘what did not happen in the past?’ and ‘why not?’; false starts, missed 
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 Arnold argues that “[a]ttempts to create ‘pure’ deductive-axiomatic mathematics have led to the rejection of 

the scheme used in physics (observation, model, investigation of the model, conclusions, testing by observations) 

and its replacement by the scheme definition, theorem, proof”, which “can do nothing but harm to the teaching 

and practical work” (Arnold 1998, pp.233). 
12

 See Kjeldsen 2011a; 2011b; Kjeldsen & Blomhøj 2012, for a different approach. 



opportunities…, sleepers, and repeats are noted and maybe explained… differences 

between N and seemingly similar more modern notions are likely to be emphasized” 

(Grattan-Guiness, 2004b, p.1; 2004a, p.164).   

The Heritage of a particular mathematical subject N refers  

“…. to the impact of N upon later work, both at the time and afterward, especially the 

forms which it may take, or be embodied, in later contexts. Some modern form of N is 

usually the main focus, with attention paid to the course of its development. … the 

mathematical relationships will be noted, but historical ones… will hold much less 

interest. [It] addresses the question ‘how did we get here?’ … The modern notions are 

inserted into N when appropriate, and thereby N is unveiled... similarities between N 

and its more modern notions are likely to be emphasized; the present is photocopied 

onto the past” (Grattan-Guiness, 2004a, p.165). 

Though “both kinds of activity are quite legitimate, and… important in their own right...”, 

they are incompatible in the sense “…that both history and heritage are legitimate ways of 

handling the mathematics of the past; but muddling the two together, or asserting that one is 

subordinate to the other, is not.” (Grattan-Guinness 2004a, p.165; 2004b, p.1). 

This distinction - clearly valid for physics as well - is close to similar ones between pairs 

of methodological approaches: for mathematics Tzanakis, Arcavi et al 2000, pp.209-210; for 

physics Tzanakis 1998, Tzanakis & Coutsomitros 1988. Hence, this distinction is potentially 

of great relevance to education (Rogers 2009; Tzanakis & Thomaidis 2012), contributing to 

answering the recurrent question “Why and which history is appropriate to be used for 

educational purposes?” (Barbin 1997). 

3.2 Which role can history of mathematics and/or physics play in their teaching and learning? 

This question has been extensively discussed from various angles, especially in relation to the 

appropriateness and pertinence of original historical sources in ME. In this context, history 

can play three mutually complementary roles (Barbin 1997; Jahnke et al 2000; Furinghetti 

et al 2006; Furinghetti 2012, §5; Jankvist 2013) valid for physics as well:  

(I) Replacement: Replacing mathematical and/or physical knowledge as usually understood 

(a corpus of knowledge consisting of final results; an externally given set of techniques to solve 

problems; school units useful for exams etc) by something different (not only final results, but 

also mental processes leading to them; hence perception of this knowledge, not only as a 

collection of well-defined deductively organized results, but also as a vivid intellectual activity). 

(II) Reorientation: Changing what is (supposed to be) familiar, to something unfamiliar; 

thus modifying the learners and teachers’ conventional perception of mathematical and/or 

physical knowledge as something that has always been existing in its current established 

form, into a deeper awareness that this knowledge was an invention based on a dialectical 

interplay between human mind’s creativity and careful intelligent experimentation; an 

evolving intellectual activity. 

(III) A cultural role: Making possible the awareness that mathematics and physics develop 

in a specific scientific, technological or societal context at a given time and place; thus 



appreciating knowledge gained in the context of these disciplines as an integral part of human 

intellectual history in the development of society; hence, perceiving mathematics and/or physics 

from perspectives beyond their currently established boundaries as (separate) disciplines. 

Considered from the viewpoint of the objective of integrating history in ME and/or PE, 

there are five main areas where this could be valuable (Tzanakis, Arcavi et al, 2000, §7.2; 

Tzanakis & Thomaidis 2012, §3):  

1. Learning specific pieces of mathematics and/or physics: Historical development vs. polished 

final results; history as a resource; history as a bridge between different domains and disciplines; 

history’s general educational value in the development of personal growth and skills. 

2. Views on the nature of mathematics, physics and the associated activities: About their 

content (to get insights into concepts, conjectures & proofs by looking from a different 

viewpoint; to appreciate “failure” as part of mathematics and physics in the making; to make 

visible the evolutionary nature of meta-concepts); about their form (to compare old and 

modern; to motivate learning by stressing clarity, conciseness and logical completeness). 

3. The didactical background of teachers and their pedagogical repertoire: Identifying 

motivations; becoming aware of difficulties & obstacles; getting involved and/or becoming 

aware of the creative process of “doing mathematics and/or physics”; enriching the didactical 

repertoire; deciphering & understanding idiosyncratic or non-conventional approaches. 

4. The affective predisposition towards mathematics and physics: Understanding mathematics 

and physics as human endeavours; persisting with ideas, attempting lines of inquiry, posing 

questions; not getting discouraged by failures, mistakes, uncertainties, misunderstandings. 

5. The appreciation of mathematics and physics as a cultural-human endeavour: They form 

part of local cultures; they evolve under the influence of factors intrinsic and/or extrinsic to them. 

From the point of view of the way history is accommodated into education, Jankvist’s 

(2009a) distinction in relation to mathematics is pertinent: 

(i) History as a tool: That is “… the use of history as an assisting means, or an aid, in the 

learning [or teaching] of mathematics [or physics]... in this sense, history may be an aid…” “as 

a motivational or affective tool, and… as a cognitive tool…” (Jankvist 2009b, p.69; 2009c, p.8). 

(ii) History as a goal: That is, history is “…an aim in itself… posing and suggesting 

answers to questions about the evolution and development of mathematics, [or physics]… 

about the inner and outer driving forces of this evolution, or the cultural and societal aspects 

of mathematics [or physics] and its history” (Jankvist 2009b, p.69). 

3.3 In which way(s) history’s role can be realized in educational practice?  

There are three broad ways to integrate history in ME and PE, each one emphasizing a 

different aim. They complement each other in the sense that each one, if taken alone, is 

insufficient to exhaust the multifarious constructive influence history can have on education 

(Tzanakis, Arcavi et al 2000; §7.3; Tzanakis & Thomaidis 2000, §3): 

(I) To provide direct historical information, aiming to learn history; 



(II) To implement a teaching approach inspired by history (explicitly or implicitly), aiming 

to learn mathematics and/or physics; 

(III) To focus on mathematics and/or physics as disciplines and the cultural & social 

context in which they have been evolving, aiming to develop deeper awareness of their 

evolutionary character, epistemological characteristics, and relation to other disciplines, and 

the influence exerted by factors both intrinsic and extrinsic to them. 

 From a methodological point of view, Jankvist (2009a, §6) classified the teaching & 

learning approaches in three categories:  

1. Illumination approaches: teaching and learning is supplemented by historical 

information of varying size and emphasis.  

2. Module approaches: instructional units devoted to history, often based on specific cases.  

3. History-based approaches: history shapes the order and the way of presentation, often 

without history appearing explicitly, but rather being integrated into teaching.  

Approaches may vary in size and scope, according to the specific didactical aim, the 

subject matter, the level and orientation of the learners, the available didactical time, and 

external constraints (curriculum regulations, number of learners in a classroom etc). 

4 Examples   

In sections 2 & 3 a general framework for integrating history in ME and PE was presented, 

based on the epistemological similarities between the two disciplines and their interrelated 

historical evolution, and on a unified approach to the basic issues involved in any such 

integration. Below, this is illustrated by three examples, explicitly indicating their placement 

within the general framework. 

4.1 Measuring the distance of inaccessible objects: Mathematics & Physics in their wider 

cultural context  

The general theme is the determination of the size or distance of completely inaccessible 

objects like the celestial bodies,
13

 some important cases being: 

(a) Eratosthenes’ measurement of the Earth’s circumference. 

(b) Aristarchus’ method of measuring the earth-sun-moon relative distances. 

(c) Copernicus’ method of measuring inner planets’ relative distances from the sun. 

(d) Trigonometric parallax for measuring: (i) The earth-sun distance using inner planets’ 

transits across the sun’s disk; (ii) Star distances using stellar parallax. 

This is a rich example that can be extended in several different directions, depending on 

the course orientation and the available didactical time. It could constitute a sufficiently self-

contained teaching module (§3.3.2) aiming to reveal the wider strong cultural significance of 

mathematical thinking and its applications to important real problems in the course of history, 

seen and evaluated from our modern viewpoint (that is, adopting a heritage-like perspective; 
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§3.1)
14

. It reveals the fruitful, far-reaching connections among elementary Euclidean 

geometry, modelling of physical situations, astronomical observations, the significance of 

technically accurate instrumentation, and the crucial role of approximate computations. Or, 

parts of such a module could be used with the same objectives, as illuminating examples 

(§3.3.1) in high-school or university courses on Euclidean geometry, trigonometry, 

geography, or history of science and mathematics.    

From a mathematical point of view, examples (a)-(d) are elementary. However, the 

emphasis is on how elementary geometrical ideas and reasoning led historically to 

astronomically and physically non-trivial consequences with far-reaching cultural 

implications of the highest importance that can be posed didactically (§3.3.III). Therefore, in 

this example, history appears mainly as a goal (§3.2(ii)), playing a cultural role (§3.2.III) by 

helping the learners to appreciate the significance of mathematics and natural sciences in the 

development of human civilization. That is, the focus is on the highly innovative and 

revolutionary boldness of non-mathematical hypotheses implicit to this example (tacitly taken 

for granted as self-evident from our modern perspective), which, once formulated and 

accepted, lead to consequences of far-reaching cultural importance by means of elementary 

high-school mathematics! Besides bridging mathematics with other subjects (history, physics, 

astronomy, geography, philosophy) as a vast resource of specific information and meaningful 

problems (§3.2.1), this example greatly enriches and widens teachers’ didactical repertoire 

(§3.2.3), and develops students’ awareness that mathematics and the natural sciences may evolve 

in a constant dialogue with societal needs and philosophical queries that has a strong mutual 

influence on both the sciences and the society as a whole (§3.2.5). Lack of space allows only a 

few comments on each case. The italicized text points to possible stimulating elaborations. 

4.1.1 Eratosthenes’ measurement of the earth’s circumference: This is a well know 

example; see figure 1 (for history e.g. van Helden 1985, pp.4-6; original texts in Thomas 

1941, §XVIII(d); Heath 1991, pp.109-112; for a didactical implementation, de Hosson 2015). 

The elementary geometry involved lies on three non-mathematical assumptions: (i) Earth is 

spherical; (ii) Alexandria and Syene lie on the same meridian; (iii) The sun is so far away 

that its light rays are practically parallel. 

Assertions (i), (iii) are bold hypotheses of far-reaching implications. Considerable didactical 

elaboration can be designed by raising culturally and physically important questions e.g.: 

(1) How do we know that the earth is spherical? This could be approached in various 

ways, including Aristotle’s reasoning in De Cælo (Book II, 14, 297b, 25ff
 
) based on the 

earth’s circular shadow during lunar eclipses, and the appearance of new constellations while 

moving southward (Berry 1961, §29; Crowe 1990, ch.2, p.27). 

(2) How do we know that two places lie on the same meridian? A problem central during the 

geographical expeditions in Renaissance until the 18
th

 century, for the determination of 

geographical longitude in the sea, closely related to the accurate measurement of time (Berry 

1961, §§127, 226; Whitrow 1988; Dörrie 1965, problem 78); and the much easier: How do we 
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determine the geographical latitude of a place? (Dörrie 1965). 

 

 
Figure 1: Eratosthenes’ measurement of the earth’s 

circumference
15 

 (3) How can we check that the sun 

is really so far away? (cf. 4.1.2) etc. 

Any discussion of these questions 

will reveal their interrelations 

(evidence for one can be used, or 

has been used to illuminate the 

others), their importance in the 

emergence and establishment of our 

modern view of the Cosmos, their 

appearance and treatment within 

different cultures etc. 

4.1.2 Aristarchus’ “lunar dichotomy” to measure the earth-sun-moon relative 

distances
16

: Inherent to drawing figure 2 are two hypotheses about the moon: That it is (i) 

spherical; and (ii) illuminated by the sun, so that when the three bodies form a right-angled 

triangle, half of the moon disc is seen from the earth. By measuring φ, the relative distances of 

the sun and moon are obtained: cosφ = aM/a. 

Remarks: (1) How do we know that (i), (ii) hold? Assertion (ii) is explicitly hypothesized 

by Aristarchus and as suggested by Pappus, the existence of lunar eclipses strongly supports 

it (Heath 1991, p.102). 

 
Figure 2: Aristarchus’ lunar dichotomy method for the earth-sun-moon distances 

(2) Aristarchus measured φ
o 

as 29/30 of a right angle (87
o
), deducing that 18< a/aM <20. The 

modern value a/aM  390 amounts to φ
o 
 89

o
52΄; hence, Aristarchus’ was a great 

underestimation. This can be discussed in relation to (i) the instruments available in antiquity 

(dioptra, quadrant, astrolabe etc), their limited accuracy, the subsequent development of more 
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accurate ones (telescope, sextant, theodolite) etc (King 1979) - cf. §4.1.4; (ii) the sensitive 

dependence of computations on the data used: for many problems 2
o
-3

o
 is a negligible error, but 

not for secφ near φ = 90
ο
 (to be discussed in various contexts; trigonometry, calculus etc). 

(3) Aristarchus’ work (and its further elaboration by Hipparchus) on measuring the solar 

and lunar radii using, the accidental empirical fact that the solar and lunar apparent diameters 

almost coincide (about 32΄ on the average), solar eclipses, and aM/a, provides a more 

complicated – though still elementary – geometrical problem in the context of this example 

(see e.g. van Helden 1985, pp.7-14; Crowe 1990 pp.27-30). 

4.1.3 Copernicus’ method for measuring inner planets’ relative distances from the sun: 

At greatest angular elongation from the sun (existing only for the inner planets; Mercury and 

Venus) the planet’s distance aP = a sinθ (a being the earth-sun distance). Already by drawing 

figure 3, it is assumed that the inner planets revolve around the sun in circular orbits (for a 

more accurate description of Copernicus model see van Helden 1985, pp.42-44). 

 
Figure 3: Copernicus’ measurement of the inner planets’ distances at their greatest elongation  

Remarks: (1) Asking for Copernicus’ motivation of such a bold, counter-intuitive 

assumption opens a fruitful discussion both on whether the earth moves and whether the 

planets’ orbits are circular, with far-reaching implications on historical and philosophical 

issues (Kuhn 1973, ch.5; for a recent outline see Brush 2015, §3). 

(2) The observed greatest elongation of the inner planets, fitted naturally in Copernicus’ 

system (but not in Ptolemy’s where extra hypotheses were needed), hence constituting a 

strong supporting argument (Crowe 1990, p.92).  

(3) Tycho Brahe’s semi-heliocentric system
17

(and the crucial role of his careful astronomical 

observations) can be further explored as an intermediate step towards Kepler’s heliocentric 

system of elliptic orbits (Berry 1961, §105; Crowe 1990, pp.140-143; King 1979, pp.16-23). 

(4) A similar, though more elaborated method was invented by Copernicus for the 

distances of the outer planets (Crowe 1990, pp.95-96) that could be discussed in this context. 

4.1.4 Trigonometric parallax: (i) The earth-sun distance using Mercury or Venus’ transits 

across the sun’s disk. 

In this method, originally suggested by Halley (van Helden 1985, p.144; Berry 1961, 

§§202, 227), the planet’s projections A΄, B΄ onto the solar disk are seen by observers A, B at 

two distant places on earth and their angular separation is measured simultaneously (figure 4). 
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Remarks: (1) It is assumed that the planet is very far away, so that PA, PB>>AB the linear 

distance of A, B (cf. example 4.1.1)   

(2) φ
ο
<0

o
.5 (sun’s angular diameter), hence by (1), approximately sinφ  φ  AB/PA (φ 

expressed in radians; sin0
o
.5 2π/720 to 6 decimals). 

 
Figure 4: The earth-sun distance using 

inner planets’ transitions across the sun 

(3) PA  PB is known either from example 4.1.3, or 

– more accurately – from Kepler’s 3
rd

 law of 

planetary motions (e.g. for Venus PA = 0.72AA΄). 

(4) The earth-sun distance gives meaning to all 

celestial relative distances obtained by other 

methods (examples 4.1.2, 4.1.3, 4.1.4(ii)). 

(5) A pair of Venus’ transits with an 8-year time 

difference occurs rarely, every 110 years at least. 

Mercury’s transits are more frequent (every few 

years) but provide a less favorable method, because 

Mercury is considerably fainter than Venus.  

(6) Today we use radar methods to accurately get 

AA΄ directly (conceptually simple, but technically 

sophisticated). 

 (ii) Stellar (annual) parallax 

This is a method to measure the distance of “nearby” stars, applicable to distances less 

than about 100 light years
18

 (l.y.; 1 light year = 9.4610
12

km) by observing them from two 

diametrically opposite places on the earth’s orbit; that is, in a time span of 6 months (figure 5; 

AU  astronomical unit, the semi-major axis of the earth’s orbit a = 1.4910
8
km). Even for 

the nearest star, p <1΄΄ (0΄΄.7687), hence a  d sinp and sinp  tanp  p to 11 decimals. Given 

that p = (2π/3603600)p΄΄= p΄΄/206,265, one gets d = (206,265/p΄΄)AU, where p΄΄ is p 

expressed in seconds of arc
19

. 

Remarks: (1) There are two crucial assumptions inherent in this method: (i) the earth 

revolves around the sun; (ii) the faint stars are (statistically) very far away compared to the 

star whose parallax is sought, so that they constitute a sufficiently immovable background on 

which the star’s two projections are formed and their angular separation is measured. 

(2) The conceptually simple, but technically sophisticated idea of parallax was used by 

Copernicus’ and Galileo’s Aristotelian opponents and critics (including Tycho Brahe) against 

the earth’s motion, given that no parallax had been observed at that time (Berry 1961, §129, 

Crowe 1990, pp.99-100, 141)
20

. 
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 Earth-based measurments. This limit has been greatly extended by using modern sophisticated photographic 

techniques in space telescopes. 
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 Or, d = (1/p΄΄) parsec; one parsec being the distance of an object of parallax p=1΄΄, i.e. 206,265AU=3.25l.y. 
20

 Galileo argued that this was due to the smallness of p, because of the huge stellar distances (Galilei 1967). 



(3) Technically possible measurement of parallax required the telescope and became 

possible as late as 1838 (originally by Bessel), thus giving a final definite experimental test of 

the earth’s revolution (Berry 1961, §§278-279). Other such tests can be discussed. 

 
Figure 5: Trigonometric parallax for measuring stellar distances

21
. 

4.2 Rotations, Space-Time and the Special Theory of Relativity: How did we get here?   

The Theory of Special Relativity (SR) is a standard subject for physics (but not mathematics) 

undergraduates. On the other hand, matrices and linear algebra are introduced early in 

undergraduate mathematics and physics curricula, or even last-year high-school math (as 3D 

analytic geometry and matrix algebra). Since the power of algebra lies in the unified-through-

abstraction approach to otherwise distinct concrete problems, early undergraduates or last-

year high-school students meet grave difficulties in the study of abstract algebraic concepts 

(vector spaces, matrices, linear transformations, groups etc) because of their limited 

mathematical maturity. Therefore, if such concepts are taught at this level, this ought to be 

done by giving as many concrete examples as possible. 

A nice historical example, illustrating the framework of sections 2 & 3, is provided by an 

elementary, but fairly complete account of the foundations of the theory of SR in the spirit of 

Minkowski’s original ideas about space-time and using simple matrix algebra. Below, an outline 

of a possible illumination approach (§3.3.1) is given, strongly inspired by and based on 

history (§3.3(II)), with history playing a re-orientation role (§3.2(II)) and serving mainly as 

a tool (§3.2(i)) for learning mathematics & physics (§3.2.1; by unfolding the interplay 

between these disciplines) and for enriching teachers’ didactical repertoire (§3.2.3). For a 

detailed presentation, see Tzanakis 1999a, §3; 2000, §3.2. The didactical steps do not 

necessarily respect historical order; the approach is mainly heritage-oriented (§3.1) aiming to 

provide insights into the development and establishment of basic modern mathematical and 

physical results, and - whenever necessary - using notions and methods not available or used 

at the time
22

. This helps to link basic innovations in physics and their mathematical 

formulation, to their modern counterparts, thus illuminating better “how did we get here?”  

Key historical elements
23

   

(a) SR is based on Lorentz transformations (LT), the coordinate transformations between 
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inertial systems (IS), i.e. systems moving with constant velocity relative to each other. Einstein 

derived LT in 1905 introducing and using the basic principles of SR: the Special Relativity 

Principle (SRP: the invariance of physical laws under IS coordinate transformations); and the 

Principle of the constancy of the light speed (the vacuum light speed c is constant in all IS, 

whether or not the source is moving). His derivation is based on the epistemological analysis of 

“simultaneity” (what does it mean that “two events are simultaneous”?), is mathematically 

elementary and appeals much on physical intuition and some “common-sense” assumptions 

about the homogeneity of space (Sommerfeld 1952, paper III).  

(b) Others before him (especially Lorentz in 1899 and 1904) had obtained the LT while 

searching for the coordinate transformations that leave unaltered Maxwell’s equations, 

without however attributing to them any general physical significance. They were simply the 

transformations between IS moving relative to the ether (by its definition in absolute rest), 

necessary to explain the null result of experiments that aimed to detect motion relative to the 

ether (especially the famous Michelson-Morley experiment).   

(c) Poincaré in 1904 was the first to realize the deep general significance of the SRP and to 

derive the LT by a mathematically-oriented approach: He explicitly used the group structure of 

the sought transformations implied by the SRP and got their general form and fundamental 

consequences of SR (e.g. the relativistic velocity addition law); see Pais 1982, pp.128-130. 

(d) In a seminal lecture in 1908 (Sommerfeld 1952, paper V), Minkowski introduced the 

space-time concept, unfolding the rich geometrical content implicit to Einstein’s 1905 paper
24

.  

physically-oriented approach mathematically-oriented approach 

     Lorentz (1904) Poincaré (1904) 

 
      transformations leaving    

       invariant Maxwell’s    

      equations 

 
group structure of transformations 

between inertial systems 

   

      Einstein (1905) Minkowski (1908) - the space-time concept 

 
    - analysis of simultaneity 

   - Special Relativity Principle 

   - Constancy of the light speed 

 
- transformations leaving invariant    

  the light cone: 

        x
2
 + y

2
 + z

2
 – c

2 
t
2
 = 0 

Figure 6: The initial key steps in the historical development of the Theory of Special Relativity  

Brief sketch of a possible didactical implementation 

These basic historical facts are schematically shown in figure 6. An outline of their 

didactical reconstruction follows: 

(1) The LT in 2D (one spatial x, one temporal t) result by following Minkowski’s key 

ideas: (i) The introduction of space-time as a natural concept inherent to Einstein’s 1905 

analysis of the relative character of the simultaneity of events; and (ii) The constancy of c 

trivially implies that the sought transformations leave invariant the light cone (i.e. the surface 
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years later would have been impossible without it (Tzanakis 1999b, §§4.3, 4.4). 



on which light signals lay). This derivation uses elementary matrix algebra and proceeds in 

close analogy with the determination of plane rotations in 2D-analytic geometry: Rotations 

in the xy-plane conserve the Euclidean distance x
2
+y

2
; LT in the xt-plane conserve the 

Minkowski (pseudo)distance x
2
-c

2
t
2
 that vanishes on the light cone (Tzanakis 1999a, §3). 

Proceeding along these lines, Euclidean rotations are represented by orthogonal 

transformations with matrix parametrized by the rotation angle φ, 

 cos φ - sin φ 

Rφ =   

 sin φ cos φ 

whereas the LT are represented by pseudo-rotations with matrix parametrized by φ, with 

tanhφ = v/c; v being the relative speed of the two IS  

  cosh φ sinh φ 

Lφ =   

 sinh φ cosh φ 

(2) Strictly speaking, conservation of the light cone implies only that the sought 

transformations are conformal, a fact whose significance was appreciated first by Weyl in 1918 

(Sommerfeld 1952, paper XI). It is more advanced - especially in 4D - to show that in the 

context of SR these conformal transformations are indeed isometries of the Minkowski 

(pseudo)-distance if it is assumed that they map straight lines to straight lines, as a consequence 

of Newton’s law of inertia. This derivation may constitute a student project along the lines of 

Poincaré, using explicitly the group structure of the sought transformations. Fundamental 

results of SR are obtained in this way (velocity addition, length contraction etc), at the same 

time illustrating important abstract concepts, like group, pseudo-Euclidean structure, conformal 

transformations etc. For instance, the geometrically clear fact that successive plane rotations by 

angles φ and φ΄ coincide with a single rotation by an angle φ+φ΄, is equivalent to the orthogonal 

matrices Rφ forming a group under multiplication, RφRφ’= Rφ+φ’; a fact verified by direct 

calculation and using standard trigonometric identities. Similarly, by direct calculation and 

using the corresponding identities for the hyperbolic functions, the LT, hence the matrices Lφ, 

form a multiplication group, LφLφ’= Lφ+φ’. But now, in view of tanhφ = v/c, the identity  

'tanhtanh1

'tanhtanh
)'tanh(









  

becomes the important, highly nontrivial and counter-intuitive relativistic law of velocity 

addition for three inertial systems with parameter φ, φ΄, φ΄΄=φ+φ΄, moving respectively with 

velocities relative to each other v, v΄, v΄΄; i.e.

'
1

1

'
''

2
vv

c

vv
v




   Since |v/c|<1

25
, this composition 

law if seen algebraically, is a new “addition”  in (-1,1], such that this interval with the 

operation
'1

'
'

xx

xx
xx




  becomes a commutative group (isomorphic to the 2D Lorentz group), 
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with x  1 =1 for any x
 
 in (-1,1]

26
 (Tzanakis 1999a for details and original references).  

(3) Conformal transformations in the special case of similarities can be introduced 

naturally by looking for the symmetry group of Maxwell’s equations. It is a nice example – 

dual to (1) above - to consider this problem for both the 2D Laplace and the wave equation 

and to arrive at the orthogonal and the Lorentz group of transformations, respectively (cf. 

Heras 2016). In fact, this is the idea behind the pre-relativistic derivations of the LT by 

Larmor and Lorentz (Schaffner 1972; Sommerfeld 1952, paper II; Whittaker 1951).    

(4) At a more advanced level, one can pursue further Weyl’s original idea that the two 

basic principles of SR alone, imply only that the transformations between IS are conformal
27

, 

hence that the basic geometrical structure of space-time as a manifold is not its (pseudo)-

metric, but vector parallelism. Actually, Weyl was trying to formulate a unified theory of 

gravitation and electromagnetism. In this way one has a natural path to introduce the first 

example of what - from today’s perspective - was the first gauge field theory (Weyl 1952, 

§35, 36; Sommerfeld 1952, paper XI; see also Tzanakis 2002, §3.1). 

4.3 Differential Equations, (Functional) Analysis and Quantum Mechanics: What did (or 

did not happen) in the past and why (or why not)?  

For most mathematics and physics undergraduates (at least), the following subjects, if 

ever taught, are taught separately so as heterogeneous; thus learnt as unrelated, and 

finally conceived as completely alien to each other: 

- Jacobi’s general method to solve 1
st
 order partial differential equations (PDEs) by solving 

an equivalent system of 1
st
  order ordinary differential equations (ODEs). 

- The canonical (Hamiltonian) formulation of classical mechanics and its associated 

Hamilton-Jacobi theory for solving mechanical problems. 

- The formal analogy as variational principles of Fermat’s Principle of Least Time in Geometrical 

Optics (GO) and Maupertuis’ Principle of Least Action in Classical Mechanics (CM). 

- Schrödinger’s equation as the cornerstone of Quantum Mechanics (QM).    

- Heisenberg’s Matrix Mechanics and infinite dimensional matrices. 

- Infinite dimensional linear spaces; in particular (separable) Hilbert spaces. 

- Observable quantities in QM as (hermitian/self adjoint) operators in linear spaces and their 

non-commutative algebraic structure. 

- Fourier analysis, Lebesgue integration and square-integrable functions. 

This is related to the fact that key issues are introduced unmotivated e.g. (i) 

Schrödinger’s equation is introduced ad hoc as a basic axiom, whose significance is to be 

evaluated a posteriori by its compatibility with experiment (see Tzanakis & 

Coutsomitros 1988, §3); (ii) Separable Hilbert spaces are introduced rather mysteriously 

as linear spaces with a countable, dense subset (e.g. Richtmyer 1978). 

However, historically these subjects have strong interconnections that motivated, 
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abandoned after the formulation of general relativity in 1915. 



stimulated, and guided the course of development to their current form, which can be 

beneficial for their teaching and learning today. This example has been presented from a 

variety of perspectives elsewhere
28

. Here, a possible didactical illustration is given within 

the framework of sections 2 & 3: Briefly outlining a possible history-based approach 

(§3.3.3) inspired by history (§3.3(II)), in which history has a replacement role (§3.2(I)), 

serving mainly as a tool (§3.2(i)) for learning mathematics & physics (§3.2.1; contrasting 

the historical development vs. its polished final results, and unfolding the strong bonds 

between mathematics and physics), enriching teachers’ didactical repertoire (§3.2.3; 

furnishing ample insight to the motivation for introducing new concepts and theories) and 

possibly amending students’ affective predisposition towards learning abstract and difficult 

concepts (§3.2.4; by stressing the constructive role of posing questions and of attempting 

lines of inquiry despite any existing vagueness and uncertainties). The emphasis is on a 

history-oriented approach (§3.1) by enlightening “what and why did/did not happen?”, but 

a heritage-oriented approach (§3.2) is also possible if the didactical sequence is structured 

differently to fit better dealing with the question “how did we get here?” 

Key historical elements   

(a) In the 18
th

 century the formulation of Maupertuis’ Principle of Least Action in CM was 

motivated by and in analogy with Fermat’s Principle of Least Time in GO (Dugas 1988, part 

III, §§V.4-V.7, V.11, V.12). For a mechanical system with finite degrees of freedom and 

constant total energy, Maupertuis’ principle as formulated by Hamilton (in the mid 1830s) 

was a main motivation for Hamilton’s mathematically unified development of the two 

theories, which (together with Jacobi’s important work since 1837; Nakane & Fraser 2002) 

provided a general method for solving 1st order PDEs and constituted another formulation of 

CM that became central to the solution of mechanical problems as well, the Hamilton-Jacobi 

method (Dugas 1988, part IV, §§VI.2-VI.5; Klein 1979, pp.179-203; Lanczos 1970; Yourgrau 

& Maldestam 1968; Goldstein 1980, ch.10; Tzanakis 2000, §3.3).  

(b) Hamilton’s ideas stimulated de Broglie to see this similarity as an indication of a deep 

relation between mechanical and optical phenomena in his 1924 doctoral thesis
29

. By 

relativistic arguments, he extended to matter the Planck-Einstein quantization relations for 

radiation, thus predicting the wave nature of atomic particles (Tzanakis 1999b, §4.2). In 1926, 

elaborating on this idea, Schrödinger arrived at the formulation of Wave Mechanics
30

. 

(c) In the 1920s, atomic physics was a complicated mixture of CM, electrodynamics, semi-

empirical rules, and heuristic arguments. Physicists were trying hard to develop models of 

atomic phenomena in a rather vague and confusing landscape. Heisenberg’s breakthrough in 

1925 (van der Waerden 1967, paper 12) was the development of an algebraic manipulation of 
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searching for an undulatory mechanics… [by] working out… the Hamiltonian analogy on the lines of 

undulatory optics” (Schrödinger 1982, paper II, p.18); see also Dugas 1988, p.401; Goldstein 1980, §10-8. 



atomic quantities, in analogy with Fourier series operations, with the crucial difference that 

the Fourier-like frequencies and coefficients were doubly indexed as a consequence of Ritz’ 

combination principle in atomic spectroscopy (see figure 8). The novel fact was the non-

commutative multiplication of atomic quantities, originally unintelligible to Heisenberg. 

However, it was immediately realized by the mathematically educated Born and Jordan, that 

Heisenberg’s calculus was just the algebra of (generally, infinite-dimensional) matrices (Born 

1969, §V.3; Heisenberg 1949, Appendix §1). This led to Matrix Mechanics, the first 

formulation of QM (van der Waerden 1967, paper 15; Mehra & Rechenberg 1982). 

(d) After the formulation of Wave Mechanics, physicists were puzzled by the existence of 

two conceptually and mathematically totally different theories of atomic phenomena (Matrix 

Mechanics and Wave Mechanics), which nevertheless gave identical results compatible with 

the empirical data. Schrödinger (in 1926) and von Neumann (from 1927) showed that the two 

theories were mathematically equivalent.  However they proceeded in different ways:  

Schrödinger provided a formal proof: Functions in his Wave Mechanics were elements of 

the linear space L
2
(R) of Lebesgue quadratically integrable complex-valued functions, equipped 

with the scalar product 



 gdfgf *, ,  f

* being the complex conjugate of f. The matrices 

in Matrix Mechanics could be seen as acting on the infinite-dimensional linear space l
2
 of 

complex sequences =(1, 2, ...), such that k k
2
+; a straightforward generalization of the 

familiar n-dimensional Euclidean space. By expanding the wave functions in an orthonormal 

(ON) basis of L
2
(R), solving his PDE becomes the solution of the eigenvalue problem for the 

Hamiltonian matrix H


 of Matrix Mechanics and vice versa; i.e. Schrödinger’s equation reduces 

to a system of linear equations, whose matrix was H


 (Schrödinger 1982, paper 4).  

von Neumann’s approach was mathematically-oriented (von Neumann 1947, ch.I). He 

identified the basic properties of the objects with which the two theories were dealing, 

emphasizing the linear structure of the function spaces (that is L
2
(R) and l

2
) underlying 

them. Thus he was led to introduce axiomatically what became known as a separable Hilbert 

space (von Neumann 1947, ch.II). Then he resolved the puzzle by proving that all these 

(normed) spaces are isometric: The two conceptually different theories were different 

representations of the same abstract mathematical structure that underlies the formalism 

of QM (von Neumann 1947, ch.II, theorem 9). 

Outline of a possible didactical sequence 

In view of these historical facts, an approach to this vast and rich subject is outlined below: 

(1) The Least Action Principle and the Principle of Least Time constitute important examples 

of variational principles, leading to mathematically interesting equations that are central in CM 

(the Hamilton-Jacobi equation) and (Geometrical) Optics (the eikonal equation)
31

; Pauli 1973; 
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 In Schrödinger’s concise wording: “The inner connection between Hamilton’s theory and the process of wave 

propagation is anything but a new idea... Hamilton’s variational principle… correspond[s] to Fermat’s 

Principle for a wave propagation in configuration space… and the Hamilton-Jacobi equation expresses 

Huygen’s Principle  for the wave propagation… we must regard [this] analogy as one between mechanics and 

geometrical optics and not… undulatory optics” (Schrödinger 1982, pp.13, 17; see also next paragraph). 



Courant & Hilbert 1962 §II.9.2. Both are generic examples, making possible the establishment of 

a general result in the theory of PDEs: the solution of a large class of 1
st
 order PDEs (the 

Hamilton-Jacobi equation being an important special case) is equivalent to the solution of a 

system of 1
st
 order ODEs; the associated canonical (or Hamilton’s) equations (cf. Nakane & 

Fraser 2002, pp.49, 56). This result is of central importance both in the theory of differential 

equations and the calculus of variations (e.g. Courant & Hilbert 1962 §§II.8-II.10; Sneddon 1957; 

Gelfand & Fomin 1963) and in CM (e.g. Goldstein 1980, §§10.1, 10.3; Lanczos 1970). In fact, 

one can proceed close to Hamilton’s and Jacobi’s approaches to illuminate the subject from two 

different, but equally important angles (Dugas 1988, part IV, ch.VI; Klein 1979, pp.182-196). 

(2) Schrödinger’s elaboration of Hamilton’s mathematically unified treatment of CM and 

GO, was based on arguing by analogy: If CM is mathematically similar to GO, and since the 

latter is only an approximation to Wave Optics, CM may be only an approximation to a 

Wave Mechanics, which is similar to Wave Optics in the same way that CM is similar to GO. 

Thus, entirely within the conceptual and mathematical framework of CM an equation results 

as the mechanical equivalent of the wave equation, which is formally identical with 

Schrödinger’s up to an undetermined constant σ. This is schematically shown in figure 7.   

    Fermat’s Principle 0  sndl
B

A
                               Least Action Principle 0)(2   sdVHS

B

A
                  

Geometrical Optics                          By analogy                            Classical Mechanics 

Eikonal equation
22|| nl                                                     Hamilton-Jacobi equation )(2|| 2 VHS   

 

 

 

 

                                     Hamilton’s unified treatment (1833-35)                     
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                                                        By analogy           
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
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Figure 7: A schematic representation of Schrödinger’s reasoning by analogy 

Here l, n are the optical length and the index of refraction n=c/v (c, v the speed of light in 

vacuum and in the optical medium); S the action of a mechanical system with potential energy 

V and total (mechanical) energy H(x, p), x and p the coordinates in configuration space and the 

corresponding generalized momenta, and ds the element of arc length in real and configuration 

space respectively (Tzanakis 1998, §2; cf. Schrödinger 1982, pp.160-163, 189-192). 



But then, why Hamilton did not formulate Wave Mechanics? To this end an extra 

condition was needed, supplied by de Broglie, who - based on SR theory - postulated the 

wave nature of matter by “symmetrising” the Planck-Einstein conception of the corpuscular 

nature of radiation with the aid of the same formal relations: as for the light quanta 

(photons), the energy E and the momentum p of a particle are proportional to the frequency ν 

and the wave number k of the associated wave; E=hν, p=hk, h being Planck’s universal 

constant (Tzanakis 1998). In this case, σ necessarily coincides with h. This was the crucial 

physical idea that led from Hamilton’s mathematically unified treatment of the conceptually 

different theories of GO and CM, to a deep, fruitful physical theory of atomic phenomena. 

Lack of this crucial physical idea prevented Hamilton from inventing wave mechanics.
32

  

(3) Heisenberg formulated matrix mechanics (see (c) above) reasoning by analogy, as 

schematically shown in figure 8 (n, l, m, k being integers and I the identity matrix). 

Classical positions & momenta q, p                                  Quantum positions & momenta q, p 

                                                                           

  Fourier representation                                             (looking for a) new representation (because of)    

Singly indexed frequencies                                                 Doubly indexed spectral frequencies 

        νk = kω                                                                                         νnm 

                                                                                                      obeying Ritz principle            

     νk  + νl = νk+l                                                                                        νnl  + νlm = νnm 
by analogy 

q(t) =  qk exp(i νkt)                                                                      q(t)  qnm exp(i νnmt) 

 

Operations 

by analogy 

p+q             (pk+qk) exp(i νkt)                                               p+q         (pnm+qnm) exp(i νnmt) 

 

pq               (l pl qk-l) exp(i νkt)                                           pq         (l pnl qlm) exp(i νnmt) 
by analogy + Ritz Principle 

                                                                                           I
i

h
pqqp

2
    

(hence, pq  qp leading to Heisenberg’s uncertainty relations) 

Figure 8: Schematic representation of Heisenberg’s formulation of Matrix Mechanics 

It is important to note that (i) the non-commutativity of quantum quantities was imposed by 

the doubly-indexed spectral frequencies so that the experimentally obtained Ritz principle is 

satisfied; (ii) the famous Heisenberg uncertainty relations are a necessary consequence of this 

non-commutativity (Heisenberg 1949, §II.1; Born 1969, Appendices XII, XXVI; for the 
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 In Hamilton’s time, there was no physical reason to consider the formal similarity between GO and CM 

nothing more than a mathematical analogy. Hamilton never attributed to it deeper physical meaning and it 

never attracted enough attention after Hamilton, despite Klein’s use of this optical analogy to develop the 

Hamilton-Jacobi theory as a kind of optics in a multidimensional configuration space (Tzanakis 1998, p.73; 

Goldstein 1980, pp.491-492; Jammer 1966, pp.237-238). At that time neither the wave, nor the corpuscular 

theory of light were generally accepted. Hamilton’s motivation was the desire to formulate GO in a way capable 

of interpretation in the context of either of the two theories (Dugas 1988, pp.390-391; cf. Goldstein 1980, p.489). 

 



history see Jammer 1966, §7.1). 

 (4) One can proceed along these lines to motivate the unforced introduction of important 

concepts and to prove basic results in Functional Analysis and Fourier Analysis. For instance: 

(i) To present in a simple form the basic mathematical problem of the Heisenber-Born-

Jordan Matrix Mechanics and Schrödinger’s Wave Mechanics: the diagonalization of the 

hamiltonian matrix H


 in l
2
, and the solution of Schrödinger’s equation in L

2
(R), respectively.  

(ii) Given that these physically and mathematically a priori different theories yield 

identical, experimentally correct predictions, the question of their relation naturally arises. 

Hence Schrödinger’s heuristic and non-rigorous arguments can be used to show formally that 

Schrödinger’s equation reduces to a matrix eigenvalue problem, once an ON basis of L
2
(R) 

has been chosen (Schrödinger 1982, paper 4). 

(iii) Motivated by this approach, a rigorous proof that l
2
 and L

2
(R) are isometric Hilbert 

spaces can be given, a fact already included in the works of Riesz and Fisher in 1907 

(Bourbaki 1974; Dorier 1996). 

(iv) In view of the heuristic approach in (ii), it is reasonable to reverse the argument and to 

consider linear spaces with a scalar product spanned by a countable ON basis, thus arriving at 

their isomorphism and their various equivalent characterizations (spaces having either an ON 

sequence spanning the space, or an ON sequence not perpendicular to any element, or obeying a 

generalized Parseval identity with respect to an ON sequence, or having a countable dense 

subset). This is essentially von Neumann’s approach (1947, chs.I, II; see also Dieudonné 1981). 

(5) Continuing along these lines, to introduce many other important concepts and results of 

functional analysis: bounded vs unbounded operators and the associated concept of a closed 

operator; the distinction between hermitian and self-adjoint operators; the extension of an 

operator etc; all of which are both basic in functional analysis and indispensable to QM (and 

modern theoretical physics, in general); see Tzanakis 2000, §3.4. 

5 Final comments   

In this paper the innermost relationship of mathematics and physics considered both from the 

point of view of their epistemological characteristics and their historical development has been 

explored and arguments have been presented to support the three main theses formulated in 

section 2. From an educational point of view, they imply that in mathematics and physics 

education this relationship should be taken into account explicitly. The main issues to be faced 

in any such attempt have been addressed in section 3 and a framework for integrating history 

into teaching and learning these disciplines has been outlined on a common ground. The general 

ideas presented in sections 2, 3 have been illustrated by analyzing three examples of quite 

different content and orientation. Hopefully, enough evidence has been presented to support that 

(a) it is impossible to deeply understand either mathematics or physics without being 

sufficiently aware of their interconnections and mutual influence; (b) on the contrary, taking 

into account their interrelation is beneficial for teaching and learning either discipline.   
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