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ABSTRACT 

When one thinks of medieval mathematics in Europe, the first ideas that come to mind are the introduction 

of the Hindu-Arabic number system with its algorithms as well as the first beginnings of algebra based on 

Latin translations from the Arabic.  But there was far more mathematics developed and discussed in the 

European Middle Ages, not only in Latin but also in Arabic and Hebrew.  In particular, there were three 

different mathematical cultures in medieval Europe, the dominant Latin Catholic culture, the Hebrew culture 

found mostly in Spain, southern France, and parts of Italy, and the Islamic culture that was dominant in 

Spain through the thirteenth century.  We will compare and contrast these three mathematical cultures and 

consider how they interacted with each other in the pre-modern period, laying the groundwork for the 

explosion of mathematical knowledge in Europe beginning in the Renaissance. 

1 Mathematics in medieval Europe 

Mathematics in medieval Europe was not just the purview of scholars who wrote in Latin, 

although certainly the most familiar of the mathematicians of that period did write in that 

language, including Leonardo of Pisa, Thomas Bradwardine, and Nicole Oresme.  These 

authors – and many others – were part of the Latin Catholic culture that was dominant in 

Western Europe during the middle ages.  Yet there were two other cultures that produced 

mathematics in that time period, the Hebrew culture found mostly in Spain, southern 

France, and parts of Italy, and the Islamic culture that predominated in Spain through the 

thirteenth century and, in a smaller geographic area, until its ultimate demise at the end of 

the fifteenth century.  These two cultures had many relationships with the dominant Latin 

Catholic culture, but also had numerous distinct features.  In fact, in many areas of 

mathematics, Hebrew and Arabic speaking mathematicians outshone their Latin 

counterparts.   In what follows, we will consider several mathematicians from each of 

these three mathematical cultures and consider how the culture in which each lived 

influenced the mathematics they studied. 

We must begin by clarifying the words “medieval Europe”, because the dates for the 

activities of these three cultures vary considerably.  Western Europe, from the time of 

Charlemagne up until the mid-twelfth century, had very little mathematical activity, in 

large measure because most of the heritage of ancient Greece had been lost.  True, there 

was some education in mathematics in the monasteries and associated schools – as 

Charlemagne himself had insisted – but the mathematical level was very low, consisting 

mainly of arithmetic and very elementary geometry.  Even Euclid’s Elements were 

essentially unknown.  About the only mathematics that was carried out was that necessary 

for the computation of the date of Easter.   

Recall that Spain had been conquered by Islamic forces starting in 711, with their 

northward push being halted in southern France in 732.  Beginning in 750, Spain (or al-



Andalus) was ruled by an offshoot of the Umayyad Dynasty from Damascus.  The most 

famous ruler of this transplanted Umayyad Dynasty, with its capital in Cordova, was ‘Abd 

al- Raḥmān III, who proclaimed himself Caliph early in the tenth century, cutting off all 

governmental ties with Islamic governments in North Africa.  He ruled for a half century, 

from 912 to 961 and his reign was known as “the golden age” of al-Andalus.  His son, and 

successor, al-Ḥakam II, who reigned from 961-977, was also a firm supporter of the 

sciences who brought to Spain the best scientific works from Baghdad, Egypt, and other 

eastern countries. And it is from this time that we first have mathematical works written in 

Spain that are still extant. 

Al-Ḥakam’s son, Hishām, was very young when he inherited the throne on the death 

of his father, and he was deposed by a coup led by his chamberlain. This man instituted a 

reign of intellectual terror that lasted until the end of the Umayyad Caliphate in 1031.  At 

that point, al-Andalus broke up into a number of small Islamic kingdoms, several of which 

actively encouraged the study of sciences.  In fact, Sā‘id al-Andalusī, writing in 1068, 

noted that “The present state, thanks to Allah, the Highest, is better than what al-Andalus 

has experienced in the past; there is freedom for acquiring and cultivating the ancient 

sciences and all past restrictions have been removed” (Sā‘id, 1991, p. 62). 

Meanwhile, of course, the Catholic “Reconquista” was well underway, with a critical 

date being the reconquest of Toledo in 1085.  Toledo had been one of the richest of the 

Islamic kingdoms, but was conquered in that year by Alfonso VI of Castile.  Fortunately, 

Alfonso was happy to leave intact the intellectual riches that had accumulated in the city, 

and so in the following century, Toledo became the center of the massive transfer of 

intellectual property undertaken by the translators of Arabic material, including previously 

translated Greek material, into Latin. In fact, Archbishop Raymond of Toledo strongly 

encouraged this effort.  It was only after this translation activity took place, that Latin 

Christendom began to develop its own scientific and mathematical capabilities. 

But what of the Jews?  There was a Jewish presence in Spain from antiquity, but 

certainly during the time of the Umayyad Caliphate, there was a strong Jewish community 

living in al-Andalus.  During the eleventh century, however, with the breakup of al-

Andalus and the return of Catholic rule in parts of the peninsula, Jews were often forced to 

make choices of where to live.  Some of the small Islamic kingdoms welcomed Jews, 

while others were not so friendly.  And once the Berber dynasties of the Almoravids 

(1086-1145) and the Almohads (1147-1238) took over al-Andalus, there were frequent 

times when Jews were forced to leave parts of Muslim Spain.  On the other hand, the 

Catholic monarchs at the time often welcomed them, because they provided a literate and 

numerate class – fluent in Arabic – who could help the emerging Spanish kingdoms 

prosper.  By the middle of the twelfth century, most Jews in Spain lived under Catholic 

rule.  However, once the Catholic kingdoms were well-established, the Jews were often 

persecuted, so that in the thirteenth century, Jews started to leave Spain, often moving to 

Provence.  There, the Popes, in residence at Avignon, protected them.  And, of course, by 

the end of the fifteenth century, all the Jews were forced to convert or leave Spain.  

It was in Provence, and later in Italy, that Jews began to fully develop their interest in 

science and mathematics.  They also began to write in Hebrew rather than in Arabic, their 

intellectual language back in Muslim Spain.    



2 The Mathematics of the Muslims 

As noted above, it was the rulers of the individual Islamic states in al-Andalus who 

decided whether or not to support mathematics and other sciences.  So why would a ruler 

support a mathematician?  Generally, it was because he felt that the mathematicians could 

contribute to the wealth and, perhaps, the prestige of the kingdom.  And a mathematician 

definitely needed support.  Certainly, he could have a non-mathematical position that 

earned him a living, but it was better for scientific work if he was given the funds so he 

could spend sufficient time on mathematics.  There were no institutional structures in 

Islamic Spain, or indeed in the Islamic world in general, that would allow a mathematician 

to flourish.  There were no universities and the madrasas, in general, provided instruction 

in the religious sciences, but not the secular ones. 

So we are left with looking at the relationship between a ruler and a mathematician.  

We will consider four examples.  The first is Abū ‘Abdullah Muḥammad ibn ‘Abdūn  

(923-976)  a mathematician who was born and taught mathematics in Cordova, the capital 

of the Umayyad caliphate.  He became a physician as a result of his studies in the East, 

and then returned to Cordova as the physician of the caliph, al-Ḥakam II. His only known 

mathematical work is On measurement, of which only one copy survives. Many of the 

methods in this treatise can be found in texts written in ancient Babylon.  In fact, ibn 

‘Abdūn’s treatise marks the extension of a pre-algebraic tradition of measuring surfaces 

from the eastern Islamic lands to al-Andalus and, then, to the Maghreb.  This treatise is 

basically a practical manual, and not a theoretical one.  Thus it is not surprising that the 

author of such a treatise would be supported.  This was mathematics that could be used. 

At the beginning of the manuscript of this treatise ibn ‘Abdūn is referred to as 

muhandis and faraḍī.  The first denotes someone involved with measuring (theoretical or 

practical, e.g. surveying), and the second denotes a specialist in the arithmetical 

procedures necessary to calculate the legal heirs’ shares of an inheritance according to 

Islamic law. The treatise is basically a collection of problems in which the author presents 

algorithms for finding areas or lengths.  He begins with rectangles, squares, triangles, and 

parallelograms, then moves to circles, where he uses the standard approximation of 22/7 

for π in his calculations.  But he also shows knowledge of the old methods of solving what 

we would call quadratic equations when he asks the reader to find certain lengths given 

information about areas or diagonals. 

In these problems, he does not use the al-Khwārizmīan terminology of “thing” for the 

unknown and māl (treasure) for square.  He simply converts all his measurements to 

numbers and gives an algorithm for finding the answers.  The algorithms are similar to 

those from ancient Mesopotamia and are ultimately based on manipulation of geometric 

figures.  But ibn ‘Abdūn leaves out any justification at all, as in the following examples: 

If you are told, “We add the sides and the area and it is one hundred forty, what are 

the sides?” The calculation is that you add up the number of the sides, which is 

four, and take its half, two. Multiply it by itself, it is four. Add it to one hundred 

forty, which is one hundred forty-four. Then take the root of that, twelve, and take 

away from it half of the four and the remainder is equal to each of its sides. 

 



If you are told that the diagonal is ten and one side exceeds the other by two, what 

are its two sides? The way to calculate this is that you multiply the diameter by 

itself, which is one hundred, and you multiply the two by itself, which is four, and 

you subtract it from one hundred. The remainder after that is ninety-six. You take 

half of that, which is forty-eight, which is the area.  Now it is as if you are told, “A 

rectangle, whose length exceeds its width by two, and its area is forty-eight. What 

is each of the sides?” So you work as we described to you [earlier], and you will 

hit the mark, Allah willing (Katz et al, 2016, p. 452).  

A century after ibn ‘Abdūn, we find another mathematician involved in a very 

practical subject, spherical trigonometry, the key to the understanding of astronomy.  This 

was ibn Mu‘ādh al-Jayyānī, whose work, the Book of Unknowns of Arcs of the Sphere, 

written probably in the middle of the eleventh century, is the earliest extant work on pure 

trigonometry, not as an introduction to a work on astronomy.  The last part of his name 

implies that he was from Jaén in Andalusia. He is known to have been a qādī (religious 

judge) and in fact came from a family whose members included a number of such learned 

officials.  Thus, given that he was active after the end of the Umayyad caliphate, he was 

probably supported by the ruler of one of the small Islamic kingdoms in the south of 

Spain.  What we do not know is how ibn Mu‘ādh learned his trigonometry.  His work is 

similar to material that had been widely discussed in eastern Islam, but nothing of his 

book points to any particular known eastern source.  

Despite this work being a purely mathematical one, ibn Mu‘ādh obviously intended it 

to help in the study of astronomy.  But it was not an elementary work. As he wrote in the 

preface, 

In this book we want to find the magnitudes of arcs falling on the surface of the 

sphere and the angles of great arcs occurring on it as exactly as possible, in order 

to derive from it the greatest benefit towards understanding the science of celestial 

motions and towards the calculation of the phenomena in the cosmos resulting 

from the varying positions of celestial bodies. […] So we present something whose 

value and usefulness in regard to understanding this [subject] are great. As for 

premises that were derived by scholars who preceded us, we give just the 

statements, without proof, so that we may arrive at acknowledgement of their 

proof. […] We have written our book for those who are already advanced in 

geometry, rather than for beginners (Katz et al, 2016, p. 503).  

There are many starting points for the basic results of spherical trigonometry.  Ibn 

Mu‘ādh chose as his starting point the transversal theorem, a theorem well-known from 

Greek times, although written in terms of chords rather than Sines.  This theorem shows 

the relationship of certain ratios of Sines of arc segments in a figure consisting of four 

intersecting great circle arcs.  Given this result and various similar ones, ibn Mu’adh then 

sets out his goal for the book: 

We say that there are two kinds of things found in a triangle, sides and angles. 

There are three sides and three angles, but there is no way to know the triangle 

completely, i.e. [all] its sides and its angles, by knowing only two of the six. 

Rather, from knowing only two things, be they two sides or two angles or one side 

and one angle, it [the triangle] is unspecified. For it is possible that there are a 



number of triangles, each of which has those [same] two known things, and so one 

must know three things connected with it [the triangle] to obtain knowledge of the 

rest. Thus it is impossible to attain all of it knowing less than three members: three 

sides, three angles, two sides and an angle or two angles and a side (Katz et al, 

2016, p. 504). 

In other words, his goal is to solve spherical triangles, given the knowledge of three 

of the six “things”.  On the way to doing this, he proves various important results.  For 

instance, he shows that if the ratio of the Sines of two arcs is known as well as their 

difference (or their sum), then the arcs are determined.  He also demonstrates “a theorem 

of great usefulness and abundant benefit in general.” 

In any triangle whose sides are arcs of great circles, the ratio of the Sine of each of 

its sides to the Sine of the opposite angle is a single ratio (Katz et al, 2016, p. 512). 

Ibn Mu‘ādh has a long discussion of the properties of right spherical triangles, 

including results involving Cosines as well as Sines.  Finally, he systematically shows 

how to solve triangles, when any set of three “things” is known, often by dropping 

perpendiculars and then using the properties of right triangles.  Probably the most difficult 

of the solutions to accomplish is when all three angles are known, obviously a result that 

has no parallel in plane trigonometry. 

The two works mentioned above were reasonably practical.  After all, measurement 

was necessary in all sorts of contexts, and spherical astronomy was important for 

astronomy, which was in turn necessary for calculating the direction and times of prayer. 

In fact, ibn Mu‘ādh described how to find the qibla, the direction of prayer.  On the other 

hand, he also wrote a very theoretical treatise on ratios, a work explaining in detail 

Euclid’s definition of ratio in Book V of the Elements.  Other mathematicians too worked 

on quite theoretical material. 

For example, consider ibn al-Samḥ (984-1035), who lived in Cordova toward the end 

of the Umayyad caliphate, when that government was in turmoil.  He was a student of the 

famous astronomer, Maslama al-Majrītī and wrote on astronomy, astrology and 

mathematics. Evidently, however, he earned his living as a practicing physician. Here, we 

look at his geometrical text, The Plane Sections of a Cylinder and the Determination of 

their Areas, which today only survives in a Hebrew translation by Qalonymos ben 

Qalonymos of Provence.   

Ibn al-Samḥ’s treatise is in two parts.  In the first part, he introduces a figure 

constructed by what he calls a “triangle of movement” and then considers an oblique 

section of a right circular cylinder, which he knows is an ellipse.  The “triangle of 

movement” is constructed by fixing one side of a triangle and moving the intersection of 

the other two sides in such a way that their sum is always equal, although the lengths of 

each will vary as their intersection moves.  He then shows that this figure and the section 

of the cylinder share the same properties and therefore are the same figures. In the second 

part, Ibn al-Samḥ finds the area of the ellipse by relating its area to that of its inscribed and 

circumscribed circles. In order to do this, however, he determines various ratios among the 

ellipse, its inscribed and circumscribed circles, and the major and minor axis.  For 

example, he proves that the ratio of the inscribed circle to the ellipse is the same as the 



ratio of the minor to the major axis. Also, the ratio of the inscribed circle to the ellipse is 

the same as the ratio of the ellipse to the circumscribed circle.   

Finally, the proposition giving the area of an ellipse is phrased in a way that echoes 

Proposition 1 of Archimedes’ Measurement of the Circle, each expressing the area of a 

curved figure (an ellipse in the one case, a circle in the other) in terms of a certain right 

triangle.  Further, he actually calculates the area: 

Every ellipse is equal to the right triangle of which one of the sides containing the 

right angle is equal to the circumference of the inscribed circle and of which the 

second side is equal to half of the greatest diameter. […] It results from what we 

have established that if we take five sevenths and one half of one seventh of the 

smallest diameter, and multiply this by the greatest diameter, we obtain the area of 

the ellipse (Katz et al, 2016, p. 467). 

Another important mathematician from Spain at this time is Al-Mu’taman Ibn Hūd 

(d. 1085). Until recently his works were thought to have been lost, but in the late 1980s 

Professors Ahmed Djebbar and Jan Hogendijk discovered manuscripts of his extensive 

survey of the mathematics of his time, his Kitāb al-Istikmāl (Book of Perfection).  Ibn Hūd 

had planned for the book to have two “genera” but he had only finished the first when he 

became King of Saragossa, one of the small Islamic kingdoms on the peninsula, in 1081 

and evidently had no time to write the second before he died four years later.  Ibn Hūd had 

an elaborate division of his “genera” into species, subspecies, and sections. The work, 

definitely not intended for beginners, sheds unexpected light on the mathematics of Ibn 

Hūd’s time and is a fascinating blend of mathematics from Greek and Arabic sources, as 

well as what appear to be some original contributions of ibn Hūd himself.  Obviously, 

given his position as a member of the dynasty that ruled Saragossa from 1038 to 1110, he 

was free to study whatever mathematics he wished.  He clearly had the means to immerse 

himself in translated Greek mathematics and then to work on problems coming from these 

Greek sources.  Consider these samples from the Book of Perfection: 

[Heron’s Theorem:]  [For] each triangle the ratio of the surface that is made of half 

the sum of its sides by the excess of that half over one of the sides to the surface of 

the triangle is as the ratio of the surface of the triangle to the surface that is made 

from the excess of half the sum of the sides over one of the two remaining sides by 

[the excess over] the other (Katz et al. 2016, p. 479). 

Ibn Hūd’s proof is different from the one given by Heron. It makes central use of the 

incircle of the triangle, the triangle whose center is the intersection of the angle bisectors 

of the triangle and which is tangent to all three sides.  

Ibn Hūd also stated and proved a theorem thought to have been originated by the 

Italian geometer Giovanni Ceva in 1678. 

[Ceva’s Theorem:] In every triangle in which from each of its angles a line issues 

to intersect the opposite side, such that the three lines meet inside the triangle at 

one point, the ratio of one of the parts of a side of the triangle to the other [part], 

doubled with the ratio of the part [of the side] adjacent to the second term [of the 

first ratio] to the other part of that side is as the ratio of the two parts of the 



remaining side of the triangle, if [this last] ratio is inverted, and conversely (Katz et 

al. 2016, p. 483). 

Probably the greatest accomplishment of ibn Hūd was his study of a famous problem 

in geometrical optics generally referred to as “Alhazen’s Problem”, which concerns 

reflection in mirrors whose surfaces are curved. (Alhazen is the Latin version of the name 

of ibn al-Haytham.) Suppose one is given a spherical or conical mirror, concave or 

convex, and an object (thought of as being a point) visible in the mirror to an observer 

(represented by another point). The question is: At what point on the mirror will the 

observer see the object? As part of his solution to this problem, ibn al-Haytham gave six 

difficult geometrical lemmas, which were adapted by ibn Hūd in his Istikmāl. In some 

cases ibn Hūd followed ibn al-Haytham’s ideas, but in a number of cases he introduced 

new techniques, which simplify and shorten ibn al-Haytham’s proofs.  

It is clear that the men we have discussed were quite able mathematicians.  How did 

a mathematician operate in Muslim Spain?  In general, it appears either that they had 

another career to provide support, such as medicine or as a religious functionary, or else, 

they were supported by – or in the case of ibn Hūd, actually were – rulers of the state in 

which they lived.  There was no structure in this society that could support a steady flow 

of intellectual development, such as a university.  If one wanted to study a particular field, 

one had to find an expert with whom to study.  Since Spain in this time period was in the 

far reaches of the Islamic domains, someone who wanted to study some advanced 

mathematical topic had to go to the east – to Egypt or Persia or Baghdad.  But there 

certainly were people who were able to produce interesting mathematics in Muslim Spain. 

However, they restricted themselves to certain topics, in particular, geometry and 

trigonometry.  Obviously, both of these were based on Euclid’s Elements, which had been 

translated many times into Arabic, beginning in the ninth century. But Muslim 

mathematicians had also read Archimedes, Apollonius, and Ptolemy, among other Greek 

authors.  They certainly absorbed the Greek notion of mathematical proof, and we see this 

demonstrated in treatises written in Spain.  Sā‘id names many other mathematicians active 

in al-Andalus up to the mid-eleventh century besides the ones mentioned above, but in 

virtually all cases, their fields of interest were geometry and astronomy.  

Although Muslim authors in the East were developing algebra during the period of 

Islamic rule in Spain, there is little evidence that any algebraic work more advanced than 

that of al-Khwārizmī was studied in Spain.  In fact, the algebra that does appear in Spain is 

more closely related to the older geometric strain of the subject than to the more modern 

use of unknowns.  Furthermore, even though Averroes (1126-1198) translated and 

commented extensively on the work of Aristotle, and his translations were quite influential 

later in Catholic Europe, Muslim mathematicians did not attempt to develop any of the 

mathematics implied by some of Aristotle’s physical ideas.    

There is little evidence in Spain that there were any religious restrictions to the 

practice of mathematics.   So the reasons why one topic was studied or another was not 

had to do with practical reasons, such as the availability of teachers, or, more simply, with 

the inclinations of a particular mathematician.      

To complete the story, we recall that after the Battle of Navas de Tolosa, in 1212, in 

which Catholic armies defeated the Almohads, the Muslims rapidly lost control of most of 



Spain.  In fact, Cadiz and Cordoba were conquered by the Catholics in 1236 and Seville in 

1248.  Muslim Spain was then just reduced to Granada, a province in which little 

mathematics was done in the next two hundred years.  That is not to say that Muslims 

stopped doing mathematics.  There was certainly significant mathematics done in the 12
th

 

and 13
th

 centuries in North Africa, including important work in combinatorics, but that is 

not part of our story of mathematics in medieval Europe. 

3 The Mathematics of the Jews 

There was a significant Jewish community in Spain under Muslim rule and, in many times 

and places, Jews were able to integrate into the Muslim society.  They often served the 

rulers in administrative or financial capacities.  The Jews became fluent in Arabic and 

used this language in their intellectual pursuits.  However, we are not aware of any 

mathematical work by Jews until the late 11
th

 century, by which time Toledo and many 

other parts of Spain were already in Christian hands.  We should emphasize that when 

Jews were living closed off from their neighbors, their creativity was mainly displayed in 

interpretations of the bible.  But once Jews were able to participate in the general society, 

as in this time period in Spain, they started to display creativity in other fields, such as 

mathematics.   

One of the first Jewish mathematicians of whom we are aware is Abraham bar Ḥiyya 

of Barcelona (1065-1145), where he was a community leader as well as a scholar.  His 

Jewish title was nasi (honorary leader), and Arabic title ṣāḥib ash-shurṭa (head of the 

guard, transliterated in Latin as “Savasorda”), a title he probably received from the ibn 

Hūd dynasty in Saragossa, where he spent time before that dynasty was overthrown.  He 

wrote on mathematics, astronomy, astrology and philosophy, and is distinguished as the 

first Jewish scholar in the Arabic speaking world to write on science in Hebrew. This 

choice of language was, at least in part, due to the lack of access of Jews in Provence, 

where he visited, to the Arab language. His work includes translations from Arabic to 

Hebrew, and he collaborated with Plato of Tivoli on translations into Latin as well. 

Bar Ḥiyya’s most important mathematical work was The Treatise of Measuring 

Areas and Volumes. This book was partially translated into Latin in 1145 by Plato of 

Tivoli, perhaps with Abraham’s help, and made an impact on European scholarship.  The 

treatise opens with a motivational introduction, stating explicitly that Abraham wrote the 

book to teach the appropriate geometry necessary for both secular and holy affairs.  After 

presenting versions of the early books of Euclid’s Elements, Abraham proceeds to deal 

with measurements of squares, rectangles and rhomboids (deriving their areas, sides, 

diagonals, etc. from each other), and includes a geometric treatment of quadratic 

problems.  He continues on to triangles, general quadrilaterals, and circles and then studies 

measurement of polygons by triangulation as well as giving some practical suggestions for 

measuring sloping and curved lands.  There is then a section on division of plane areas, 

perhaps based on Euclid’s own no longer extant book on the same topic. 

This work is not a full scholarly geometry, but a compromise between an 

introduction to abstract geometry and a measurement manual. It provides a good intuitive 

introduction to geometrical reasoning and has some problems similar to those of ibn 

‘Abdūn.  As we will see later, Fibonacci seems to have used this book, probably in the 



Latin translation, as one of the sources of his Practical Geometry.  But also, it seems clear 

that in this time period, Jews generally did not study abstract subjects.  If they were 

interested in mathematics at all, they tended to concentrate on practical subjects. 

We begin with Abraham’s motivations for studying geometry at all: 

 [The scriptures say] “I the Lord am your God, instructing you for your own 

benefit, guiding you in the way you should go”, that is, instructing you in whatever 

is useful for you, and guiding you on the way you follow, the way of the torah. 

From which you learn that any craft and branch of wisdom that benefit man in 

worldly and holy matters are worthy of being studied and practiced.  

I have seen that arithmetic and geometry are such branches of wisdom, and are 

useful for many tasks involved in the laws and commandments of the Torah. We 

found many scriptures that require them, such as “In buying from your neighbor, 

you shall deduct only for the number of years since the jubilee”, and “the more 

such years, the higher the price you pay; the fewer such years, the lower the price”, 

followed by: “Do not wrong one another, but fear your God”. But no man can 

calculate precisely without falsification unless he learn arithmetic. […] Moreover, 

the Torah requires geometry in measuring and dividing land, in Sabbath enclosures 

and other commandments. […] But he who has no knowledge and practice in 

geometry cannot measure and divide land truly and justly without falsification. 

[…] It suffices to note that the blessed God prides himself in this wisdom, as is 

written: “He stood, and measured the earth” and “Who measured the waters with 

the hollow of His hand, and gauged the skies with a span”. So you see from these 

writings that the blessed God created his world in well founded and weighed out 

measurement and proportion. And a man must be like his creator with all his might 

to win praise, as all scholars agree, so from all this you see the dignity of these 

branches of wisdom. He who practices them does not practice something vain, but 

something useful for worldly and holy matters.  

Arithmetic, which is useful for worldly matters and crafts as well as for the 

practice of many commandments, is not difficult to understand, and most people 

understand it somewhat and practice it, so one does not need to write about it in the 

holy tongue. Geometry is also as useful for as many matters as arithmetic in 

worldly matters and commandments from the Torah, but is difficult to understand, 

and is puzzling to most people, so one has to study and interpret it for land 

measurement and division between heirs and partners, so much so that no one can 

measure and divide land rightfully and truthfully unless they depend on this 

wisdom. 

I have seen that most contemporary scholars in Spain and Provence are not skillful 

in measuring land and do not divide it cleverly. They severely belittle these 

matters, and divide land between heirs and partners by estimate and exaggeration, 

and are thus guilty of sin. […] Their calculation might mete out a quarter to the 

owner of a third, and a third to the owner of a quarter, and there is no greater theft 

and falsification  (Katz et al, 2016, pp. 297-298). 

  



Although there are many occasions in the Talmud where approximations are used, 

Abraham insists that 

Our fathers did not allow us to dismiss calculations, nor steal from heirs, nor give 

any of them more or less than their fair share. […] They warned us and gave us 

strict orders against stealing and falsifying in measuring land (Katz et al, 2016, pp. 

298-299). 

Thus, Abraham concludes, one needs to study the principles of measurement 

carefully, so that one calculates shares of heirs correctly.  So, unlike ibn ‘Abdūn, Abraham 

presents careful proofs of his rules for calculation, generally based on the Elements.  

Consider the following examples: 

A square quadrilateral that you take away from the number of its area the number 

of its four sides, and are left with 21 cubits of its area: what is the area and what is 

the number of each side of the square?  Answer: Divide the number of the sides, 

which is four, into two. Multiply the two by itself, which is 4. Add this number to 

the given number that’s left over from the square, and the total is 25. Find the root 

of 25, which is 5. Add half the sides, which is 2, so the total is 7. This is the side of 

the square, and its area is 49. He who posed the question subtracted from the area, 

which is 49, the number of the four sides, each of which is 7 and all four 28, 

leaving from the square 21, as he told you (Katz et al, 2016, pp. 300-301). 

After presenting this algorithm, bar Ḥiyya draws a diagram of the square ABCD, then 

subtracts off rectangle BECG with BE of length 4  (i.e., the four sides), leaving a rectangle 

EADG of area 21 (Figure 1).  He then divides BE in half at H and quotes Elements II-6 to 

conclude that the square on HA is the sum of rectangle EADG and the square on HE, that 

is 25.  Therefore HA itself equals 5 and AB equals 7, as desired.  

 

 

 

 

 

 

 

 

 

 

 

As an example of dividing fields, Abraham begins with a region bounded by an arc 

of a circle and two straight lines, neither of which are radii (Figure 2).  His goal is to find a 

straight line dividing the region in half.  Here E is the midpoint of line AC and EG is 

perpendicular to AC.  Line BG intersects AC at I; then HE is drawn parallel to BG.  Then 

GH divides the region in half.  To prove the result, note that BE divides triangle ABC in 

half, while EG divides segment AECG in half.  But triangles GHE and BHE are equal.  It 

follows that region AHG is equal to the sum of triangle ABE and region AEG, so is half of 

the entire region ABCG.  

  

Figure 1.  Bar Ḥiyya’s 

justification of his solution 



 

 

 

 

 

 

 

 

 

 

Abraham ibn Ezra (1090-1167) was a younger contemporary of Abraham bar Hiyya.   

He was born in Tudela, when it was part of the kingdom of Saragossa, but then traveled 

widely during his adult life.  Among his numerous works were books on arithmetic and 

numerology, as well as a work dealing with astrology which had some interesting 

combinatorial aspects.   As he wrote,   

Only when one knows the natural sciences and their proofs, learns the categories 

that are the ‘guardians of the walls’ taught by the science of logic, masters the 

science of astronomy with its absolute proofs based on mathematical knowledge, 

and comprehends the science of geometry and the science of proportions, can one 

ascend to the great level of knowing the secret of the soul, the secret of the 

supernal angels, and the concept of the world to come in the Torah, the Prophets, 

and the sages of the Talmud (Ibn Ezra, 1995, chap. 1). 

In other words, the reason for studying mathematics was ultimately to get closer to God.  

Thus, in general, that mathematics could be studied that was useful toward that end. 

In his Sefer ha-Mispar (Book of Number), ibn Ezra expounded on “the science of 

proportions”, as he showed how to use the rule of three to solve problems.  He began with 

methods of calculation, in which he explains the Hindu-Arabic number system, although 

with Hebrew characters for the digits.  But he then shows how to solve numerous 

commercial problems, such as 

Reuven hired Simon to carry on his beast of burden 13 measures of wheat over 17 

miles for a payment of 19 pashuts.  He carried seven measures over 11 miles.  

How much shall be paid? (Katz et al. 2016, p. 231) 

Another of the subjects that ibn Ezra thought was useful was astrology.  He wrote a 

series of books on the subject.  In particular, in Sefer Haʿolam (Book of the World), ibn 

Ezra discusses the meaning of celestial conjunctions and aspects. It opens by counting all 

possible conjunctions of the seven known planets, demonstrating some systematic 

combinatorial reasoning. In order to calculate the number of different sets of n elements 

out of 7 planets, a recursive method is used, taking partial sums of the sequence 1,2,...,7, 

then taking partial sums of the sequence of these partial sums, etc. 

There are 120 conjunctions [of the seven planets]. You can calculate their number 

in the following manner: it is known that you can calculate the number that is the 

sum [of all the whole numbers] from one to any other number you wish by 

multiplying this number by [the sum of] half its value plus one-half. As an 

illustration, [suppose] we want to find the sum [of all the whole numbers] from 1 

Figure 2.  Division of field 

bounded by a circular arc 



to 20. We multiply 20 by [the sum of] half its value, which is 10, plus one-half, 

and this yields the number 210.  We begin by finding the number of double 

conjunctions, meaning the combinations of only two planets. It is known that there 

are seven planets. Thus Saturn has 6 [double] conjunctions with the other planets. 

[Jupiter has 5 double conjunctions with its lower planets, Mars has 4, and so on. So 

we need to add the numbers from 1 to 6]. Hence we multiply 6 by [the sum of] half 

its value plus one-half, and the result is 21, and this is the number of double 

conjunctions (Katz et al, 2016, p. 272). 

Ibn Ezra next finds the triple conjunctions, effectively showing that           
                   , where each      is shown to be the sum of integers up to    .  

He continues in this manner with quadruple conjunctions and so on until he has found the 

total of 120 indicated above. 

In a further work, the Book of Measure, bin Ezra gives without proof numerous 

procedures for determining areas of geometrical figures.  Many of these are similar to 

material found in bar Hiyya’s work, such as the following problems: 

We have added the sides and the area; this gives so much. How much is the side? 

Take the square of half the number of all the sides [= 4] and add it to the sum [of 

the area plus the four sides]; subtract from the root of this result half the number of 

the sides [= 2]. 

Or, for the circle:  If one is dealing with a semicircle, its area is like that of half a 

circle. If it is smaller or larger [than a semicircle], you must know the diameter of 

the circle from which the circular segment has been cut, and the length of the chord 

of the arc and of the sagitta. When you know two of these [three] elements, you 

can determine the third.  Problem:  The chord is 8, the diameter, 10. How much is 

the sagitta? Subtract from the square of half the diameter the square of half the 

chord; take the root of the remainder, and subtract it from half the diameter; you 

will find the sagitta [= 2] (Katz et al, 2016, p. 289, 291). 

Ibn Ezra further presents a table of sines and later displays the standard medieval 

method of using an astrolabe to calculate heights and distances.  If one knows the distance 

to the tall object whose height is to be measured, one uses the astrolabe to measure the 

proportion of height to distance, from which the height can be calculated.  If one does not 

know the distance, one takes two measurements with the astrolabe from different places 

and then uses a formula known in China and elsewhere for centuries to calculate the 

height. 

Although ibn Ezra had stated the reasons one could study the sciences, he was not the 

only one. Bahya ibn Paquda, a Jewish philosopher from Saragossa in the mid-eleventh 

century, wrote the following in his Duties of the hearts: 

All departments of science, according to their respective subjects, are gates which 

the Creator has opened to rational beings, so that they may attain to a 

comprehension of revealed religion and of the world.  But while some sciences 

satisfy primarily the needs of religion, others are more requisite for the benefit of 

the world.  The sciences specially required for the affairs of the world are the 

lowest division – namely the science that deals with the natures and accidental 



properties of physical substances – and the intermediate division – namely the 

science of mathematics.  These two branches of knowledge afford instruction 

concerning the secrets of the physical world and the uses and benefits to be derived 

from it, as well as concerning arts and artifices needed for physical and material 

well-being.  But the science that is needed primarily for revealed religion is the 

highest science, namely the divine science, which we are under obligation to study 

in order to understand our revealed religion and to reach up to it.  To study it, 

however, for the sake of worldly advantages is forbidden to us (Freudenthal, 1995, 

p. 34). 

 It was Maimonides (1135-1204), however, whose work was much more important in 

permitting Jews to study science.  Recall that Maimonides was born in Spain.   His family 

left Spain for North Africa during the reign of the Almohads, but simply settled in another 

part of the Almohad empire.  Eventually, he traveled to Palestine and then spent the rest of 

his life in Egypt as a physician to the sultan as well as the most important philosopher in 

Jewish history.  For Maimonides, the study of science and philosophy was actually a 

religious obligation: 

It is certainly necessary for whoever wishes to achieve human perfection to train 

himself first in the art of logic, then in the mathematical sciences according to the 

proper order, then in the natural sciences, and after that in the divine science 

(Freudenthal, 1995, p. 32). 

And Maimonides emphasized that it was only truth that counted, and that it did not matter 

who discovered it.  On the other hand, since it was the “divine science” of metaphysics 

that was the ultimate goal, Maimonides emphasized that science was legitimate and 

desirable only in so far as it contributed to the divine science.  Thus Medieval Jews were 

to study mathematics either because they regarded it as essential for metaphysics, 

preparing the intellect to apprehend abstract truths, or because they needed it since it was a 

prerequisite for the study of mathematical astronomy, important for calculating the 

calendar.     

It seemed clear that the study of Euclid’s Elements was legitimate, and indeed it was 

widely and continuously studied.  And trigonometry, which the Jews learned from the 

Muslims but to which they made contributions, was also a valued study.  But somehow, at 

least in the 11
th

 and 12
th

 centuries, it was argued that the study of algebra was pointless, 

indeed harmful.  Medieval algebra was construed as a mere technique, allowing one to 

solve equations, and as such it had no philosophical value; nor was it apparently of 

practical use.  Abraham ibn Daud of Toledo (1110-1180) writes: 

Among those who spend their time on vanities, thereby depriving their soul of 

afterlife is he who consumes his time with number and with strange stories like the 

following:  A man wanted to boil fifteen quarters of new wine so that it be reduced 

to a third.  He boiled it until a quarter thereof departed, whereupon two quarters of 

the remaining wine were spilled; he again boiled it until a quarter vanished in the 

fire, whereupon two quarters of the rest were spilled.  What is the proportion 

between the quantity obtained and the quantity sought? (Freudenthal, 1995, p. 37) 

Maimonides himself wrote that the books on conics and on devices (i.e. algebra), and on 

the science of weights are instances of inquiries that must not be pursued as ends in 



themselves.  They are only worth studying if they help to “sharpen the intellect” to help 

man achieve knowledge of God. Interestingly, Maimonides himself drew on the 

demonstrated existence of asymptotes to show that imaginability is not a criterion of 

existence.  “Hear what the mathematical sciences have taught us and how capital are the 

premises we have obtained from them” (Freudenthal, 1995, p. 37). 

The foremost medieval Jewish mathematician, Levi ben Gershon (1288-1344), 

certainly read Maimonides’ works.   Yet he interpreted Maimonides differently from most 

others.  Namely, he felt there should be no restriction on what he could write about in 

science or in mathematics.  Because all knowledge of God’s works has religious 

significance, the acquisition of scientific knowledge about the world is a legitimate end in 

itself.  Thus Levi explored many different aspects of science and mathematics. 

His earliest mathematics work was the Maasei Hoshev (The Art of the Calculator), a 

book using Euclidean methodology and, in essence, mathematical induction, to prove 

numerous results in number theory and combinatorics.  The first part of the book is very 

abstract.  The earlier results deal with such topics as summing integers or squares and 

sometimes with rather unusual problems such as the following: 

To find three numbers such that the sum of the first and third contains the second 

as a factor as many times as a given number and such that the sum of the second 

and third contains the first as a factor as many times as a second given number 

(Katz et al, 2016, p. 259). 

Presumably, this result was included because, in the problem section of the text, Levi 

wanted to include a numerical version of this challenge and because this is an abstract 

version of a problem that had appeared earlier in Latin mathematics as the problem of men 

finding a purse.  Levi probably wanted to present combinatorial results because Jews had 

for centuries been interested in the question of how many words could be formed with the 

letters of the Hebrew alphabet.  Now Levi does not answer such a question, but just 

presents results about combinations and permutations of sets of objects.  For example, 

When you are given a number of terms and the number of permutations of a 

second given number from these terms is a third given number, then the number of 

permutations of the number following the second given number from these terms 

is the product of the given third number by the excess of the first given number 

over the second number (Katz et al, 2016, p. 274) 

In modern terms, this results says that Pm,n+1 = (m – n)Pm,n .  This result is the inductive 

step for proving that Pm,k = m(m – 1)(m – 2) … (m – k + 1), a theorem Levi states next. 

Levi wrote several other mathematical works, two of which were quite theoretical.  

Namely, he wrote a commentary on Euclid’s Elements, in which he spent quite a bit of 

time giving a proof of Euclid’s parallel postulate.  His argument was quite rigorous, but he 

began with a different postulate: 

The straight line which is inclined [to another straight line] approaches [the second 

line] on the side where an acute angle is formed [with a line crossing both of these 

that is a perpendicular from the first line to the second] (Katz et al, p. 328). 

He also wrote a number theory work, at the request of a French music theorist.  Here 

he gave a very clever proof of the theorem that a power of 2 must differ from a power of 3 



by at least 2, except in the cases 1,2; 2,3; 3,4; and 8,9.  Presumably this result was of use 

in music theory, but it is not clear that this would meet Maimonides’ criteria for what 

could be studied.  

There were a few other Jewish mathematicians in Spain and France who also ignored 

Maimonides’ strictures.  For example, consider the work of Abner of Burgos (1270-1348), 

who lived in Castile.  He was originally a Jew, but converted to Christianity and was then 

known as Alfonso di Valladolid.  His most important mathematical work is the Sefer 

Meyasher ‛aqov (Book of the Rectifying of the Curved), whose aim is to enquire whether 

there possibly exists a rectilinear area equal to a circular area truly and not by way of 

approximation.  Unfortunately, in the only manuscript we have, the final chapter, where 

the aim was to be accomplished, is missing.  But it is the third chapter in which Alfonso 

considers many interesting geometrical questions related to curves and solids.  In 

particular, Alfonso defines and uses the conchoid of Nicomedes.  It is usually accepted 

that interest in Nicomedes’ work – and his original treatise is lost – was only revived in 

the late sixteenth century, where it is mentioned and used by Viéte and then later by 

Descartes and Newton, among others.  But, in fact, this curve is discussed by Alfonso, 

with some important applications. So what is the conchoid?   

Given a straight line (the “ruler” or “canon” AB), a point outside it (the “pole” P) and 

a distance (d), the conchoid of Nicomedes is the locus of all points lying at the given 

distance d from the ruler AB along the segment that connects them to the pole P (Figure 

3). If P is the origin, and AB is the line y = a, then the curve is defined by the polar 

equation r = a/sin θ + d (Figure 3). The curve has two branches on opposite sides of the 

ruler, to which both are asymptotes. The branch passing on the side of the pole has three 

different distinct forms, depending on the ratio between a and d: If a < d, it has a loop (as 

is in the diagram); if a = d, then P is a cusp point; and if a > d, the curve is smooth.  The 

other branch does not change topologically. 

The importance of the curve to Nicomedes, and later to European mathematicians, 

was that its use allowed the trisection of an angle, the construction of two mean 

proportionals between two line segments, and the doubling of the cube.  Alfonso, in fact, 

demonstrates each of these.  His angle trisection is similar, but not identical, to that 

attributed to Nicomedes, but his construction of two mean proportionals is not found in 

any of the Greek or Arabic literature, and his use of this to construct the doubled cube is 

unique.  In fact, he constructs a generalization of the Delian problem:  To construct a 

polyhedron which is equal in volume to a given polyhedron and which is similar to a 

Figure 3. The conchoid of Nicomedes 



second given polyhedron.  To get the doubled cube, simply assume the first given 

polyhedron is any parallelepiped of volume 2, while the second one is a cube of volume 1. 

Somewhat later, we find Isaac ibn al-Ahdab (1350-1430) and Simon Motot (mid 15
th

 

c.) actually studying and writing about algebra.  The former was born in Castile, but ended 

up in Sicily after leaving Spain. He studied the algebra of the Maghrebian mathematician 

Ahmad ibn al-Banna’ and wrote a detailed commentary on it.  The latter lived in Italy and 

probably learned his algebra in the Italian abacus tradition of his time.  His treatise was the 

first original Hebrew work giving a detailed treatment of the al-Khwārizmīan form of 

algebra.  

Still Levi was, without doubt, the most accomplished Jewish mathematician of the 

Middle Ages.  Even though he went beyond the standard interpretation of Maimonides in 

deciding that he could study and write on any topic he thought interesting, there were few 

followers.  There was a conflict within the Jewish community regarding what subjects 

could legitimately be studied, with a significant proportion of “traditionalists” insisting 

that only the Torah and Talmud were worthy of study.  A further issue was that there was 

no institutional infrastructure for new students to learn the works of their predecessors.  

One could always arrange to study privately with an individual, and certainly there were 

“study groups” established by various people, including Levi himself.  But there were no 

Jewish universities – just as there were no Muslim universities. 

Leon Joseph of Carcassonne, who lived around the turn of the 14
th

 – 15
th

 centuries in 

the south of France, writes about this very issue: 

Many years ago I directed my attention toward the study of and research into the 

profane sciences, which are several in number and nature. […] In my eyes, the 

merits of these sciences were above all praise. […] I therefore followed in the 

footsteps of the learned men of our own times, […] so that they should illuminate 

my way with the light of their intelligence and understanding. […] But I realized 

that the lack of knowledge that they, and some of my people at this time, found 

themselves submerged in was great and immense. […] I perceived that said lack of 

knowledge on the part of one sector of our nation was by no means strange.  Its 

cause was not unknown and I was not unaware of the Talmudic law which referred 

to it… Then I heard a voice telling me that there was not one single cause, but 

many, for the lack and absence of this knowledge among some of our scholars.  

Sciences defeated them because their subject matter is more rational than in the 

bosom of our people, and they are as far from them as east is from west, and all the 

more so from the fundamentals of the Torah and of religious faith.  [Those few 

who did study the sciences]  had no right to propound [their knowledge] in the 

squares and streets, or to discuss it, to show themselves to be favorable toward it, 

nor to conduct public debates with the aim of reading the complete truth, for 

knowledge of the truth can only be attained by means of the contrary. […] On 

seeing the obstacle that these causes represented and aware that the 

aforementioned sciences were known among the Christians, I said to myself: I 

shall study their language a little.  I shall attend their schools and houses of study.  

I shall follow their footsteps so that I am able to make use of whatever I might 

learn from their words. […] I found great benefits in this, because in general their 

discussions on these sciences do not stray from the subject matter; they leave out 



nothing when it is a question of debating the truth or falsehood of a proposition; 

they are very rigorous concerning the questions and answers of a debate, which are 

linked together in such a way as eventually to bring out the truth by means of an 

analysis of opposing points of view (Garcia-Ballester et al, 1990, pp. 106-110).  

4 Mathematics in Catholic Europe 

It is, in fact, the existence of universities in Europe, beginning in the twelfth century, 

along with the concurrent flood of translations from the Arabic, that provided the impetus 

for the study and practice of mathematics (and other sciences) in Europe from that time 

on.  However, the first important mathematician in Catholic Europe was Leonardo of Pisa 

(Fibonacci) (1170-1240).  He introduced parts of Islamic mathematics to Europe, because 

he had accompanied his merchant father on trips to North Africa and elsewhere in the 

Mediterranean, where he studied with Muslim mathematicians.  He mastered the Hindu-

Arabic number system as well as the elements of algebra, geometry, and trigonometry.  So 

in his first book, the Liber Abbaci of 1202, he spent many chapters describing 

computational methods and then another several chapters showing how to solve numerous 

types of problems.  His methods of solution were varied, including the well-established 

method of the rule of three. But since he had learned some algebraic methods as well, he 

sometimes included these.  One of the standard types of problems solved by the rule of 

three was the “tree problem,” a problem to which he later reduced other types of problems: 

There is a tree 1/4 + 1/3 of which lies underground, and it is 21 palms.  It is sought 

what is the length of the tree (Katz et al, 2016, p. 80). 

Another standard problem that we have already seen in the work of Levi ben 

Gershon, is the problem of men finding a purse: 

Two men who had denari found a purse with denari in it; thus found, the first man 

said to the second, If I take these denari of the purse, then with the denari I have, I 

shall have three times as many as you have.  Alternately, the other man responded, 

And if I shall have the denari of the purse with my denari, then I shall have four 

times as many as you have (Katz et al, 2016, p. 81). 

The problem asks, of course, how much each men had and how much was in the 

purse.  Interestingly, Leonardo does not mention that the problem is indeterminate; he just 

shows how to find one solution. 

Besides these recreational problems, Leonardo devotes many pages to very practical 

problems such as calculation of profits, currency conversions, alloying of money, barter, 

determining values of merchandise, and so on.  Given that his father was a merchant and 

that he lived in an Italy where commerce was quickly developing, it is not surprising that 

these kinds of problems would be of great interest to his readers.  Although many of the 

problems are solved by seemingly ad hoc methods, Leonardo devotes a chapter to 

explaining the method of false position.   

Leonardo credits the method to the Arabs, and, of course, this method is found in 

Arabic texts written in North Africa, such as the work of ibn al-Banna’.  This kind of 

problem is also found both in Hebrew and Arabic works.  But Leonardo also devotes the 

final chapter of Liber abbaci to the Muslim method of solving quadratic equations, 



basically the work due to al-Khwārizmī.  He then presents about 100 quadratic problems, 

taken from the works of such authors as al-Khwārizmī, Abū Kāmil, and al-Karajī. 

In his Practical Geometry, he solves problems similar to those solved by ibn ‘Abdūn, 

ibn Ezra, and Abraham bar Ḥiyya.  These are generally problems in measurement – of 

triangles, rectangles, squares, parallelograms, trapezoids, and parts of circles.  Just like the 

earlier authors, sometimes he needs to solve quadratic equations to complete the solutions.  

But it should be noted that Fibonacci did not merely “copy” problems from earlier authors.  

He may well have read these authors, but he used his own genius to expand on their 

methods and often to figure out ingenious solutions.   Thus he presented a long series of 

problems on dividing a region into two equal parts.  Some of these methods presumably 

come from the no-longer extant work of Euclid, and some of the methods are found in the 

work of bar Ḥiyya.  But he very carefully explains his procedures and gives careful proofs.   

But Fibonacci also displays a talent for abstract mathematics, demonstrated in his 

Book of Squares, initially prompted by a question from Master John of Palermo to “find a 

square number from which when five is added or subtracted always arises a square 

number.”  He solved this problem and various associated problems through a series of 24 

theorems, all given careful and detailed proofs.  So it is clear that Leonardo felt that there 

was a readership for non-practical problems. 

Now Leonardo was not connected to a university, unlike most of the mathematicians 

of medieval Europe that followed him.  So a few words about the universities are in order 

here.  Well before the end of the twelfth century the Masters at the School of Saint Victor, 

together with the Masters at the Schools of St Geneviève and Notre-Dame de Paris, would 

construct the cradle of the University of Paris. Oxford arose from dissatisfied mostly 

English Masters and students who left Paris for their homeland; similarly Cambridge was 

founded from Oxford. The origins of universities in other countries have their own 

histories, such as the earlier University of Bologna, formed by the students who hired the 

Masters.  And the University of Montpellier, among several others, was founded in the 

thirteenth century. Some schools followed the English model with Masters in charge. 

Others followed the Italian model with students in charge. Regardless, if there be 

universities, there must be students, Masters, and a curriculum. The new curriculum was 

the gift of the translators, operating mostly in Spain. The curriculum in arts at all of the 

universities was based on the ancient trivium of logic, grammar, and rhetoric and the 

quadrivium of arithmetic, geometry, music, and astronomy.  This study in the faculty of 

arts provided the student with preparation for the higher faculties of law, medicine, or 

theology.  The centerpiece of the arts curriculum was the study of logic, and the primary 

texts for this were the logical works of Aristotle, all of which had recently been translated 

into Latin.  The masters felt that logic was the appropriate first area of study since it taught 

the methods for all philosophic and scientific inquiry. Gradually, other works of Aristotle 

were also added to the curriculum.   For several centuries, the great philosopher’s works 

were the prime focus of the entire arts curriculum. Other authors were studied insofar as 

they allowed one better to understand this most prolific of the Greek philosophers.  In 

particular, mathematics was studied in the universities primarily as it related to the work 

of Aristotle in logic or the physical sciences. (Algebra, on the other hand, was a non-

university subject.) The mathematical curriculum itself – the quadrivium – usually 

consisted of arithmetic, taken from such works as Boethius’s adaptation of Nicomachus or 



a medieval text on rules for calculation, geometry, taken from Euclid and one of the 

practical geometries, music, taken also from a work of Boethius, and astronomy, taken 

from Ptolemy’s Almagest and some more recent Latin translations of Islamic astronomical 

works. 

What is important to realize is that, because the universities were corporate bodies 

generally operating under a royal charter, they were independent of church control.  Now, 

Aristotle’s philosophy did pose problems for Catholic theologians.  From Aristotle’s point 

of view, the world was eternal – it had always existed and would continue to exist.  But 

for Catholics, as for Muslims and Jews, the world had been created by God out of nothing.  

In fact, in 1277, the Bishop of Paris drew up a list of 219 “errors” in which he alleged that 

“some scholars of arts at Paris” were transgressing the limits of their own faculty.  In 

particular, he wrote that it was an error to doubt God’s omnipotence, that, in fact, God had 

absolute power to do whatever he wills, including creating the world out of nothing.  That 

is, he condemned those ideas that could not be maintained in light of the revealed truth of 

the Catholic religion. 

But this condemnation was too little and too late.  The religious elite who dominated 

intellectual thought had already come to the conclusion that rational thought and an 

empirical methodology were the tools for understanding the world.   In fact, a new canon 

law had been developed in the 12
th

 century stating that “anyone (and not just priests) ought 

to learn profane knowledge not just for pleasure but for instruction, in order that what is 

found therein may be turned to the use of sacred learning.” (Huff, 1993, p. 195)  In 

essence, the study of the natural sciences and the pursuit of philosophical truth had 

become institutionalized in the universities and nothing would disturb this state of affairs.  

Scientists in Catholic Europe, including mathematicians, were free to study what they 

wished.  

One group of mathematicians who worked at a university were the so-called Oxford 

calculators, associated with Merton College, Oxford during the fourteenth century.  

Because they were involved in university teaching, they had to figure out how to explain 

difficult concepts to students, with the basic method of teaching being disputations with 

participation from both masters and students.  Thus they concentrated on logical argument, 

based on Aristotle’s principles, and then used the argument to try to determine what 

Aristotle meant in his discussions of physical problems.  One of the first of the Mertonians 

was Thomas Bradwardine (1290-1349).   

In his On the Continuum he mentions five different opinions presented by scholars of 

his time and earlier: 

One must know that the old and modern philosophers have five famous opinions 

about the composition of the continuum. Some of them, such as Aristotle, 

Averroes, Algazel [al-Ghazalī] and most of the moderns, argue that the continuum 

is not composed of atoms, but of parts that can be divided without end. Others say 

that it is composed of two kinds of indivisibles, because Democritus had assumed 

that the continuum consists of indivisible bodies. Others say that it consists of 

points, and this [assumption is divided] into two parts: Pythagoras (the father of 

this position), Plato, and our contemporary Walter [Chatton] assume that it is 

composed of a finite number of indivisibles, but others say that [it is composed] of 



an infinite number. This group, too, is divided into two parts. Some such as our 

contemporary Henry of Harclay say that it is composed of an infinite number of 

indivisibles that are directly joined. But others such as Lincoln [Robert 

Grosseteste], say [that it is composed] of an infinite number [of indivisibles] that 

are indirectly joined to one another. Therefore the conclusion is this: “If one 

continuum is composed of indivisibles in some way” (the “way” includes any of 

the precedent ways), it then follows that “any continuum is composed of 

indivisibles according to a similar way” (Katz et al, 2016, pp. 178-179). 

Bradwardine then gives arguments to reject most of these possibilities.  For example, 

to reject the assumption that the continuum is composed of a finite number of points, he 

proves: 

If this [is true], then the circumference of a circle is double of its diameter. This is: 

half of the circumference is equal to its diameter. From the different points of the 

diameter, [assuming that] they are 10, ten perpendiculars are drawn directly to 

different points on half the circumference. It follows that there are 10 points on 

half the circumference, because only one point on half the circumference 

corresponds [to] a perpendicular. Therefore equally, there are the same number of 

points on half the circumference as are on the diameter. Therefore according to the 

second conclusion, half the circumference equals the diameter (Katz et al, 2016, p. 

179). 

Bradwardine realizes that this is impossible.  Later, he rejects the hypothesis that a 

continuum is composed of an infinite number of indivisibles: 

If this is true, a terminated surface can exceed another surface equal to it by any 

finite proportion. Let AB and CD be parallel lines.  Atop base CE a right-angled 

parallelogram AFCE is constituted, and atop the same base another parallelogram 

CGHE is constituted with sides that are as much longer as you want than the sides 

of the parallelogram AFCE (Figure 4). Then all lines of CGHE which are drawn 

from all points of CE to the opposite points of GH are equal in number to those 

points, and consequently to all perpendiculars of AFCE which are drawn from the 

same points to the opposite points. But they are longer than those [lines]. 

Therefore, CGHE is larger than AFCE. But according to I 36 of Euclid’s Elements, 

the parallelograms are equal (Katz et al, 2016, p. 180). 

 

 

 

 

 

 

Bradwardine finally announced his true view of the composition of continua:  

No continuum is made up of atoms. From here follows and elicits: Every 

continuum is composed of an infinite number of continua of the same species as it, 

[…] that is, every line is composed of an infinite number of lines, every surface 

Figure 4. Bradwardine’s proof 



composed of an infinite number of surfaces, and so on concerning other continua 

(Katz et al, 2016, p. 180). 

Similarly, Bradwardine investigated four differing theories regarding relationships 

among speed (V), force (F), and resistance (R) in his Treatise on Proportions.  First he 

explained and demolished the thinking of Aristotle in On the Heavens and Earth:  The 

proportion between the speeds with which motions take place varies as the difference 

whereby the power of the mover exceeds the resistance offered by the thing moved. Then 

he explained and rejected Averroes’ Comment 36 on Aristotle’s Physics Book VI:  The 

proportion of the speeds of motions varies in accordance with the proportion of the 

excesses whereby the moving powers exceed the resisting powers. Next he destroyed a 

generalization built on remarks in Aristotle’s Physics and On the Heavens and from On 

Weights:  With the moving power remaining constant, the proportion of the speeds of 

motions varies in accordance with the proportion of resistances, and with the resistance 

remaining constant, it varies in accordance with the proportion of moving powers. Finally 

he took apart Comment 79 on Aristotle’s Physics VIII by Averroes: There is neither any 

proportion nor any relation of excess between motive and resistive powers. Then he began 

his own contribution. 

Now that these fogs of ignorance, these winds of demonstration, have been put to 

flight, it remains for the light of knowledge and of truth to shine forth. For true 

knowledge proposes a fifth theory, which states that the proportion of the speeds of 

motions varies in accordance with the proportion of the power of the mover to the 

power of the thing moved. […] Furthermore, there does not seem to be any theory 

whereby the proportion of the speeds of motions may be rationally defended, 

unless it is one of those already mentioned. Since, however, the first four have 

been discredited; therefore the fifth must be the true one. We therefore arrive at the 

following theorem: 

Theorem I. The proportion of the speeds of motions follows the proportion of the 

force of the mover to that of the moved, and conversely. Or, to put it another way, 

which means the same thing: The proportion of motive to resistive power is equal 

to the proportion of their respective speeds of motion, and conversely. This is to be 

understood in the sense of geometric proportionality (Katz et al, 2016, pp. 189-

190).  

Symbolically then the first theorem can be expressed as V = logn (F/R) or as n
V
 = 

F/R. That is to say, doubling the velocity squares the ratio of motive power to resistance, 

tripling the one cubes the other, and so on. For the formula to be correct universally, n is 

necessarily a constant equal to F/R when V = 1.  Although the result is not our modern 

relationship, Bradwardine was able to use mathematical principles to prove various 

theorems dependent on his result. 

An obvious question here is why, since Aristotle was important both to Muslim 

scientists, in the translation and adaptation of Averroes, and to Jewish mathematicians, in 

the Hebrew translations of Averroes, these mathematicians never considered the 

mathematical problems connected with kinematics.  Perhaps in both cases these ideas 

would not be considered important enough religiously to be studied.  But more certainly, 

the ideas of Aristotle were never discussed in a setting in which one could debate these 



questions.  It seems clear from Bradwardine’s style, that it was through disputations that 

he was able to demolish certain arguments and therefore prove the correct one. 

Another prominent member of the Mertonian school was William Heytesbury (1313-

1373).  Continuing further the discussion of velocity, he was one of the first to state the 

Mean Speed Theorem:  A body that moves with uniformly accelerating speed traverses in 

a given time the same distance as a body that in the same time moves with a constant 

speed equal to the accelerating body’s speed at the middle instant.  Heytesbury gave a 

demonstration of this result by an argument from symmetry, and then proved the easy 

corollary, that under uniformly accelerated motion from rest, a body in the first half of a 

given interval will traverse one-third of the distance it covers in the second half of the 

interval. 

Heytesbury’s slightly younger contemporary Nicolas Oresme (1320-1382), 

connected with the University of Paris, made some further advances by using a graphing 

technique to visualize continuous quantity.  As he put it, 

Every intensity which can be acquired successively ought to be imagined by a 

straight line perpendicularly erected on some point of the space or subject of the 

intensible thing, e.g., a quality.  For whatever ratio is found to exist between 

intensity and intensity, in relating intensities of the same kind, a similar ratio is 

found to exist between line and line, and vice versa (Katz et al, 2016, p. 197).   

Oresme applied his result to all sorts of “intensities” and drew figures to represent 

uniform difformity as well as “difform difformity”.  He could then give a simple 

geometric proof of the Mean Speed theorem.  Oresme, however was a bit puzzled when he 

tried to apply his methodology to the idea of curvature, because he could not figure out 

how to compare them.  

For curvature, like the other qualities, has both extension and intensity, and one 

kind of curvature is uniform while another is difform.  But still it is not manifest, 

in regard to the ratio of the intensity of curvatures, whether one is double another 

or exists in another ratio to it, or whether or not curvatures are unrelatable one to 

the other by ratio (Clagett, 1968, p. 215).  

Oresme wanted to define increase in curvature as a function of “its departure from 

straightness,” but could not actually measure this.  He could certainly tell if one curve was 

more “curved” than another by looking at whether one could be included in the space 

between the second and a straight line – but this now involved the whole notion of the 

angle of contingence, that is, the angle between a circle and its tangent and it was 

reasonably clear, even to Oresme, that measurement of these “quantities” was not 

possible.  On the other hand, Oresme noted that “every circular curvature is uniform and 

vice versa, and every other curvature is difform.”  And he could measure circular 

curvature:  “its intensity is measured by the quantity of the radius of the circle whose 

curve is… the circumference, so that by the amount the radius is less, so proportionally the 

curvature will be greater.” (Clagett, 1968, p. 221) 

This was quite an insight for the fourteenth century.  However, Oresme was less 

successful when he tried a counting argument for figuring out the total number of 

combinations of simple six types of quality figures.  Although Hebrew writers before 



Oresme, including both ibn Ezra and Levi ben Gershon, had shown how to calculate such 

values, Oresme somehow made an error.  In fact, combinatorial reasoning was not to be 

fully developed in Europe for another two hundred years.  

While mathematics at the universities was clearly important, with the practitioners 

delving into philosophical questions coming out of Aristotle, the growth of commerce in 

Italy beginning in the thirteenth century spawned a different kind of mathematics.  The 

Italian merchants of the Middle Ages generally were what today we might call venture 

capitalists.  They traveled themselves to distant places in the East, bought goods which 

were wanted back home, then returned to Italy to sell them in the hope of making a profit.  

These traveling merchants needed very little mathematics other than the ability to 

determine their costs and revenues for each voyage.  By the early fourteenth century, a 

commercial revolution spurred originally by the demands of the Crusades had begun to 

change this system greatly.  New technologies in shipbuilding and greater safety on the 

shipping lanes helped to replace the traveling merchants of the Middle Ages with the 

sedentary merchants of the Renaissance.  These “new men” were able to remain at home 

in Italy and hire others to travel to the various ports, make the deals, act as agents, and 

arrange for shipping.  Thus, international trading companies began to develop in the major 

Italian cities, companies that had a need for more sophisticated mathematics than did their 

predecessors. These new companies had to deal with letters of credit, bills of exchange, 

promissory notes, and interest calculations.  Business was no longer composed of single 

ventures but of a continuous flow of goods consisting of many shipments from many 

different ports en route simultaneously.  The medieval economy, based in large part on 

barter, was gradually being replaced by a money economy. 

The Italian merchants needed a new facility in mathematics to be able to deal with 

the new economic circumstances, but the mathematics they needed was not the 

mathematics of the quadrivium, the mathematics studied in the universities.  They needed 

new tools for calculating and problem solving.  To meet this need, a new class of 

“professional” mathematicians, the maestri d’abbaco or abacists, appeared in early 

fourteenth century Italy.  These professionals wrote the texts from which they taught the 

necessary mathematics to the sons of the merchants in new schools created for this 

purpose.  

In addition to the algorithms of the Hindu-Arabic number system, the abacists taught 

their students methods of problem solving using the tools of both arithmetic and Islamic 

algebra.  The texts written by the abacists, of which several hundred different ones still 

exist, are generally large compilations of problems along with their solutions.  These 

include not only genuine business problems of the type the students would have to solve 

when they joined their fathers’ companies, but also plenty of recreational problems typical 

of the kind found in modern elementary algebra texts.  There were also sometimes 

geometrical problems as well as problems dealing with elementary number theory, the 

calendar, and astrology.   The solutions in the texts were written in great detail with every 

step fully described, but, in general, no reasons were given for the various steps.  Perhaps 

the teachers did not want to disclose their methods in written form, fearing that then there 

would no longer be any reason to hire them.   In any case, it seems clear that these abacus 

texts were designed not only for classroom use, but also to serve as reference manuals for 



the merchants themselves.  A merchant could easily find and readily follow the solution of 

a particular type of problem without the necessity of understanding the theory. 

Among the many extant abbacist texts, we consider two examples written in 

Montpellier early in the fourteenth century.  Of course, Montpellier was not only a 

university town, but also a center for trade in the south of France.  Although the texts were 

written by abbacists from Italy, it is not surprising that they travelled to Montpellier.  The 

earlier text was the Tractatus algorismi, written by Jacobo da Firenze in 1307.  This work 

was a model of an abbacist text, containing problems on such topics as the arithmetic of 

fractions, the rule of there, partnership, alloying, and even some practical geometry.  There 

is some scholarly controversy over whether it in fact originally included a chapter on 

quadratic equations, because only one of the three extant manuscripts contains such a 

chapter. 

On the other hand, it is clear that Paolo Girardi, also from Florence, did include the 

basic al-Khwārizmī rules for quadratic equations in his own abbacist manual of 1327.  He 

tried to appeal to his students by writing the problems as practical ones: 

A man loaned 20 lire to another for two years at compound interest. When the end 

of 2 years came he gave me 30 lire. I ask you at what rate was the lire loaned per 

month? 

There is a man who went on 2 voyages. On the first voyage he earned 12 denarii. 

On the second voyage he earned at the same rate that he made on the first voyage, 

and at the end he found [he had] 100 denarii. I ask you with how many denarii did 

he leave? (Katz et al, 2016, pp. 211-212). 

Interestingly, Paolo did not write his problems so they would have simple whole 

number answers.  The answer to the first problem was that the lire were loaned at the rate 

of the root of 600 minus 20 denari per month.  The answer to the second problem was that 

the merchant began with the root of 1300 plus 38 denari. 

5 Conclusions 

There were clearly mathematical geniuses in all three of these medieval mathematical 

cultures, most of whom shared a common mathematical background of the Hindu-Arabic 

number system, the works of Aristotle and Euclid’s Elements.  Anyone with an interest in 

mathematics had certainly studied the Elements, and quite possibly knew other works of 

Euclid.  Also, he was familiar with many texts of the great philosopher and believed that 

any philosophical work had to contend with Aristotle’s thoughts, either by attacking or 

defending them.  Finally, it was the Muslims who brought the Hindu-Arabic system to 

Europe from the East; the Jews learned it from them; and the Catholics eventually 

mastered it as well, learning both from translations from the Arabic and from the material 

Fibonacci brought back from his travels to Muslim lands.   

Yet starting with the same basic information, the mathematicians from the three 

cultures were interested in different mathematics.   Algebra, of course, had been developed 

in eastern Islam, but it seems that the only algebra work available was that of al-

Khwārizmī from the ninth century.  The more advanced Muslim algebraic work was not 

available in Spain, although Fibonacci discovered some of it in his travels.  In any case, 



the Spanish Muslims were not apparently interested in algebra.  But as we have seen, there 

was definite interest in geometry, both practical geometry (which was also of interest to 

the other cultures) and also quite theoretical geometry.  Muslim geometers had mastered 

the basic Greek techniques of proof and did not hesitate to prove all sorts of interesting 

results.  And along with geometry, there was also trigonometry, important for astronomy, 

which in turn was necessary for religious purposes.   

The Jews too were not interested in algebra, at least until the late fourteenth century.  

And even then, the Hebrew work in algebra was basically limited to material found in al- 

Khwārizmī.  Of course, just as in Islam, quadratic equations were solved earlier in the 

context of measuring areas and lengths, but the methodology was the older one of 

manipulation of geometric figures rather than the newer methodology of “things”.  On the 

other hand, Jewish authors seemed to be very interested in geometry.  There were quite a 

few authors who investigated advanced geometric topics, being careful to give strict 

Euclidean proofs.  And there were also several investigations of topics in combinatorics, 

both intuitively and, in the case of Levi ben Gerson, with careful proofs.  Levi and others 

also investigated some pure number theoretic problems.  And, of course, trigonometry was 

studied, since, as for the Muslims, this was necessary for astronomy and therefore for 

calendrical questions. 

Catholic Europe was interested in mathematics different from the kinds studied by 

the Jews and Muslims.  First of all, there was more interest in developing algebra beyond 

al- Khwārizmī.  Even Fibonacci had problems from later authors, and certainly Jordanus 

de Nemore developed additional material.  Interestingly, however, many of the algebraic 

techniques developed in eastern Islam did not reach Europe during the medieval period.  

On the other hand, there was little interest in advanced geometry.  Euclid was mastered, 

and there was some interest in the works of Archimedes, but there was nothing in Catholic 

Europe like the advanced geometry developed in Muslim Spain.  In addition, even though 

astronomy was part of the medieval university curriculum, there was little development of 

trigonometry beyond what was already known in Greece.  It was not until the work of 

Regiomontanus in the mid-fifteenth century that Europe had a trigonometric work 

comparable to the works written in Muslim Spain centuries earlier.  And probably one of 

the reasons for this was that astronomy was not nearly so important for calculations 

involving the Julian calendar as it was for both the Muslim and Jewish calendar.  

Similarly, the subject of combinatorics, of interest to the Jews and also to the Muslims of 

North Africa, was barely mentioned by Catholic mathematicians, although Jordanus de 

Nemore did display the Pascal triangle as part of a discussion of ratios.  The most 

important mathematical topic studied in Catholic Europe – and not in Muslim or Jewish 

Europe – was the set of developments coming out of the study of Aristotle’s physical 

theories.  In particular, as we have noted, mathematicians in Oxford and Paris were very 

interested in the ideas of motion, and it was the study of kinematics as well as mechanics 

that was crucial the work of Galileo and others during the Renaissance. 

Although mathematical geniuses existed in each of the three religious groups we 

have considered, men who could successfully attack any interesting problem, it seems 

clear that the culture in which they lived was crucial in their actual choice of problems to 

consider.   We can see in this study of mathematics in medieval Europe, as in other times 

and places, that mathematics is not, and indeed cannot be, a culture-free subject. 
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