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Abstract

In this paper we obtain new well-possedness results concerning a linear inhomogenous Stokes-like system.
These results are used to establish local well-posedness in the critical spaces for initial density po and velocity
.3 .31
uo such that po —p € BY,(R*), uo € B, (R*), p € (£,4), for the inhomogeneous incompressible Navier-Stokes
system with variable viscosity. To the best of our knowledge, regarding the 3D case, this is the first result in a
truly critical framework for which one does not assume any smallness condition on the density.

Keywords Inhomogeneous Navier-Stokes system; critical regularity; Lagrangian coordinates;
MSC: 35Q30, 76D05

1 Introduction
In this paper we deal with the well-posedness of the inhomogeneous, incompressible Navier-Stokes system:

Op + div (pu) = 0,
O (pu) + div (pu @ u) — div (1 (p) D (u)) + VP =0, (1.1)
divu =0, ’
U|t:0 = Up-

In the above, p > 0 stands for the density of the fluid, u € R™ is the fluid’s velocity field while P is the pressure.
The viscosity coefficient p is assumed to be a smooth, strictly positive function of the density while

D (u) = Vu + Du.

is the deformation tensor. This system is used to study fluids obtained as a mixture of two (or more) incompressible
fluids that have different densities: fluids containing a melted substance, polluted air/water etc.

There is a very rich literature devoted to the study of the well-posedness of (1.1) which we will review in
the following lines. Briefly, the question of existence of weak solutions with finite energy was first considered by
Kazhikov in [23] (see also [5]) in the case of constant viscosity. The case with a general viscosity law was treated in
[26]. Weak solutions for more regular data were considered in [18]. Recently, weak solutions were investigated by
Huang, Paicu and Zhang in [22].

The unique solvability of (1.1) was first addressed in the seminal work of Ladyzenskaja and Solonnikov in [25].
More precisely, considering ug € W2 P (Q), with p > 2 | a divergence free vector field that vanishes on 92 and
po € C1 () bounded away from zero, they construct a global strong solution in the 2D case respectively a local

solution in the 3D case. Moreover, if ug is small in W2 P (€2) then global well-posedness holds true.
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The question of weak-strong uniqueness was addressed in [8] for the case of sufficiently smooth data with
vanishing viscosity.

Over the last thirteen years, efforts were made to obtain well-posedness results in the so called critical spaces
i.e. the spaces which have the same invariance with respect to time and space dilation as the system itself, namely

{ (po (), uo (x)) = (po (Iz), uo (Iz))
(p(t,z), u(t,z)) = (p (1Pt 1), lu (1%, 1z) 2P (1%, 12)) .

For more details and explanations for nowadays a classical approach we refer to [9] or [17]. In the Besov space
context, which includes in particular the more classical Sobolev spaces, these are

. L]
po—p € By, and up € BiZ,, . (1.2)

where p is some constant density state and n is the space dimension. Working with densities close (in some
appropriate norm) to a constant has led to a rich literature. In [9] local and global existence results are obtained
for the case of constant viscosity and by taking the initial data

po—peL®NBE  upe B

2,00

and under the assumption that ||pg — p|| »  is sufficiently small. The case with variable viscosity and for initial

L>nNB}
data .n .n_q

po—pE By and ug € By,
p € [1,2n), is treated in [1]. However, uniqueness is guaranteed once p € [1,n). These results where further
extended by H. Abidi and M. Paicu in [4] by noticing that po — 5 can be taken in a larger Besov space. In [19],
B. Haspot established results in the same spirit as those mentioned above (however, the results are obtained in the
nonhomogeneous framework and thus do not fall into the critical framework) in the case where the velocity field

is not Lipschitz. In [15], using the Lagrangian formulation, R. Danchin and P.B. Mucha establish local and global

.n_q .n_q
results for (1.1) with constant viscosity when po —p € M(B,; '), uop € B,; and under the smallness condition:

— 0 n_ @:L
llp0 pIIM( :

By,

where M(B?, 1) stands for the multiplier space of B, ' In particular, functions with small jumps enter this
framework. Moreover, as a consequence of their approach, the range of Lebesgue exponents for which uniqueness
of solutions holds is extended to p € [1,2n). In [27], [21], [20], [22] the authors improve the smallness assumptions
used in order to obtain global existence. To summarize, all the previous well-posedness results in critical spaces
were established assuming that the density is close in some sense to a constant state.

When the later assumption is removed, one must impose more regularity on the data. For the case of constant
viscosity, in [10], R. Danchin obtains local well posedness respectively global well posedness in dimension n = 2
for data drawn from the nonhomogeneous Sobolev spaces: (pg — p,ug) € H3+t* x H3 '8 with a,8 > 0. The
same result for the case of general viscosity law is established in [1]. For data with non Lipschitz velocity results
were established in [19]. Concerning rougher densities, in [16], considering py € L>°(R?) bounded from below and
ug € H? (R?) Danchin and Mucha construct a unique local solution. Again, supposing that the density is close
to some constant state they prove global well-posedness. These results are generalized in [28]. Taking the density
as above the authors construct: a global unique solution provided that ug € H*® (R?) for any s > 0 in the 2D
case respectively a local unique solution in the 3D case considering ug € H! (R3). Moreover, assuming that ug is
suitably small the solution constructed is global even in the three dimensional case.

In critical spaces of the Navier-Stokes system i.e. (1.2) there are few well posedness results. Very recently, in the
2D case and allowing variable viscosity, H. Xu, Y. Li and X. Zhai, [30] constructed a unique local solution to (1.1)

.2 .2 q .2
provided that the initial data satisfies po —p € B}, (RQ) and ug € B, (RQ). Moreover, if po —p € LPN B, (Rz)
and the viscosity is supposed constant, their solution becomes global. In the 3D situation, to the best of our

knowledge, the results that are closest to the critical regularity are those presented in [2] and [3] (for a similar result
in the periodic case one can consult [29]). More precisely, in 3D, assuming that

.3 N 1
po—pEL*N B3, and up € By,
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and taking constant viscosity, H. Abidi, G. Gui and P.Zhang, [2], show the local well-posedness of system (1.1).
Moreover, if the initial velocity is small then global well-posedness holds true. In [3] they establish the same kind
of result for initial data

. 3 .31
po—p€L*NBY, and ug € B,
where X € [1,2], p € [3,4] are such that § + 1 > % and § — J < 3.
One of the goals of the present paper is to establish local well-posedness in the critical spaces:

~ B (RS 55 1 (13 6
po—peB) (R®),uge By, (R’),pe HE

for System (1.1)

e with general smooth variable viscosity law,
e without any smallness assumption on the density,

e without the extra low frequencies assumption. In particular, we generalize the local existence and uniqueness
result of H. Abidi, G. Gui and P. Zhang from [2] thus achieving the critical regularity.

As in [15] we will not work directly with system (1.1) instead we will rather use its Lagrangian formulation. By
proceeding so, we are naturally led to consider the following Stokes problem with time independent, nonconstant
coefficients:

Ou — adiv (bD(u)) + aVP = f,
divu = div R, (1.3)
’Ul‘t:O = Ug-

We establish global well-posedness results for System (1.3). This can be viewed as a first step towards generalizing
the results of Danchin and Mucha obtained in [17], Chapter 4, for the case of general viscosity and without assuming
that the density is close to a constant state. Let us mention that the estimates that we obtain for System (1.3)
have a wider range of applications: in a forthcoming paper we will investigate the well-posedness issue of the
Navier-Stokes-Korteweg system under optimal regularity assumptions.

To summarize all the above, our main result reads:

Theorem 1.1. Let us consider p € (g, 4). Assume that there exists positive constants (p, p., p*) such that pg— p €
.3
By (R3) and 0 < p, < po < p*. Furthermore, consider uy a divergence free vector field with coefficients in

T
By ! (R3). Then, there exists a time T > 0 and a unique solution (p,u, VP) of system (1.1) with

.3 .3 .31 .3_1
p—p€Cr(B(R*)NLF (B (R%), uelCr(BE, (R) and (Oyu,V?u,VP) € Lp(BL, (R?)).

One salutary feature of the Lagrangian formulation is that the density becomes independent of time. More
precisely, considering (p, u, VP) a solution of (1.1) and denoting by X the flow associated to the vector field wu:

t
X(tw)=y+ [ u(r X () dy
0
we introduce the new Lagrangian variables:

p(t,y)=p(t, X (t,y), @(t,y) =u(t,X (t,y)) and P (t,y) = P(t, X (t,y)).
Then, using the chain rule and Proposition 4.18 we gather that p(¢,-) = pp and

poort — div (,u (po) AﬁDAE (ﬂ)) + AEVP =0,
div (Agit) = 0, (1.4)

U|t=0 = Uo-

where Aj is the inverse of the differential of X, and

Dy (u) = DuAg + ALva.
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Note that we can give a meaning to (1.4) independently of the Eulerian formulation by stating:

X(t,y)=y+/o a(7,y)dr.

Theorem 1.1 will be a consequence of the following result:

Theorem 1.2. Let us consider p € (g, 4). Assume that there exists positive (p, px, p*) such that po—p € By (RS)

.3 _
and 0 < p, < po < p*. Furthermore, consider uy a divergence free vector field with coefficients in B, ! (Rs).
Then, there exists a time T > 0 and a unique solution (ﬂ, VP) of system (1.4) with

.3 1 — .3 4
i€ Cr(Bry (R*) and (8yu,V*u,VP) € Lp(Br, (R%)).
Moreover, there exists a positive constant C' = C (pg) such that:

[[u] ot H(Vzu,VP)H 3y < HUOHB%—l exp (CT).

3 X
LFE B ) Ly(BJy ) 1

The study of system (1.4) naturally leads to the Stokes-like system (1.3). In Section 2 we establish the global
well-posedness of System (1.3). More precisely, we prove:

Theorem 1.3. Let us consider n € {2,3} and p € (1,4) if n =2 or p € (2,4) if n = 3. Assume there exist

positive constants (a*, by, a*,b*, a, 5) such that a — a € B;l (R"), b—be€ B;l (R™) and

0<ay <a<a”,
0<b, <b<b.

Furthermore, consider the vector fields ug and f with coefficients in Bf)l_l (R™) respectively in Llloc(Bp%)l_1 (R™)).
Also, let us consider the vector field R € (S’ (R™))"™ with!

QR € C((0,00); BY, " (R™)) and (9,R,VdivR) € Ll,,(B¥, " (R"))

such that:
divug =divR (0, ).

Then, system (1.3) has a unique solution (u, VP) with:

we C(0,00), BT (R™)) and dyu, V2u, VP € L, (BZ] ' (R™)).

Moreover, there exists a constant C = C (a,b) such that:

lull o+ |[(Beu, VPu, VP)|| a
LE(Byy ) Ly(Byy )
< (Iuall 3+ + N0 ORT AN R, o Y exp (Cle+ 1), (1.5
p,1 t\Fp,1

for all t € [0, 00).

The difficulty in establishing such a result comes from the fact that the pressure and velocity are "strongly"
coupled as opposed to the case where p is close to a constant see Remark 2.3 below. The key idea is to use the
high-low frequency splitting technique first used in [11] combined with the special structure of the "incompressible"
part of aV P i.e.

P(aVP)=P((a—a)VP)=P((a—a)VP)— (a—a)P(VP)
=[P,a—a]VP.

1P is the Leray projector over divergence free vector fields, Q@ = Id — P
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which is, loosely speaking, more regular than VP. Let us mention that a similar principle holds for « which is
divergence free?: whenever we estimate some term of the form Q (bM (D)u) where b lies in an appropriate Besov
space and M (D) is some pseudo-differential operator then we may write it

Q(bM (D) u) = [Q,b]M (D) u

and use the fact that the later expression in more regular than M (D) u, see Proposition 4.16.

The proof of Theorem 1.3 in the 3-dimensional case is more subtle: first we prove a more restrictive result by
demanding an extra low-frequency information on the initial data. Then, using a perturbative version of Danchin
and Mucha’s results of [17] we arrive at constructing a solution with the optimal regularity. The uniqueness is
obtained by a duality method.

Once the estimates of Theorem 1.3 are established, we proceed with the proof of Theorem 1.2 which is the object
of Section 3. Finally, we show the equivalence between system (1.4) and system (1.1) thus achieving the proof of
Theorem 1.1. We end this paper with an Appendix where results of Littlewood-Paley theory used through the text
are gathered.

2 The Stokes system with nonconstant coefficients

2.1 Pressure estimates

Before handling System (1.3) we shall study the following elliptic equation:
div (aVP) = div f. (2.1)

For the reader’s convenience let us cite the following classical result, a proof of which can be found, for instance in
[12]:

Proposition 2.1. For all vector field f with coefficients in L? (R™), there exists a tempered distribution P unique
up to constant functions such that VP € L? (R™) and Equation (2.1) is satisfied. In addition, we have:

ax [VPll e < QL2 -

Recently, in [30], in the 2D case, H. Xu, Y. Li and X. Zhai studied the eliptic equation (2.1) with the data
(a —a, f) in Besov spaces. Using a different approach, we obtain estimates in both two dimensional and three
dimensional situations. Let us also mention that our method allows to obtain a wider range of indices than the one
of Proposition 3.1. ) of [30].

We choose to focus on the 3D case. We aim at establishing the following result:

Proposition 2.2. Let us consider p € (g, 2) and q € [1,00) such that % - % < % Assume that there exists positive
3 3
3

.3 .

constants (G, ax,a*) such that a—a € BJ, (IRS) and 0 < a, < a < a*. Furthermore, consider f € B, (Rg). Then
.33

there exists a tempered distribution P unique up to constant functions such that VP € B/, 2 (R3) and Equation

(2.1) is satisfied. Moreover, the following estimate holds true:

1 1 1 _
——— s |1t —lle—all s JIIQF] 53 (2.2)
a allgs, e Bg, BP,

Remark 2.1. Working in Besov spaces with third index r = 2 is enough in view of the applications that we have
in mind. However similar estimates do hold true when the third index is choosen in the interval [1,2].

1
VPl 53 S <+
Br,? a

.3_3
Proof. Because p < 2, Proposition 4.5 ensures that B/, > — L? and owing to Proposition 2.1, we get the existence

of Pec S’ (R3) with VP € L? and
ax [[VP|[ 2 < 1Qfll - (2.3)

2and thus Qu = 0.
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Moreover, as Q is a continuous operator on L? we deduce from (2.1) that
Q(aVP)=Qf . (2.4)

Using the Bony decomposition (see Definition 4.3 and the remark that follows) and the fact that P (VP) = 0 we

write that:
P(aVP) =P (Topla—a)) + [P, Tua] VP.

Using Proposition 4.11 along with Proposition 4.5 and relation (2.3), we get that

1 _
P (T4pa—a) Mozo2 S IVPI la=all 2y S 107 lsa la-all 2 (2.5)
B o * q,1
where
L_1.1
p 2 p
Next, proceeding as in Proposition 4.15 we get that:
1
[P 2ua] 9] -3 5 1935 19Plse 5 10N ol (26)
*

,1

Putting together relations (2.5) and (2.6) we get

S

1
[P (aVP) . —
B a

Q a—al s .
107l el .y

3_3
p 2
P,2

Combining this with (2.4) and Proposition 4.5, we find that:

_3 .
2
2

[aVPl sy < <1+ 2 la=al3 ) lofl
p,2

3
1-7
P

Of course, writing

VP = 1aVP
a

using product rules one gets that:

1
VP| s 3 -+ 1+ —|la—al| s 3 3 2.7
ve| . i S <a 331> ( o [ ||B§1> 111 . 55! (2.7)

Applying the same technique as above leads to the 2 dimensional estimate:
Proposition 2.3. Let us consider p € (1,2) and q € [1,00) such that 1 — % < % Assume that there exists positive
.2
constants (a, a,,a*) such that a—a € B;,1 (R2) and 0 < a, < a <a*. Furthermore conszder f € B > Y (R2). Then

there exists a tempered distribution P unique up to constant functions such that VP € B;)2 (Rg) and Equation
(2.1) is satisfied. Moreover, the following estimate holds true:

1
7_1,\, j“‘
p2 a

Let us point out that the restriction p > & comes from the fact that we need 2 — 2 < 0 in relation (2.6). In 2D
5 D 2

instead of 2 — 2 we will have 2 — 2 which is negative provided that p > 1.

The next result covers the range of integrability indices larger than 2 :

1 1

- Bi) <1+||a—a g)HQfII (2.8)

IVP]|

a
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Proposition 2.4. Let us consider p € (2,6) and q € [1,00) such that % + % > % Assume that there exists positive
3 . .3_3
constants (@, a,,a*) such that a —a € Bq (R5) and 0 < a, < a < a*. Furthermore, consider f € By, 2 (R3) and a

tempered distribution P with VP € B p72 (R3) such that Equation (2.1) is satisfied. Then, the following estimate
holds true:
1 1

1
: )( + = flo-al g)llell - (2:9)
qu,l By

1
[VP| 23 < <+
:2 2 a a

Proof. Let us notice that p’ the conjugate Lebesgue exponent of p satisfies p’ € (g,?) and ﬁ - é < % Thus,

.33
according to Proposition 2.2, for any g belonging to the unit ball of SNBj, , * there exists a P, € S’ (R3) with

R
VP, € SN Bpp,’Q ? such that
div (aVP,) =divg

and
1

1
VPl | %,%5 -+ s |1+ —lla—al s |.
. a a alga Ok Ba,

(VP,g) = (P,div g) = (P,div (aVP,))
= (div Qf, Py) = (Qf, VFy),

We write that

and consequently

(VPG SNQA L a-5 VPl st
P-,2 p 2
< 1 1
S 5+ - - 5 +*||a—a||qu1 11l it
Using Proposition 4.6 we get that relation (2.9) holds true. O

As in the previous situation, by applying the same technique we get a similar result in 2D:
Proposition 2.5. Let us consider p € (2,00) and q € [1,00) such that %Jr% > % Assume that there exists positive
.2 .2 9
constants (a, ay,a*) such that a —a € B4 (RZ) and 0 < a, < a < a*. Furthermore, consider f € By, (]RZ) and

L2
a tempered distribution P with VP € B/, ' (RQ) such that Equation (2.1) is satisfied. Then, following estimate

holds true:
1
IIVPII 2., S (a + > <1+ — |la—all , 52 ) IIQfll (2.10)

p 2
In this section we derive estimates for a Stokes-like problem with time independent, nonconstant coefficients. Before
proceeding to the actual proof, for the reader’s convenience, let us cite the following results pertaining to the case
a = a, b = b constants:

-
2 a

2.2 Some preliminary results

Proposition 2.6. Let us consider ug € B;;l and (f,0:R,VdivR) € L%(B;;l) with OR € C’T(Bzifl) such that
divug =divR (0, ).

Then, system
Oyu — abAu + aVP = f,
divu = div R,
U|t=0 = U0,
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has a unique solution (u,VP) with:

u € C([O,T);ijl) and Oyu, V*u, VP € L}(B;;l)
and the following estimate is valid:

—1 .

lell o 31, + 11 (O, 86970, GV P | beET)

L (B},

LIT(BP%;I) S HUO”BEJI + ||(f7 atR, C_Ll_)VdiVR)HLl

As a consequence of the previous result, one can establish via a perturbation argument:
L] . q .n_q
Proposition 2.7. Let us consider ug € B;, ~ and (f,8;R,VdivR) € L(B,, ') with QR € Cp(B}, ') such that

divug = div R (0, ) .

Then, there exists a n =1 (a) small enough such that for all c € BEI with

n <
el <7
the system -
Ou —abAu+ (a+c¢) VP = f,
divu = div R,
U|t=0 = U0,

has a unique solution (u,V P) with:

u € C([O,T);Bp?fl) and Oyu, V*u, VP € L%«(Bpgfl)
and the following estimate is valid:

[ s+ | (8yu, abV?u,aV P)||

L;?(B:l S ||UO||B§;1 + ||(f7 8tR, dl_)V le R)HLl 1 .

YUY 2BI
The above results were established by Danchin and Mucha in [14] and [17].
In all what follows we denote by Ej,. the space of (u, VP) such that:

.

weC(0,00); By, ) and (V2u,VP) € LB ) x Lige(BJ;

n
2

.n_q
NByy ).

Also, let us introduce the space Er of u € CT(Bp?l_l) with V2u € L}(Bpgl_l) and VP € L%(Bp%;% N Bp%l_l) such
that:
n n_; < OQO.

. n_ 2 .
Ly (B, “NBJy )

P = n _ 2 n_ P
1 P, = il 0 +19%], s + 9P
The first ingredient in proving Theorem 1.3 is the following:

Proposition 2.8. Let us consider n € {2,3} and p € (1,4) if n=2 or p¢€ (%4) if n = 3. Assume there exists
positive constants (a*, by, a*,b*,a, 5) such that a — a € Bf’l (R"), b—be€ Bgl (R™) and
0<ay, <a<a*,
0<b, <b<Db.

n
2

.n_q .n_
Furthermore, let us consider ug, f vector fields with coefficients in B, (R") respectively in L}OC(B;Q (R™) N

B[ (R™)) and a vector field R € (S' (R"))" with QR € C([0,00); B/} ' (R™)) and (9,R, Vdiv R) € L} (B¥5 * (R")N
B;;l (R™)) such that
divug = div R (0, ).
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Then, there ezists a constant C,;, depending on a and b such that any solution (u, VP) € Ep of the Stokes system
(1.3) will satisfy:

n — P n_n n _
HUHL 1 + || ||L1 Bpl 1) + ||v ||Lt(B,pp’2 szpp,l 1)
Omﬂ a1+ ||(f,0eR, V div R)|| ng_n1>emmaw@+n) (2.11)
Pl %(Bppﬂ r-]Bpp,l )

for allt € (0,T).
Before proceeding with the proof, a few remarks are in order:

Remark 2.2. Proposition 2.8 is different from Theorem 1.3 when n = 3. Indeed, in the 3 dimensional case the
theory is more subtle and thus, as a first step we construct a unique solution for the case of more regular initial
data.

Remark 2.3. The difficulty when dealing with the Stokes system with non constant coefficients lies in the fact that
the pressure and the velocity u are coupled. Indeed, in the constant coefficients case, in view of

divu = div R,

one can apply the divergence operator in the first equation of (1.3) in order to obtain the following elliptic equation
verified by the pressure:
aAP =div (f — 0:R+ 2abV div R) . (2.12)

From (2.12) we can construct the pressure. Having built the pressure, the velocity satisfies a classical heat equation.
In the non constant coefficient case, proceeding as above we find that:

div (aVP) = div (f — O.R + adiv(bD(u))). (2.13)

such that the strategy used in the previous case is not well-adapted. We will establish a priori estimate and use a

continuity argument like in [13]. In order to be able to close the estimates on u, we have to bound HGVPHLl(B%_l) in
t(Bp1

terms of ||uHB HV2 H -1, for some B € (0,1). Thus, the difficulty is to find estimates for the pressure
L (B pl Y B
which do not featére the time derwatwe of the velocity.

In view of Proposition 2.6, let us consider (ur, VPp) the unique solution of the system

O — adiv(bD(u)) + aVP = f,
divu = div R, (2.14)
Ujt=0 = U0,
with n n
ur, € C([0,00); By, ) and (Opur,Viur,VPp) € L}OC(B;1 ).

Recall that for any ¢ € [0,00) we have

luzll, =3 +]K8ﬂuhabV’uL,ani)HL%B%IB C(||uol| . ,,1+¢uf¢zfzabv(hv}au %B§;3y (2.15)
In what follows, we will use the notation:
G=u—uy, VP=VP—-VP. (2.16)
Obviously, we have
divi = 0. (2.17)
Thus, the system (1.3) is recasted into
Ayt — adiv (bD(@)) + aVP = f,
diva = 0, (2.18)

’a|t:0 = 03
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where
f =adiv(bD(uz)) — adiv(bD(uz)) — (a — a)VPp.

Using the last equality along with Proposition 4.12, we infer that:

|7 H g+ < ladiv(bD(us) — adivED@r))| 3+ + 1@~ VP 5

p,1
S@+lla—al =) b+||bfb|| IIVULII z +lla—al = [VPLI| 2. (2.19)
prl Bp,l p Bpl

Let us estimate the pressure aVP. First, we write that

i< o5+l (052

BPPJ
Applying the Q operator in the first equation of (2.18) we get that
) (avﬁ) = Of + Q(adiv (bD(@))).

Thus, we get that:

|2 (avP) HB,, < HQfHBP%;l +lIQadiv (D@)I] - (2.20)
Let write that:
Q (adiv (bD (7)) = Q (D(a)Sm (aVb)) o) (Sm (ab — ab) Aa) (2.21)
+0 (D(a) (Id - Sm) (aVb)) (2.22)
+Q((1d~ ) (ab— ab) Aa) . (2.23)
According to Proposition 4.12 we have:
|2 (D@ 8 (av) )H L5 [$m (aVb)HBEI,% IVl (2.24)
Owing to the fact that @ is divergence free we can write that
Q (S (ab - ab) Ait) = [Q, $,n (ab — ab)] AT, (2.25)
such that applying Proposition 4.16 we get that
|2 (S (ab—ab) AU)H 5 (8 (@90), $ (00) )H 1l
< H( (a¥b) , S (Va) ) HB, IVl (2.26)
The last two terms of (2.21)-(2.23) are estimated as follows: pY py
lo((1a-$u) V) D (@) +Q((1d - $,) (ab— ab) A HB, (2.27)
< <H (1a-3.) (aVb)HB%i n H (1a=3) (ab— ab) H 3 ) Vil (2.28)
Thus, putting together relations (2.20)-(2.28) v:e get that: N
| (avp) H < HQfH s+ (S @YD) S (0900) HB,?I% IVl
+Ivil,s (H(Id $n) (a¥b, bVa)HBp%l,l + H(Id—Sm) (ab—ab)HB;pll). (2.29)

Next, we turn our attention towards P (aVP). The 2D case respectively the 3D case have to be treated differently.

10
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2.2.1 The 3D case

Noticing that
13@VP):P(@d—Sm)m—wwVP)+U1&nm—aﬂvﬁ

and using again Proposition 4.16 combined with Proposition 2.2 and Proposition 2.4 we get that:

1970 1P («92) 3 S92 30 + [P (4= $) =@ ) | oo+ [P S0~ o] o
(2.30)
S [(1a=5) = 92,5 (1 [505e]50 ) [9
(2.31)
(-8 w-oly (3235 ) o 22
+C (a) (1 T HsmeBgzg (HfHBgzg + fladiv (bD<a>>||Bg2g) 7 (2.33)
where py p, p,
¢ (a) = <i+ %—i B§1> <1+ *||a—a||351>
We observe that
(2.34)

ladiv (bD(@))| s s S |a+]a—al s b+ ||b,b|| s |Vl a_1 .
By, * BJy B}, By *

Putting together (2.30)-(2.33) along with (2.34) we get that
1 1

a

(2503 #1209 5 2= 8) ol (34 5=, ) lowPl

SmVaH % ;) <HfHBg_% + <a+ la — a| % <b+ Hb b” % > HVU‘B% %> (2.35)

Combining (2.29) with (2.35) yields:

+C (a) <1+‘

L <TL ab‘hVPH
1

BVl sy +Th @h i,

3
P
Bp‘1

where

T2 (a,b) = C (a) <1+HS v4

T3 (a,b) —H(Sﬁ/aVb (bVaD

11
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T (a,b) = H (Id - Sm> (aVb, bVa)H e H (Id - s) (ab — aB)H

P
Bp,l

ST

By,

Observe that m could be chosen large enough such that T, (a,b) and T2 (a,b) can be made arbitrarily small. Thus,
there exists a constant C,; depending on a and b such that:

<],

where 7 can be made arbitrarily small (of course, with the price of increasing the constant Cy;). Let us take a look
at the B” 2 _norm of f; we get that:

, (2.36)

2

3 7_1+||VUI| 1>+77||V11IIB
P

3 _
BP 2
P

ﬁmw

L3 3 3 3
BP P P
p Bp, p,1

2

H]gHB%,g < Hadiv(bD(uL)) — @div(BD(uL))‘|B% 3+ ||(a— a)VPLH

P,2

Slavla—al s | (o+1lo—5] 5 | IVucl sy +la—all s VP 5 5. (2.37)
prl prl Bp,1 prl

’Umw

By,
L3 .3
As uy, € C([0,00), B}y 1) N L([0, 00), B}fjl) and @ is continuous operator on homogeneous Besov spaces from
div (UL - R) S 0,
we deduce that
P(UL—R) :’U,L—R7
which implies
Quy = QR.
By applying the operator Q in the first equation of System (2.14) we get that:

aVP,=9Qf — Qoyur + ELBQAUL +abVdivR
= Qf — QR+ 2abV divR

and thus

[VPL| s_3 <

3_2
3P
Bp

Q| =

1071 53 + = IOQRI 5 3 + 2|V Rl ,

p2 p2

In view of (2.36), (2.19), (2.37) and interpolation we gather that there exists a constant Cj,y, such that:

HVPH 4,530 < Co (nmn pHITPel 3y + (T VP o+ IV g;)mnwnt
’ (2.38)
< Cul(QF QR A B 3y +Con el (2.39)
(2.40)

+ Cap [|[(V2ur, VPL)|| s + Capllal] s, + 277 IVall s
Br; Br; B7,

where, again, at the price of increasing C,p, n can be made arbitrarily small.

2.2.2 The 2D case

In this case, using again Proposition 4.16 combined with Proposition with Proposition 2.3 and Proposition 2.5 we
get that:

HVPH o HP(avﬁ)H 2. < HVPH L H(Id—Sm> (a—a)H ' it H (a—a VPH
B;z B;l B;Q

2
P
Bp,l

(=) @=a 5 97,5 (1+HvsmauB;2) 2],

12
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<[ (1 =5u) (e,

where, as before

+C (a) (1 n HvsmaHB;) (HfHB +1|Q(adiv (bD(a)))HB;zl)
1 1

1 _
Il o (1 —lla—al 2 |,
a B;l Ay B, i

As we have already estimated ||Q(adiv (bD(@)))| . 2_, in (2.29), we gather that:
Bp

P2

TS

(V2| 2i+]|avP|| 2 STh @0 |[aVP|| 2+ TR @b || 2o
BY, BY, BY, BY,
T @) Vil z oy + Ty () [V s (2.41)

2
3P
p,1 Bp,1

where
o= (a-52) @-as (2422, )
T2 (a,b) = C (a) (1 + Hvs’maHB];) : p’
T3 s (a,b) = H (Sm (aVb), S (bVa)) HB,

)

+€(a) <1 . HvsmaHBgz) | (3ur @v). 800 (90|

B
T4 s (a,b) = H(Id - Sm)(aVb)"B%I,I + H(Id — $,) (ab — ab) HB,

Lo (1 + HvsmaHB;) (H<fd— @)+ 1~ ) (@) ) |

P
Bp,l

First, we fix an n > 0. Let us fix an m € N such that T}}, (a,b) HaVﬁH .21 can be "absorbed" by the LHS of (2.41)
BP,

and that . . -
|ta=3.)@vb)|| 2o+ |(ra= ) (@ —ab)| 2 <n/2
B:I Bpp,l
Next, we see that by choosing M large enough we have
Tri,M (CL, b) S -
Thus, using interpolation we can write that:
V2| 2ot [avP| 2s < Con (192, VPO 2o+ 1l 2oy | +20 V20| 2o (2.42)
B:2 B;J B2pyl BppJ BPPJ

2.2.3 End of the proof of Proposition 2.8

Obviously, combining the two estimates (2.38)-(2.40) and (2.42) we can continue in a unified manner the rest of the
proof of Proposition 2.8. First, choose m € N large enough such that

7 . 7 *b*
ab + Sy, (ab — ab) > a2 .

13
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We apply A; to (2.18) and we write that:
Byt — div ((al‘) + $p(ab— aE))Vaj) = fi (aVP)
+ A, div ((Jd — 8)(ab — aB)va) + div [Aj, Sy (ab — az)} Vi
+A; (Dasm(bw)) +A; (Da(ld - Sm)(bw))
+A; (vaSm(aVb)) +A, (va(fd - Sm)(aVb)) .

Multiplying the last relation by |a;|" “lsen @;, integrating and using Lemma 8 from the Appendix B of [12], we get
that:

@]l + a*b*szC/ot 1]l s
< [ 5]+ [ 3 (vP)
+/Ot div [A;, S (ab — ab)] va(Ler/OtHAj div ((Id—s'm)(ab—aé)va)‘

+ /0 t A, (Dasm(bw)) + / t

+/0t A, (VuS aVb H /HA a(ld — S, )(aVb))HLP

ij

Lp

Lp

A, (Du(]d S )(bVa))‘

LP

Multiplying the last relation by 27+ =% performing an ¢! (Z)-summation and using Proposition 4.14 to deal with
Hdiv {Aj, Sy (ab — dB)} VQH .z along with (2.38)-(2.40) and (2.41) to deal with the pressure, we get that:
BP,

.
Ly(B)y )

~ 2~
||U||L§°(B§;1) + a,.b.C || V4|

t
. n_q +C/ HGVPH .n_q
L%(Bpp,l ) 0 Bppl

(Sm(bVa),Sm(aVb)) HB% Vil 52+ T (@ 0) | V2], 5
p,1 p,1 t\Bp1

<[4

_|_/
0

< Cu(141) (nuOn s IRV AN R (BB)) (2.43)
2
+ Cab/ ||u|| 21+ (T (a,0) + 1) [|[Vu HLl(BEl_l). (2.44)
where
T, (a,b) = H(Id - S‘m)(bVa)HB%_l + H(Id - Sm)(aw)HB%_l
p,1 p,1
+ H(Id — S (ab— ab)HBfl,l .
Assuming that m is large enough respectively 7 is small enough, we can "absorb" (7, (a,b) + 1) HVQuHLl(B;L Y in
the LHS of (2.43). Thus, we end up with
||ﬂ|| n_1 +Cl*b*€ HVQQH no_q < C b (1 +t) HUOH n_q 4 ||(f atR leVR)” n_n n_q
L(BE, ) 2 LY(BE, ) ¢ BP, ’ LY(BF, *nBP, )

t
C il . »_
+C [l

14
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such that using Gronwall’s lemma, (2.15) and the classical inequality
14+¢t* < Cyexp(t)

yields:

laf e ||v2 ||L1(Bp 1 < Ca <||uo|| 21+ |[(f,0:R, V div R)|

- 3o n ) exp (Cypt) .

LB, fnBp
(2.45)

pl

Using the fact that u = uy, + @ along with (2.15) and (2.45) gives us:

2
full,_ g, + o 92 0, < <||U0|| g HILORT AR, oy 1))exp<cabt>.
(2.46)
Next, using (2.38)-(2.40) and (2.41) combined with (2.15) and interpolation, we infer that:
P H7Q n < P Afﬂ n _ n_n n _ 2.4
L P o] L P B s b s (2.47)
< Cuy (||U0|| it OBV i R %(Bgzgﬁgﬁlljexp (Cunt). (2.43)
Combing (2.48) with (2.46) we finally get that:
bl oy F UVl o) TIVPIL, 2o 2o
< (huoll g + 107 QR T AN R n s ) exp (Can (e 1). (2.49)
pl (Bp,2 me,l )

Obviously, by obtaining the last estimate we conclude the proof of Proposition 2.8.
Next, let us deal with the existence part of the Stokes problem with the coefficients having regularity as in
Proposition 2.8. More precisely, we have:

Proposition 2.9. Let us consider (a,b, ug, f, R) as in the statement of Proposition 2.8. Then, there exists a unique
solution (u, VP) € Ejoc of the Stokes system (1.3). Furthermore, there exists a constant C,p, depending on a and b
such that:

ful o [Vl | ma VP sy s
L (B ,1 ) Lt(Bp,1 ) Lt((B, ﬂB ,1 )
<u0|| s HILORNVAVR)| | ay s )exp(Cab(t+1)). (2.50)
pl (Bp,2 an‘l )

for allt > 0.

The uniqueness property is a direct consequence of the estimates of Proposition 2.8. The proof of existence
relies on Proposition 2.8 combined with a continuity argument as used in [13], see also [24]. Let us introduce

(ag,bg) = (1 —0) (&, B) +6(a,b)
and let us consider the following Stokes systems

O — ag(div (bgD(u)) — VP) = f,
divu = div R, (So)
U|t:0 = Ug.

First of all, a more detailed analysis of the estimates established in Proposition 2.8 enables us to conclude that
the constant Cy,p, appearing in (2.49) is uniformly bounded with respect to 8 € [0,1] by a constant ¢ = cgp.
Indeed, when repeating the estimation process carried out in Proposition 2.8 with (ag, by) instead of (a,b) amounts

15



Optimal well-posedness for the inhomogeneous incompressible Navier-Stokes system with general viscosity

in replacing (a — a) and (b—b) with 6 (a —a@) and 6 (b —b). Taking in account Proposition 4.10 and the remark
that follows we get that there exists
c:= sup Cgyp, < 00.
0€[0,1]
Let us take T > 0 and let us consider &7 the set of those 6 € [0, 1] such that for any (ug, f, R) as in the statement
of Proposition 2.8 Problem (Sp) admits a unique solution (u, VP) € Ep which satisfies

e L P e | P
L (B, B[,,1 ) LI(BF, *nBP, )
(Huoan—#n(f,atR VAR, 5o ) el ). (251)

for all ¢t € [0, T]. According to Proposition 2.6, 0 € Er.
Let us suppose that 6 € Er. First of all, we denote by (ug, VFy) € Er the unique solution of (Sp). We consider
the space

Eraw = {(ﬁ), v@) € By : diva = 0}

and let Sy be the operator which associates to (111, VQ) € Er.aiv, (ﬂ, VP) the unique solution of

8tﬂ — ag(diV (bgD(fL)) — Vp) = goo’ (UG, VPG) + goo’ (U~), VQ) )

divu =0, (2.52)
’Ul‘t:O =0.
where
9oo’ (’LL, VP) = (ag — ap’) VP + ag div (bg: D (u)) — ag div (bgD (u)). (2.53)

Obviously, Spgs maps Er giv into Ep qiv. We claim that there exists a positive quantity ¢ = ¢ (T") > 0 such that if
|0 — 6’| < e(T) then Spgr has a fixed point (11*, VP*) in a suitable ball centered at the origin of the space Er gy
Obviously,

(@ +uo, VP + VPy)

will solve (Sp/) in Er.
First, we note that, as a consequence of Proposition 2.8, we have that:

|97)],

Let us observe that

< (||gee' (ug, VPp)|| -1, + ngo/ (w VQ)

-1 ) exp (¢(T+1)). (2.54)

.n
nBy, )

L _n
2

n
L%,,(B:z, ﬂBp

—_n
2

. n
T L%(BPPJ

(a0 —a) VPl x5y 10— 01lla=alp IVPI, s oo (2.55)
Next, we write that:

agr div (bg: D (u)) — ag div (bg D (u)) = (ag — ag) div (bg: D (u)) + ag div ((bg: — bg) D (u)) .
The first term of the last identity is estimated as follows:

;- div (bg: D < |6 — o’ — n b b—b D no,
aw = an) v (oD ), s <1001l =al 5 (54 [o=5] ) ID@I, 2

Regarding the second term, we have that:

Jaodiv (o= b) DD, s < 0= 013l 5 (a+a=al5 ) 1DG,, 5

16
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and thus:
,di /D — i D n _
l|ag: div (b D (u)) — ag div (bg (U))||L1T(B;1 '
<|0-¢|{a+lla=al . | (b+][b=0| = )[Dul B, (2.56)
BY, BY, LL.(BP)
§
The only thing left is to treat the Ll( 5 2)-norm of agr div (bg: D (u)) — ag div (byD (u)) in the case where n = 3.
Using the fact that Vu € L} (32”1 §) write that:
l(agr — ag)div (b D ()| =~ a3 <0 —0lla—al s [[div(beD (W)l 2 3
PBry ) Bl Ly(Bgy ™)
<|0—01la—al s (b+Hb—bH ) |Dul| s_1 (2.57)
By By Ly By ")

p,1 ) T pp,l )

: 1 3
<|0—0|lla—al s [b+|b—0| 2 THul® 5, Jull? s, (2.58)
By Bpa LE(BY LL(E

<16 0| C (T, a,b) (““'me?l S T ) (2.59)

7 (Bga ) Ly(BYy )

and, proceeding in a similar manner we can estimate |lag div ((bgr — bg) D (u))|| a3
Li(Bys ")
Combining (2.55), (2.56) along with (2.59) we get that:

llgoor (u, VP)|| 3

L S 0-0[C(T,a,b) (IIUI s+ |[VPu || s HIVP| - ss sy
L2 (BP L(BP Li(BP, 2nBP

3_ .3
L%“(Bzi2 ﬂBﬁl ) p,1 ) p,1 ) T\ p,2 p,1 )

Let us replace this into (2.54) to get that

|(97)]

)

H(u @2, VP — vﬁﬂ)HE S\9—9’|C’(T,a,b)”<7])1—wQ,V()l—VQQ)‘

(3.5) =5 (.5

Thus one can choose ¢ (T') small enough such that |6 — 0’| < ¢ (T') gives us a fixed point of the solution operator
Soor in By, (0,2/(ue, VPp)| 5,.)-

Thus, for all T > 0, Er = [0, 1] and owing to the uniqueness property and to Proposition 2.8, we can construct
a unique solution (u, VP) € Ej,. to (1.3) such that for all ¢ > 0 the estimate (2.11) is valid. This ends the proof of
Proposition 2.9.

<10-¢10(a) (o TP, + | (3.9Q)

and by linearity

Er

where for £k =1, 2:

2.3 The proof of Theorem 1.3 in the case n =3

As it was discussed earlier, in dimension n = 3, Proposition 2.8 is weaker than Theorem 1.3 as one requires additional

.3_3
low frequency informations on the data (f,d; R,V div R) € L{(B,, *). Thus, we have to bring an extra argument
in order to conclude the validity of Theorem 1.3. This is the object of interest of this section.

17
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2.3.1 The existence part
We begin by taking m € N large enough and owing to Proposition 2.7 we can consider (u', VP') the unique solution

R 8
with ' € C(R™; B}, ) and (9u', V?u',VP') € L}, (B}, 1) of the system

loc

Oyu — abdiv D(u) + (a + 8 . (a— a)) VP =f,

divu = div R,
u\t:[) = Uo,
which also satisfies:
1 2.1 1 e 1.
|u ||LW(B;,1) + || (8t abVut,av P )HLIT(B,?if) < C(HuOHBp%;l + || (£, 0R, aWdWR)”LITwE;l))’

for all ' > 0. Let us consider

G (u!, VP') = adiv (bD(u')) — adiv(bD(u')) — ((Jd - S,m) (a - a)) VP!
We claim that G (u!, VP') € LL_(B75* N B21 ). Tndeed

adiv (bD(u")) — adiv(bD(u'")) = (a — @) div (bD(u")) + adiv ((b—b) D (u'))

and proceeding as in (2.56) and (2.58) we get that

Hadiv(bD(ul))—ELdiv(BD(ul))H 3.3 3 <Cgp (1—|—t%> (HulH 3, +||u1H >
Li(By, “NBY, ) LE(BY, ) Ll(B )

< exp (Cap (t+ 1) (luoll Lz +I(f, ORVAvR)] s
pl T(B:1 )
(2.61)
Next, we obviously have
S —a 1 < ! : .
H((Id s,m) (a a)) vP ‘ S Cll(a— HVP HLI(BN ) (2.62)
8.1 .37 .33
Using the fact that the product maps B, * x By, — B}, we get that:
H ((Id - S_m) (a— a)) vpl‘ s <C H (Id - S_m) (a— a)H o VP sl (2.63)
Li(By, %) By, ? L{(B, )
Of course
H(Id— $m) (a— a)H sy <0 Y 26 HAJ- (a— a)HL <028 Y 299 ||A (a - a)’ .
BY, ,
P, j=>—m j=z—m

so that the first term in the RHS of (2.63) is finite. We thus gather from (2.61), (2.62) and (2.63) that G (u', VP?') €
Ll

loc

L3_3 .34
(B, *NBJ, ) and that for all ¢ > 0 there exists a constant Cyp, such that

|G (u*, VP )H 3 3, (HuoH s+ (. 0R, levR)H ,,1))exp(C’ab(t+1)).

3 _ 3
(Byo "NBy ) By Ly(By,

According to Proposition 2.9, there exists a unique solution (u2, VPQ) € Ej,c of the system:

ou — adiv(bD(u)) + aVP = G (u', VP),
divu =0,
u|t:0 = 07

18
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which satisfies the following estimate

12 s+ (V22 VP <[l @ VP sy s, exp(Cap(E 1))
LE(Br, ) Ll(Bpl b LY(BY, *NBY, )
< (uoll s +[[(f; 0 R, VAivVR)[| s, )exp(Cap (t+1)).
B Ly(BYy )
We observe that
(u, VP) == (u' + v, VP + VP?)
is a solution of (1.3) which satisfies

lul sy +[(V2,VP)|| s = (ol g+ IRV AR g Jexp(Can (41 (2:64)

L?O(B;f,l ) LI(B pl t\Pp1 )

Of course, using again the first equation of (1.3) we get that

|| tU || 3_q SC@})H(f,VQU,VP)H .31
(By1 ) Liy(Byy )
and thus, we get the estimate
[l s, + H(@tu,vzu,VP)H 3, (HuOH 3.+ I(f,O:R,VdivR)|| . s_, )exp(Ca (t+1)). (2.65)
LE(Byy ) Li(Bpy ) By Li(Bpy )

2.3.2 Uniqueness

Next, let us prove the uniqueness property. Let us suppose that there exists a T' > 0 and a pair (u, VP) that solves

O — adiv(bD(u)) + aVP = 0,

divu =0, (2.66)
Ult=0 = 0,
with - -
u € C’T(B;; ) and (Oyu, V?u, VP) € LlT(BpE; ).

Observe that we cannot directly conclude to the uniqueness property by appealing to Proposition 2.9 because the
3 3

pressure does not belong (a priori) to L%(BE 5 > ). Recovering this low frequency information is done in the following
lines. Let us suppose that 3 < p < 4. Applying the operator Q in the first equation of (2.66) we write that:

Q((@a+8_pm(a—a)VP) = Q(adiv(bD(u))) — Q((Id — S_,,) (a — a) VP)

where m € N will be fixed later. We observe that:

lo(a+$m@-a)vp)| oy S lQadw D@, ooy +HQ (1d=$ ) @-a)VP)|| 4y
LlT(B,f’l (B, Lip(Bgy ™)
SJT% a+lla—al = b—i—Hb—bH s | |Vul| 4 ;,%
By By LE(BL %)
+ H(Id_ $m) (a- ] L VP .
Ly (B ”1 Y
Consequently, we get that
. .33
Q((@+ S_m(a—a))VP) € Lp(Br, ®). (2.67)
.3 .3 .32
Let us observe that the condition p € (3,4) ensures that B}, is contained in the multiplier space of Bp,f’;l =B, .

More precisely, we get
. . 5 s—S+1 L=+l
Proposition 2.10. Let us consider (u,v) € By, x B, . Thenuv € B,,%, ~ and

luv]l . 3+1A4Hu”
B

" ”UHB—%+1-

3
P
p p’,2
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. . .3 341 . ..
Proof. Indeed, considering (u,v) € By ; x B, and using the Bony decomposition we get that

‘ u

| oaes S Ml ol s
Bp’,2 ~ p/,2

Next, considering

111
=3t
we see that
VNI (s
e P P i o A et SO L T N -9 [
>j-3
= > 2002 5 o) a2 A
£>5-3 g
and consequently, we get
[ I e P 7 IR 1 Oy (¥
R LB R .—34 .3
v Bp’,z’ Bpp*,l Bp,f; B;)l

O

.3
Proposition 2.11. Let us consider p € (3,4). Furthermore, consider a constant ¢ > 0 and ¢ € By . Then there
exists an universal constant n > 0 such that if
lell,

"fmw

_3
2

-5 5 5 S5 —2 e )
then for any ¢ € B, , N BJ 5 there exists a unique solution VP € Bzf NB) o, of the eliptic equation
div ((¢+ ¢) VP) = div .
Moreover, the following estimate holds true

IVPI 5 - SIQYI 5 -0,
BP?

p’,2 ’2

where o € {%,2}.
.3
Proof. The proof is standard. Under some smallness condition on ¢ € B the operator

VR — VP = %Q(w—cVR)

3 _3 3
3 _3 .39
P

has a fixed point in a suitable chosen ball of the space Bzf/;2 NnB

p',2 0

We choose m € N such that HS'_m (a— &)H 3 is small enough such that we can apply Proposition 2.11 with a
By,
and S_,, (a — a) 1nstead of ¢ and c. Let us consider ¢ a vector ﬁeld with coefficients in S. As the Schwartz class is

3 3 3

included in B;f',2 ap:i NP ? let us consider VP, € B N B", 2 ? the solution of the equation

div ((a + 8 (a— a)) va) = dive,

the existence of which is granted by Proposition 2.11. Then, using Proposition 4.6 and Proposition 4.7, we write
that3:

(VP ) sns =3 <AjVP, Ajzp> =Y - <AjP, A, div1/)> (2.68)
J J

3We denote A := Aj_1 + A+ Ajq1.
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=3 - (A;P, A div ((a+ 8 m(a—a)) VPy)) = > (A VP4 ((a+ S m(a-a) VP,))

’ ’ (2.69)
-y (A;(a+S$ m(a—a) VPAVP,) = > (3,9 ((a+5-m(a-a) VP),A;VP,) (270)
sle((@+S-ma=a) VP)| 2 4 IVPIl 5 (2.71)

<le((a+sm@-a)vr)| 5y 1,55 (2.72)

H 3 -
BP:Q p’,1

Taking the supremum over all ¢» € S with [[¢] s _

p’,2

3 < 1, owing to (2.67) and Proposition 4.6, it follows that

2

.3 3
VP e L(B,,?) and that

_3 .
2

IVPI,, 43, le((a+5$m@-a)vP)| e

According to the uniqueness property of Proposition 2.9 we conclude that (u, VP) = (0,0).
3 3

.31 .3
Let us observe that in the case p € (£,3], owing to the fact that By, < B/, for any ¢ € (3,4) and

5
.3 .3 .3
u € Cr(By, 1) along with (9u, V?u, VP) € Ly (B), 1) we get that u € Cr(B,, 1) along with (9,u, V?u, VP) €

.3
L%,q(Bq"’1 1). Thus, owing to the uniqueness property for the case ¢ € (3,4) we conclude that (u, VP) is identically
null for p € (2,3].

3 Proof of Theorem 1.2

In the rest of the paper we aim at proving Theorem 1.2. Thus, from now on we will work in a 3 dimensional
framework.

3.1 The linear theory

- L3 . L3
Let us introduce the space Fr of (u?7 VQ) with w € Cr(B,, 1) and (atu?, V2w, VQ) € Ly(B}, 1) with the norm

|(#va)

Before attacking the well-poseduess of (1.4), we first have to solve the following linear system:

=lall s +||(000. V%0, 9Q)|
Fr LB, )

ERE
Lp(Byy )

podi — div (1 (po) AuDa, (0) + ATV P =0,
div (Aya) = 0, (3.1)
’a‘tzo = Ug-

3

.3 .3 .3
where o € Cr(B?; ') with Vo € LyL.(B? )0 L3(BZ, ),

t
Xﬁ<t,y>=y+/ o (ryy) dr,
0

with det DX; =1 and A; = (DX;))*l. Moreover, we suppose that:

s < 20 (3.2)
T ;?,1

R r— 2
L LT(

E
By
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for a suitably small a. Obviously, this will be achieved using the estimates of the Stokes system established in the
previous section, see Theorem 1.3. Let us write (3.1) in the form

Oyt — L div (1 (po) D () + - VP = - F; (a, VP),
diva = div ((Id — Ap) @),
Up—g = UQ.

with
Fy (.YQ) = div (1 (po) AsD.a, (1) — pt (po) D (w)) + (Id — AT) VQ.

.3 _q 3 _
Let us consider (ur, VPr) with uy, € C(RT, B}, ) (8tuL, Vur, VPL) e L} (B;i1 ) the unique solution of

loc
Ouy, — pLo div (1 (po) D (ur)) + p—:lOVPL =0,
divur =0, (3.3)
UL|t=0 = U0,

for which we know that:
[(ur, VPl g, < IIUOIIBgfl exp (Cp, (T'+1)).

p,1
Moreover, T can be chosen small enough such that
IVurll | aou +[[(Qur, V2ur, VPL)|| - 2, <a (3.4)
L3(Byy ) Ly(Byy )

Following the idea in [15], and owing to Theorem 1.3, we consider the operator ® which associates to ('LZJ, VQ) € Fr,
the unique solution (ft, VP) € Fr of:

Ot — p% div (1 (po) D (@) + ,%VIS = p%Fﬁ (uL +w, VP + V@)
diva = div ((Id — As) (ur +w)),
ﬂ‘tZO - 0
We will show in the following that for a sufficiently small T" > 0, there exists a fixed point for ® in the unit ball
centered at the origin of Fr. More precisely, according to Theorem 1.3 we get that

- 1 ~
o (@.va)| < ’ —Fy (up + 9, VP +VQ)|| o, 410 (Td= Ay (u + D) | s
Fr—1lPo LL(B}, ) Lr(Bya )
+[Vdiv((Id = Ap) (ur + @) sy - (3.5)
LB

We begin by treating the first term:

1 1 1
3 _4 S +‘
LL.(BP, ) P

ipﬁ (uL-HI;,VPL—FVQ) oo P

3 (uL F B, VP, + VQ)‘

s .. (36
LhBr (3.6)

.3>
BY,

We write that

Ty =div (p (po) AsDa, (ur, + w)) — div (p (po) D (ur, + w))
= div (1 (po) (As — Id) Da, (ur +w)) + div (p (po) Da,—r1a (ur + w))
=div (p(po) (As — Id) Da,—1a (ur + w)) + div (1 (po) (As — I1d) D (ur + ))
+div (1 (po) Dag—r1a (ur +w)).

Thus, using (4.15) we get the following bound for 77:

1Tl s SCpllAe—1d| s |1+ (A =Id|| s || [[Vucrll s +[Va
Ly (BE, ) L§ (B ) LB ) Lh(BP) L4 (B2

~
T p,1
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Coo IVOl s (1+0Vall s ) (IVuell | o +IVall s
LT(prl) LT(Bp‘l) LT(Bp,l) L (B 1)

<Cha (a + H(w vc})‘ FT) . (3.7)

The second term is estimated as follows:

|ra-apy@reva), oo <190 (1970, L
LL(BF, ) LL(BP) (B” )
<a (a v H(u‘),v@)) ) (3.8)
Fr
such that combining (3.6), (3.7) and (3.8) we get that:
1 ~ -
’Fv (we+@,VPL+VQ)|  ,  SCpa <a+ H(w,VQ)‘ > (3.9)
£o Ll (BP ) Fr

In order to treat the second term of (3.5) we use relations (4.15), (4.16) along with interpolation in order to obtain:
o1 S0As(ur +w)l| sy +[(Td = Ag) (Qpur + O0)|| 5y
Ly(Bp,y ) Ly(Bp,y ) Ly (By,y )

S0A s e bl o = Al o+ o)
P, T p,1

Pl T i
)+a(a+u<w7v@>\ o)

FT) . (3.10)

Treating the last term of (3.5) is done using the following formula:

10 (1d — Ap) (ur, + w)]|
.31
Ly(Byy )

<ivell, oo (o v,

<a <a+ H(w,v@)‘

div ((Id — Ap) (ur, + @)) = (Dur, + Dw) : (Id — Ay)
which is a consequence of the fact that det DXz = 1 and Proposition 4.19. Thus, we may write:

i S (Dug + Dw) : (Id—Aa)ll

IV div ((Id — Ag) (ur +@))|| a_
L3(B),) Ly} )
SId—Agll s |[Dug +Da|| s
L(BP)) Ly (Byy)

Sa <a+ H(UIVQ)‘ FT)- (3.11)

o)

Thus, for a suitably small o the operator ® maps the unit ball centered at the origin of Fr into itself. Due to the
linearity of ® one can repeat the above arguments in order to show that for small values of o, ® is a contraction.

This concludes the existence of a fixed point of @, say (11*, VP*) € Fr. Of course,

Combining the estimates (3.9), (3.10) and (3.11) we get that:

L Sa <a+ |@.va)

|2 (va)|

(@, VP) = (@, VP*) + (ur, V)

is a solution of (3.1).
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3.2 Proof of Theorem 1.2
Let us consider T' small enough such that (ur, VPr) the solution of (3.3) satisfies

\Vur| = sy +[[Vurl]] s <«
LT(By ) L (Bp1)

and let us consider the closed set:

Fr(R) = {(@,v()) € Pr i T = 0,det DXy 1) = 1, ||(5.VQ)| < R}
T
with R < « sufficiently small such that:
Vol s, IV 3 <a. (3.12)
L3(B}, Ly.(Bry)

Let us consider the operator S which associates to (17, V@) e Fr (R), the solution of:

Outt — 1 div (1 (po) D () + 5 VP = Ly oy (ur + 8, VP + VP),
div (A(UL+17)(UL + ’a)) = 0,
le1’|t=0 =0,

constructed in the previous section. We will show that that for a suitably small T, the operator S maps the closed
set Fp (R) into itself and that S is a contraction. First of all, recalling that (ﬁ, VP) is in fact the fixed point of
the operator ® defined above and using the estimates established in the last section we conclude that

<R

Fr

|s (2. va)]

for some small enough T'. Moreover, because
det DXy, +5) = 1 and div (A(uL_H;)(’U,L + ﬁ)) =0
we invoke Proposition 4.19 in order to conclude that
det DXy, 4a) =1
so that S maps Fr (R) into itself.
Next, we will deal with the stability estimates. For i = 1,2, let us consider (f}i, VQi) € Fr (R) and (ﬂi, Vf’,-) =
S (171', VQl) Denoting by

(55, V6Q) = (51— 72, V1 - V@),

(97, VoP) = (@ — @2, VP — V1),
we see that: - -
80t — = div (1 (po) D (60)) + =VOP = - F,

div (A, +5,)01)) = div G,
5ﬂ\t:0 = 07

where
F = F1(51~)7UL +’L~Ll) + Fl(uL -l—’l~)2,57.~l,)
ol (5@, VP, + vﬁﬁ) + Fy(ug, + i, VOP),

G == (A(UL+?71) - A(uL+172)) (UL + ﬂg) R
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and

Fy(0,%) = div (1 (p0) AyD.a, () — st (po) D (),
Fy0.VQ) = (1d— AT) VQ.
According to Theorem 1.3 we get that

H(aa,v(sp cm( - +HVd1vGH - +Ha G‘ G ) (3.13)
L1 (Bp L%.(B;l )
Proceeding as in relations (3.6) and (3.7) we get that
HF‘ s SIVOR| o [Vur+Vinl | s+ [ Vug+ Vil |vaal
Lh(Br, ) Ly(BE) Ly(BE) Ly (BD) LL(BE)
+ vl HVPL n vle 3 FIVu vl ‘
(BI) LL(BE,)
<aH(v5u vacz)H ) —|—aH(V6a,V5P)‘ e (3.14)
L(BP) LL(BE,)

Of course, we will use the smallness of a to absorb «a H (Véu V5P> H 3 into the LHS of (3.13).
LL(BP))
Next, we treat ‘

3_, . Using Proposition 4.19, we write that
(By1 )
div@ = (DUL + Dﬂg) : (A(uLJrﬂl) — A(uL+{)2)>
and thus, using (4.18)
HleVé‘ L (3%7 - H Dur + DUQ) (A(“L—i-m) A(uL-Fflz))H 3

.3
Ly(Bgy )

S |\ IPucl | s A+ [1Di2] Atug+oy) — Afup +
( LL(B7) (Bpl) || (up+v1) = “Hur+ 2)”

3
L¥(By1)
< || Vo) (3.15)
Li(BY 1)
Finally, we write that
(Aqug+51) = Awp+on) (ur +a2) = (O Aup1o,) — O Ay 1o.)) (U + 2)
+ (Agup+51) = Afup+52)) (Orur + Oriia) .
Using (4.18), (4.19) and (4.20) gives us
Ot Ay, +5,) — OsA(u, 45 + Or A, +5,) — Ot A(u, +5 3
1OeA s 1) = Ot Aqusran)) (ur + )| Lsi S S0 A s +o1) = QA+ 2>HLT sho el (331)
SIVes|l sy fucll s+ HWUH 3 ||U2|| -
L3(Byy ) 5By (By1) LE By )
Saldo] 2 +al|VeD
L3(By 1) T(Bppl)

Also, using (4.18), we have that:

[(Aupror) = Aug +50)) (Qeur + Oyita)|

< WA, 25y — Arur 15 3 Oru + [|Opu
S son = sl s (100l o 00l o )

p,1
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<a|ves| s .
LL(BY,)
The conclusion is that R
Hvawa’ s, Salfd] 2 4oV s . (3.16)
Lh(B2, ) 12.(B,) LL(BY,)

Gathering the information of (3.14), (3.15) and (3.16) we get that if « is chosen sufficiently small then

[((se-v5P))l,, <3 ((5w-950))

the operator S is also a contraction over Fr (R). Thus, according to Banach’s theorem there exists a fixed point
(a*, VP*) of S. Obviously,

(3.17)

Fr

(’l], VP) = (UL, VPL) + (’U*, VP*)
is a solution of B
podu — div (11 (po) AaDa, (@) + ALVP =0,
div (Ag@) = 0, (3.18)
Ujg=0 = UO-
The only thing left to prove is the uniqueness property. Let us consider (a', VP'), (a?, VP?) € Fr, two solutions
.3
of (3.18) with the same initial data ug € B, ' With (ur, VPr) defined above we let

(ai,vﬁi) = (i, VP) — (uy, VPy) fori=1,2
such that the system verified by (ﬂi, Vﬁ’i) is

Oriit — L aiv (1 (po) D (@) + EVP' = LF, gy (ur + @, VP, + VP,
div (A(uL—i-ﬁ"’)(uL + ﬂz)) =0,
'L~L|t:0 = 0

We are now in the position of performing exactly the same computations as above such that we obtain a time T
sufficiently small such that: - B
(a',VP') = (a*,VP?) on [0,T"].

It is classical that the above local uniqueness property extends to all [0, T].

3.2.1 Proof of Theorem 1.1

3 3
Finally, we are in the position of proving the result announced in Theorem 1.1. Considering (po, uo) € B; 1 X B; 1_ !
and applying Theorem 1.2, there exists a positive 7' > 0 such that we may construct a solution (ﬂ, VP) to the
system (1.4) in Fr. Then, considering X, the "flow" of @ defined by (4.12) and using Proposition 4.20 from the
Appendix, one obtains that for all ¢ € [0,T], X; is a measure preserving C'-diffeormorphism over R™. Thus we
may introduce the Eulerian variable:

p(t,x)=po (Xg' (t,2)), u(t,z) =u(t,X;" (t,)) and P(t,z) = P (t, X;" (t,2)).

3
Then, Proposition 4.18 assures that (p, u, VP) is a solution of (1.1). As DX — Id belongs to Bpg,l we may conclude
that (p,u, VP) has the announced regularity.

The uniqueness property comes from the fact that considering two solutions (p,u’, VP?) of (1.1), i = 1,2, and
considering Y,; the flow of u’ we find that (u’ (t,Y,: (t,y)), VP (t,Y,: (t,y))) are solutions of the system (1.4) with
the same data. Thus, they are equal according to the uniqueness property announced in Theorem 1.2. Thus, on
some nontrivial interval [0,7"] C [0, 7], (chosen such as the condition (4.14) holds), the solutions (p,u’, V.P?) are
equal. This local uniqueness property obviously entails uniqueness on all [0, T7].
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4 Appendix

We present here a few results of Fourier analysis used through the text. The full proofs along with other comple-
mentary results can be found in [6], Chapter 2.
Let us introduce the dyadic partition of the space:

Proposition 4.1. Let C be the annulus {£ € R : 3/4 < |¢| < 8/3}. There exist a radial function ¢ € D(C) valued
in the interval [0,1] and such that:

Ve e R™M\{0}, Y @278 =1, (4.1)
JEZ
2 < |j — j'| = Supp(p(277-)) N Supp((277"-)) = 0. (4.2)

Also, the following inequality holds true:
1 .
R™ - < 2(277¢) < 1. 4.
v € R"\{0}, Q_j%so( 6 < (43)

_ From now on we fix a functions x and ¢ satisfying the assertions of the above proposition and let us denote by
h respectively h their Fourier inverses. .
The homogeneous dyadic blocks A; and the homogeneous low frequency cutt-off operators S; are defined below:

Aju: 90(2_jD)u: 2j”/ h(2jy)u(x—y)dy

n

Sju = X(2_jD)u = 2jn/ B(ij)u(x— y) dy

n

for all j € Z.

Definition 4.1. We denote by S}, the space of tempered distributions such that:

lim HSJUH =0.
j——o0 Lo

Let us now define the homogeneous Besov spaces:

Definition 4.2. Let s be a real number and (p,r) € [1,00]. The homogenous Besov space B;T is the subset of
tempered distributions u € S}, such that:

o= || (27¢

The next propositions gather some basic properties of Besov spaces.

< 0.
o (z)

[ul

Aju‘

L"‘)jez

Proposition 4.2. Let us consider s € R and p,r € [1,00] such that

s<ors=— andr=1. (4.4)
p p

Then (B;’T, H'”B’;,r) is @ Banach space.

Proposition 4.3. A tempered distribution u € S}, belongs to B[S)’T (R™) if and only if there exists a sequence (cj)j
such that (2jscj)j € ("(Z) with norm 1 and a constant C = C (u) > 0 such that for any j € Z we have

o, <o
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Proposition 4.4. Let us consider s1 and sy two real numbers such that sy < s and 6 € (0,1). Then, there exists
a constant C > 0 such that for all r € [1,00] we have:

1-6
Byl

c /1 1 ;
||UHB§§11+<1—6>52 < s 19 [ullgs1_ [lul

2 — 81

A

and

0
||“|‘Bzfrl+<1—6>sz = ||U||B;}T [|ul

1-0
Byl

Proposition 4.5. Let 1 <p; <py <oc and 1 <1y <ry < oco. Then, for any real number s, the space B;ml is
Ls—n( Lt —L
continuously embedded in szn(“ P2>'

Proposition 4.6. For all1 <p,r < oo and s € R,

Bs, xB%, - R,

I ot
P,

(u,v) — Z <Aju7 A]‘U> , (4.5)

where Aj = Aj,l + Aj + AjJrl, defines a continuous bilinear functional on B;’r X B;,ST,. Denote by Q" the set
of functions ¢ € SNB*, such that 6l 5-= < 1. Ifue€S,, then we have
P/,T/

p’ !

||UHB;T,§ sup <U7¢>3'x3~
' $€Q

p’ !

Proposition 4.7. Let us consider 1 < p,r < oo and s € R. Furthermore, let u € B;T, v e BI;ST, and p €
L~nM (B;T) nM (B;Sr,) Then, we have that

(pu.v) = 3 (A (pu). Ayw) = 37 (A& (pv)) = (., pv). (4.6)

The proof of Proposition 4.7 follows from a density argument. Relation (4.6) clearly holds for functions from
the Schwartz class: then we may write

/n puv = (pu,v) = (u, pv) .

The condition 1 < p,r < co and s € R ensures that v and v may be approximated by Schwartz functions.
An important feature of Besov spaces with negative index of regularity is the following:

Proposition 4.8. Let s <0 and 1 < p,r < co. Let u be a distribution in S;. Then, u belongs to stm" if and only
if

(2
Moreover, there exists a constant C' depending only on the dimension n such that:

1
<o(i+ )l
7 (2) sl

The next proposition tells us how certain multipliers act on Besov spaces.

sju\

o (z).
LP)jeZg ( )

5

—[s]+1 . Jjs .
ol < (2 5,

LP)jeZ

Proposition 4.9. Let us consider A a smooth function on R™\{0} which is homogeneous of degree m. Then, for
any (s,p,r) € Rx [1,00]” such that

n n
s—m< —ors—m=—andr=1
p

the operator* A (D) maps B;T continuously into Bf,;m.

1AD)w=TF"1 (AFw)
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The next proposition describes how smooth functions act on homogeneous Besov spaces.
Proposition 4.10. Let f be a smooth function on R which vanishes at 0. Let us consider (s,p,r) € Rx [1,00]2
such that

n n
O0<s<—ors=—andr=1.
p p

Then for any real-valued function u € B;T N L, the function fou € B;}T N L*° and we have

I1f © ul

By, < C () g,

Remark 4.1. The constant C (f',||ul| ) appearing above can be taken to be

(@)
sup H
iemf L (=M [ul] yoo .= M [ul] o)

where M is a constant depending only on the dimension n.

4.1 Commutator and product estimates

Next, we want to see how the product acts in Besov spaces. The Bony decomposition, introduced in [7] offers a
mathematical framework to obtain estimates of the product of two distributions, when the later is defined.

Definition 4.3. Given two tempered distributions u,v € S}, the homogeneous paraproduct of v by u is defined as:
T,v= Z Sj,luAjv. (4.7)
JEL
The homogeneous remainder of u and v is defined by:
R (u,v) = Z Ajulv (4.8)
JEL

where ) _ ) .
Al =Aj 1+ A+ Aj.

Remark 4.2. Notice that at a formal level, one has the following decomposition of the product of two (sufficiently
well-behaved) distributions: ) ' _ ) '
w =Ty + Tyu+ R (u,v) = Ty + Thu.

The next result describes how the paraproduct and remainder behave.
Proposition 4.11. 1) Assume that (s,p,p1,p2,7) € RX [1,00]4 such that:

1 1 n n
—=— 4+ —, < —o0ors=—andr=1.
p P11 P2 b p
Then, the paraproduct maps LP* x Bzfz,r into B;J. and the following estimates hold true:

o .
sz,r

7o .. <15 Nl
B; ..

2) Assume that (Svp7p17p27r7 TlaTQ) € Rx [1700]6 and v > 0 such that

and

n n
s<——vors=——vandr=1.
p p
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Then, the paraproduct maps Bp’l’jm X B;;CKQ into stw,r and the following estimate holds true:

3) Let us consider (s1,52p,p1,p2,7,71,72) € R? x [1,00]6 such that

B, 5 e
soll,, <090

9l v, -
P1,71 g BP217‘2

n n
0<s14+8<—o0rsg+so=—andr=1.
p p

; 351 350 ; 251452
Then, the remainder maps B, . x B2, into By and

P1,7T1 P2,7T2

|2 e < W7z, sl
By

As a consequence we obtain the following product rules in Besov space:

Proposition 4.12. Consider p € [1,00] and the real numbers v1 > 0 and vy > 0

n R n n
u1+u2<+m1n{,/}.
p pp

Then, the following estimate holds true:

no_,. ., < n_, no_y, .
15005 o2 S 103 gl

Proposition 4.13. Let us consider 6 a C' function on R™ such that (14 |-|)0 € L'. Let us also consider p, q € [1, 0]

such that:

1 1 1

=S4 -<1

r p q
Then, there exists a constant C' such that for any Lipschitz function a with gradient in LP, any function b € L7 and
any positive \:

I[6 (A™'D) ,a] b]
In particular, when 6 = © and \ = 27 we get that:

b < OX T IVall, (bl

[[A5.a]8], <279 19all,, 00150
Proposition 4.14. Assume that s,v and p € [1,00] are such that

n . [n n n
0<v<-— and 1m1n{,/} <s< ——v.
p pp p
Then, there exists a constant C depending only on s,v,p and n such that for all | € 1,n we have for some sequence

(¢)) ez with H(Cj)jGZHEI(Z) -

H@l {a, AJ} wHLP < Cc;277¢ ||Va||B§;u [|w] oty
for all j € Z.
For a proof of the above results we refer the reader to the Appendix of [13], Lemma A.5. and Lemma A.6.

Proposition 4.15. Let us consider a homogeneous function A : R"\{0} — R of degree 0. Let us consider s € R,
0<v<1andp,rr,re €[l,o0] such that

1 1 1
=4 =
T T1 )
and n n
s<——vors=——vandry =1. (4.9)
p p
Moreover, assume that w € B;J;;’ and that a € L* with Va € Bgo‘:rl. Then, the following estimate holds true:
[la@) L] ... S IVals,, ol (4.10)
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As this result is of great importance in the analysis of the pressure term, we present a sketched proof below (see
also [6], Chapter 2, Lemma 2.99)

Proof. The fact that a € L* along with relation (4.9) guarantees that A (D) w € B;f;” and that the paraproducts

T,w and T, A (D) w are well-defined. We observe that there exists a function ¢ supported in some annulus which
equals 1 on the support of ¢ such that one may write (of course it is here that we use the homogeneity of A):

[A(D), TJw=3" [(A@(z—jD), s’*j,la} Ajw.
J
But according to Lemma 4.13 we have

94 (s+1) H [(A@)(QijD),Sj_la} AijLP < 9—iv

V8, 2w
Lo

2]

L
The last relation obviously implies (4.10). O
As a consequence of the above proposition and Proposition 4.11 we get the following;:

Proposition 4.16. Let us consider a homogeneous function A : R"\{0} — R of degree 0, s e R, 0 < v <1 and
p,T,T1,T2 € [1, OO} such that

1 1 1
=4 =
rooTy T
and
—l—min{n,n/}<s<n—uors—n—yandr—r2—1. (4.11)
p p p

assume that w € B;";Z” and that a € L> with Va € B;O’jrl. Then, the following estimate hold true:

1A (D), alwll ggir S Val 2 [wliggsy -

P,T1

4.2 Properties of Lagrangian coordinates

Proposition 4.17. Let X be a globally defined bi-lipschitz diffeomorphism of R® and —5 <s<

is a self map over By | whenever
;

%. Thena — aoX
1) s €(0,1);

.3
2) s>1and (DX —1d) € B} ;.

Proposition 4.18. Let K be a C' scalar function over R® and H a C' vector field. Let X be a C' diffeomorphism
such that det (DX) = 1. Then, the following relations hold true:

(VK)o X =div(DX 'Ko X),
(divH)o X =div(DX 'Ho X).

Proposition 4.19. Let us consider v and w two time-dependent vector fields with coefficients in LL.(C%1). Let

us denote by Y, and Y, their corresponding flows. We denote by A, = (DYU)_1 and Ay, = (DYw)_l. Let us also
assume that
det DY, =1 and div (A,woY,) =0.

Then,
det DY, =1

and for any C'-vector field H one has

divH =(D(HoY,): A,) oY, ' =div(A,HoY,)o Y, .
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This result interferes in a crucial manner in the proof of the well-posedness result for the inhomogeneous
incompressible Navier-Stokes system. For a proof and other remarks see Corollary 2 from the Appendix of [15].
For any o a time dependent vector field we set:

Xs(ty)=y+ /o v (r,y)dr (4.12)

and we denote
Ay = (DXy) . (4.13)

[

.3 L3_
Proposition 4.20. Let us consider v € Cy([0,T], B}, 1) with 8,0, V20 € L%F(B;’,l 1). Then, there exists a positive
a such that if
Ivoll |, 2 <o (4.14)
1)

then, X5 introduced in (4.12) is a global Cl—diﬁeormorphzsm over R3. Moreover, if
div (A»[)'l_)) =

then, X3 is measure preserving i.e.
det DX@ =1

Proposition 4.21. Let us consider v € Ep satisfying the smallness condition (3.2). Let X, be defined by (4.12).
Then for all t € [0,T] :

[1d = Ay (I 2 SVl s (4.15)
B, LHB)

1.5 ()3 S IVIO 3 (4.16)

10:45 O 3 <175 (t)HBg . (4.17)

In order to establish stability estimates we use the following

Proposition 4.22. Let 91,03 € Er satisfying the smallness condition (4.14) and dv = vy — v1. Then we have:

145, — As |l 2 SIVou]l (4.18)
L (By,) (Bp1)
10:A5, — 0 Az, || 5 SV (4.19)
Ly (B ERCIRY
100 Az, — 01 Ay || a1 S ||V5U|| 3 (4.20)
L3(Bgy ) L3.(B}, )
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