M. Albano, E. Beyerstedt, and V. Moll, The integrals in Gradshteyn and Ryzhik. Part 19: The error function, Scientia, vol.21, pp.25-42, 2011.

G. E. Andrews, The death of proof? Semi-rigorous Mathematics? you've got to be kidding! The Mathematical Intelligencer, vol.16, pp.16-18, 1994.

G. E. Andrews, R. Askey, and R. Roy, Special Functions, volume 71 of Encyclopedia of Mathematics and its Applications, 1999.

G. Boros and V. Moll, Irresistible Integrals, 2004.

T. Cadwallader-olsker, What do we mean by Mathematical Proof, Journal of Humanistic Mathematics, vol.1, pp.33-60, 2011.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 2015.

A. Jaffe and F. Quinn, Theoretical Mathematics': Towards a cultural synthesis of Mathematics and Theoretical Physics, vol.29, pp.1-13, 1993.

A. Jaffe and F. Quinn, Response to comments on, Theoretical Mathematics'. Bull. Amer. Math. Soc, vol.30, pp.208-211, 1994.

T. Koshy, Catalan Numbers with Applications, 2009.

D. H. Lehmer, Interesting series involving the central binomial coefficient, Amer. Math. Monthly, vol.92, pp.449-457, 1985.

H. P. Mckean, Probability. The Classical Limit Theorems, 2014.

F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions, 2010.

B. Sury, T. Wang, and F. Zhao, Identities involving reciprocals of binomial coefficients, Journal of Integer Sequences, vol.7, 2004.

W. P. Thurston, On proof and progress in Mathematics, Bull. AMS, vol.30, pp.161-177, 1994.

C. Vignat and V. Moll, A probabilistic approach to some binomial identities, Elem. Math, vol.69, pp.1-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01322850

E. T. Whittaker and G. N. Watson, Modern Analysis, 1962.

D. Zeilberger, Theorems for a price: Tomorow's semi-rigorous mathematical culture, Notices AMS, vol.40, pp.978-981, 1993.