C. Misbah, Vesicles, capsules and red blood cells under flow, Journal of Physics: Conference Series, vol.392, p.540
DOI : 10.1088/1742-6596/392/1/012005

URL : https://hal.archives-ouvertes.fr/hal-00909453

C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1992.
DOI : 10.1017/CBO9780511624124

S. Ramanujan and C. Pozrikidis, Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities, Journal of Fluid Mechanics, vol.361, pp.361-117, 1998.
DOI : 10.1017/S0022112098008714

E. Lac, A. Morel, and D. , Hydrodynamic interaction between two identical capsules in simple shear flow, Journal of Fluid Mechanics, vol.573, pp.149-169, 2007.
DOI : 10.1017/S0022112006003739

URL : https://hal.archives-ouvertes.fr/hal-00172295

W. R. Dodson, I. , and P. Dimitrakopoulos, Dynamics of strain-hardening and strain-softening capsules in strong planar extensional flows via an interfacial spectral boundary element algorithm for elastic membranes, Journal of Fluid Mechanics, vol.281, pp.263-296, 2009.
DOI : 10.1017/S0022112072001910

J. Walter, A. Salsac, D. Barthès-biesel, and P. L. Tallec, Coupling of finite element and boundary integral methods for a capsule in a Stokes flow, International Journal for Numerical Methods in Engineering, vol.18, issue.8
DOI : 10.1063/1.2337572

URL : https://hal.archives-ouvertes.fr/hal-00542306

H. C. Woolfenden and M. G. Blyth, Motion of a two-dimensional elastic capsule in a branching channel flow, Journal of Fluid Mechanics, vol.251, pp.3-31, 2011.
DOI : 10.1023/A:1015248817797

G. Ghigliotti, T. Biben, and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics, vol.292, pp.489-518, 2010.
DOI : 10.1039/b716612e

T. Biben, A. Farutin, and C. Misbah, Three-dimensional vesicles under shear 565 flow: Numerical study of dynamics and phase diagram, Phys. Rev, p.83, 31921.

S. K. Veerapaneni, D. Gueyffier, D. Zorin, and G. Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D, Journal of Computational Physics, vol.228, issue.7, pp.228-2334, 2009.
DOI : 10.1016/j.jcp.2008.11.036

]. G. Boedec, M. Leonetti, and M. Jaeger, 3D vesicle dynamics simulations with a linearly triangulated surface, Journal of Computational Physics, vol.230, issue.4, pp.1020-1034, 2011.
DOI : 10.1016/j.jcp.2010.10.021

URL : https://hal.archives-ouvertes.fr/hal-00717365

H. Zhao and E. S. Shaqfeh, The dynamics of a vesicle in simple shear flow, Journal of Fluid Mechanics, vol.28, pp.578-604, 2011.
DOI : 10.1017/S0022112011000115

C. Pozrikidis, Numerical simulation of the flow-induced deformation of red 575 blood cells, Ann. of Biomed. Eng, pp.31-1194, 2003.

H. Zhao, A. H. Isfahani, L. N. Olson, and J. B. Freund, A spectral boundary integral method for flowing blood cells, Journal of Computational Physics, vol.229, issue.10, pp.229-3726, 2010.
DOI : 10.1016/j.jcp.2010.01.024

Z. Peng, R. J. Asaro, and Q. Zhu, Multiscale modelling of erythrocytes in Stokes flow, Journal of Fluid Mechanics, vol.79, pp.299-337, 2011.
DOI : 10.1073/pnas.0805779105

T. Gao and H. H. Hu, Deformation of elastic particles in viscous shear flow, Journal of Computational Physics, vol.228, issue.6, pp.2132-2151, 2009.
DOI : 10.1016/j.jcp.2008.11.029

C. Bui, V. Lleras, and O. Pantz, Dynamics of red blood cells in 2d, ESAIM: Proceedings, vol.28, pp.182-194, 2009.
DOI : 10.1051/proc/2009046

URL : https://hal.archives-ouvertes.fr/hal-00784177

]. T. Klöppel and W. A. Wall, A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes, Biomechanics and Modeling in Mechanobiology, vol.283, issue.3, pp.585-445, 2011.
DOI : 10.1007/s10237-010-0246-2

T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Physical Review E, vol.67, issue.3, p.67, 31908.
DOI : 10.1103/PhysRevE.67.031908

J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E, vol.69, issue.1, p.69, 11906.
DOI : 10.1103/PhysRevE.69.011906

G. Cottet and E. Maitre, A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES, Mathematical Models and Methods in Applied Sciences, vol.16, issue.03, pp.415-438, 2006.
DOI : 10.1142/S0218202506001212

URL : https://hal.archives-ouvertes.fr/hal-00103198

D. Salac and M. , A level set projection model of lipid vesicles in general flows, Journal of Computational Physics, vol.230, issue.22, pp.8192-8215, 2011.
DOI : 10.1016/j.jcp.2011.07.019

A. Laadhari, P. Saramito, and C. Misbah, Vesicle tumbling inhibited by inertia, Physics of Fluids, vol.24, issue.3, p.600
DOI : 10.1063/1.3690862

URL : https://hal.archives-ouvertes.fr/hal-00604401

C. S. Peskin, The immersed boundary method, Acta Num, vol.11, pp.479-517, 2002.

L. Lee and R. J. Leveque, An Immersed Interface Method for Incompressible Navier--Stokes Equations, SIAM Journal on Scientific Computing, vol.25, issue.3, pp.832-856, 2003.
DOI : 10.1137/S1064827502414060

X. Wang and W. K. Liu, Extended immersed boundary method using FEM and RKPM, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.12-14, pp.1305-1321, 2004.
DOI : 10.1016/j.cma.2003.12.024

Y. Kim and M. Lai, Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method, Journal of Computational Physics, vol.229, issue.12, pp.4840-4853, 2010.
DOI : 10.1016/j.jcp.2010.03.020

]. Le, B. C. Khoo, and J. Peraire, An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, Journal of Computational Physics, vol.220, issue.1, p.610
DOI : 10.1016/j.jcp.2006.05.004

D. Le, Large deformation of liquid capsules enclosed by thin shells immersed in the fluid, Journal of Computational Physics, vol.229, issue.11, pp.4097-4116, 2010.
DOI : 10.1016/j.jcp.2010.01.042

]. Le and K. Chiam, Hydrodynamic interaction between two nonspherical capsules in shear flow, Physical Review E, vol.84, issue.5, pp.615-84
DOI : 10.1103/PhysRevE.84.056322

P. Bagchi and R. M. Kalluri, Dynamic rheology of a dilute suspension of elastic capsules: effect of capsule tank-treading, swinging and tumbling, Journal of Fluid Mechanics, vol.30, pp.498-526
DOI : 10.1103/PhysRevLett.98.078301

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, Journal of Computational Physics, vol.256
DOI : 10.1016/j.jcp.2013.08.061

URL : https://hal.archives-ouvertes.fr/hal-00871557

S. K. Doddi and P. Bagchi, Three-dimensional computational modeling of multiple deformable cells flowing in microvessels, Physical Review E, vol.79, issue.4, pp.625-79
DOI : 10.1103/PhysRevE.79.046318

P. Bagchi and R. M. Kalluri, Rheology of a dilute suspension of liquid-filled elastic capsules, Physical Review E, vol.81, issue.5, p.81
DOI : 10.1103/PhysRevE.81.056320

W. Helfrich, Elastic properties of lipid bilayers: Theory and possible ex- 630 periments, Z. Naturforsch, vol.28, pp.693-703, 1973.

P. Bagchi and A. Z. Yazdani, Analysis of membrane tank-tread of nonspherical capsules and red blood cells, The European Physical Journal E, vol.99, issue.10, p.35, 12103.
DOI : 10.1140/epje/i2012-12103-1

A. Z. Yazdani and P. Bagchi, Influence of membrane viscosity on capsule dynamics in shear flow, Journal of Fluid Mechanics, vol.28, issue.185, pp.569-595, 2013.
DOI : 10.1017/S0022112011000280

L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu, Immersed finite element method, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.21-22, pp.2051-2067, 2004.
DOI : 10.1016/j.cma.2003.12.044

W. K. Liu, Y. Liu, D. Farrell, L. Zhang, X. S. Wang et al., Immersed finite element method and its applications to biological systems, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.13-16
DOI : 10.1016/j.cma.2005.05.049

C. Chnafa, S. Mendez, and F. Nicoud, Image-based large-eddy simulation in a 650 realistic left heart, Comput, pp.94-173, 2014.

V. Zmijanovic, S. Mendez, V. Moureau, and F. Nicoud, About the numerical robustness of biomedical benchmark cases: Interlaboratory FDA's idealized medical device, accepted for publication in Int, J. Numer. Meth. Biomed

V. Eng, P. Moureau, L. Domingo, and . Vervisch, Design of a massively parallel CFD code for complex geometries, Comp. Rend. Méc, vol.339, issue.2-3, pp.655-704, 2011.

J. C. Simo and K. S. Pister, Remarks on rate constitutive equations for finite deformation problems: computational implications, Computer Methods in Applied Mechanics and Engineering, vol.46, issue.2
DOI : 10.1016/0045-7825(84)90062-8

W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, International Journal for Numerical Methods in Fluids, vol.45, issue.8-9, p.660
DOI : 10.1002/fld.1650200824

A. Pinelli, I. Z. Naqavi, U. Piomelli, and J. Favier, Immersed-boundary methods for general finite-difference and finite-volume Navier???Stokes solvers, Journal of Computational Physics, vol.229, issue.24, pp.229-9073, 2010.
DOI : 10.1016/j.jcp.2010.08.021

URL : https://hal.archives-ouvertes.fr/hal-00951516

M. Malandin, N. Maheu, and V. Moureau, Optimization of the deflated Conjugate Gradient algorithm for the solving of elliptic equations on massively parallel machines, Journal of Computational Physics, vol.238, pp.32-47, 2013.
DOI : 10.1016/j.jcp.2012.11.046

K. Y. Sze, X. H. Liu, and S. H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells, Finite Elements in Analysis and Design, vol.40, issue.11, pp.40-1551, 2004.
DOI : 10.1016/j.finel.2003.11.001

E. Lac, D. Barthès-biesel, N. A. Pelekasis, and J. Tsamopoulos, Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling, Journal of Fluid Mechanics, vol.516, pp.303-334, 2004.
DOI : 10.1017/S002211200400062X

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers, Mech. Chem. Biosys, vol.1, issue.3, pp.169-180, 2004.

S. Turek and J. Hron, Fluid-Structure Interaction: Modelling, Simulation, Optimisation Ch. Proposal for numerical benchmark- 680 ing of fluid-structure interaction between an elastic object and laminar incompressible flow, pp.371-385, 2006.

S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer, Fluid-Structure Interaction II -Modelling, Ch. Numerical Benchmarking of Fluid-Structure Interaction: A Compari- 685 son of Different Discretization and Solution Approaches, pp.413-424, 2010.

E. A. Evans and Y. C. Fung, Improved measurements of the erythrocyte geometry, Microvascular Research, vol.4, issue.4, pp.335-347, 1972.
DOI : 10.1016/0026-2862(72)90069-6

G. Lenormand, S. Hénon, A. Richet, J. Siméon, and F. Gallet, Direct measurement of the area expansion and shear moduli of the human red blood cell 690 membrane skeleton, Biophys. J, pp.81-124, 2001.

M. Schäfer, M. Heck, and S. Yigit, Fluid-Structure Interaction: Modelling, Simulation , Optimisation, Ch. An Implicit Partitioned Method for the Numerical Simulation of Fluid-Structure Interaction, pp.171-194, 2006.

D. C. Sternel, M. Schäfer, M. Heck, and S. Yigit, Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach, Computational Mechanics, vol.196, issue.1, pp.69543-103, 2008.
DOI : 10.1007/s00466-008-0278-y

U. Küttler and W. A. Wall, Fixed-point fluid???structure interaction solvers with dynamic relaxation, Computational Mechanics, vol.35, issue.6???8, pp.61-72, 2008.
DOI : 10.1007/s00466-008-0255-5

W. A. Wall, D. P. Mok, and E. Ramm, Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures, Solids, Structures and Coupled Problems in Engineering , Proc. ECCM '99. Munich, p.700, 1999.

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, A two-dimensional fluid-structure interaction model of the aortic value, J. Biomech, pp.33-1079, 2000.

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, J. Biomech, pp.36-103, 2003.

J. Hart, G. W. Peters, P. J. Schreurs, and F. P. Baaijens, Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during 715 systole, J. Biomech, pp.37-303, 2004.

I. Borazjani, Fluid???structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, vol.257
DOI : 10.1016/j.cma.2013.01.010

D. Kamensky, M. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal et al., An immersogeometric variational framework for fluid???structure interaction: Application to bioprosthetic heart valves, Computer Methods in Applied Mechanics and Engineering, vol.284, pp.284-1005, 2015.
DOI : 10.1016/j.cma.2014.10.040

M. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. Hughes, Fluidstructure interaction analysis of bioprosthetic heart valves: significance of 725 arterial wall deformation, Comput. Mech, pp.54-1055, 2014.

F. Nicoud, H. Baya-toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations, Phys, p.23