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FROM A QUARTIC CONTINUED FRACTION IN F3((T
−1))

TO A TRANSCENDENTAL CONTINUED FRACTION IN Q((T−1))

THROUGH AN INFINITE WORD OVER {1, 2}

BILL ALLOMBERT, NICOLAS BRISEBARRE AND ALAIN LASJAUNIAS

Abstract. We explicitly describe a noteworthy transcendental continued frac-
tion in the field of power series over Q, having irrationality measure equal to
3. This continued fraction is a generating function of a particular sequence
in the set {1, 2}. The origin of this sequence, whose study was initiated in
a recent paper, is to be found in another continued fraction, in the field of
power series over F3, which satisfies a simple algebraic equation of degree 4,
introduced thirty years ago by D. Robbins.

1. Introduction

In this paper, we present a remarkable continued fraction, built from an infinite
word with the only letters 1 and 2. The partial study of the structure of this
word shows that this sequence is complex enough to imply surprising arithmetical
properties for the resulting generating function. This generating function is indeed
transcendental and it has a very peculiar continued fraction expansion that we will
fully describe. We first start by describing our framework and we recall the origin
of this strange sequence.

Here, K is a field which is either the finite field Fq, containing q elements and
of characteristic p, or the field Q of the rational numbers. Let T be a formal
indeterminate. As usual K[T ] and K(T ) are, respectively, the ring of polynomials
and the field of rational functions in T with coefficients in K. We consider the
field of power series in 1/T , with coefficients in K, denoted by F(K) or K((T−1)).
Hence a non-zero element of F(K) can be written as

α =
∑

k6k0

akT
k where k0 ∈ Z, ak ∈ K and ak0

6= 0.

An ultrametric absolute value is defined over these fields of power series. For α as
above we have | α |=| T |k0 where | T | is a fixed real number greater than 1. Note
that F(K) is the completion of the field K(T ) for this absolute value.

If K = Fq, we simply write F(q) for F(K). The case K = Fq is particularly
important for several reasons. The first one is the link between these fields of power
series and certain sequences taking a finite number of values. The fields F(q) are
analogues of the field of real numbers, and as for real numbers: If α ∈ F(q) then the
sequence of coefficients (or digits) (ak)k6k0

for α is ultimately periodic if and only
if α is rational, that is α belongs to Fq(T ) (note that this fails if K = Q). However,
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and this is a singularity of the formal case, this sequence of digits can also be
characterized for all elements in F(q) which are algebraic over Fq(T ); see Theorem
1. Indeed, a large class of sequences, taking values in a finite set, were introduced
around the 1960’s by computer scientists. These sequences tend to generalize the
particularly simple periodic sequences and are called automatic sequences. A full
account on this topic and a very complete list of references are to be found in the
book of Allouche and Shallit [1]. Automatic sequences are classified by an integer
parameter k > 2, and consequently we have k-automatic sequences for all k > 2.
The link between these sequences and power series over a finite field appears in the
following theorem found in the work of Christol [3] (see also the article of Christol,
Kamae, Mendès France, and Rauzy [4]).

Theorem 1 (Christol). Let α in F(q) with q = ps. Let (ak)k6k0
be the sequence of

digits of α and u(n) = a−n for all integers n > 0. Then α is algebraic over Fq(T )
if and only if the sequence (u(n))n>0 is p-automatic.

In the fields of power series over K, as for real numbers, there is a continued
fraction algorithm. The integers are replaced by elements of K[T ]. The reader may
consult [5] for a general account concerning continued fractions and Diophantine
approximation in power series fields. We know that any irrational element α in
F(K) can be expanded as an infinite continued fraction where the partial quotients
an are polynomials in K[T ], all of positive degree, except perhaps for the first
one. Traditionally, this expansion is denoted by α = [a0, a1, a2, . . . , an, . . .]. As for
real numbers, this expansion is fundamental to measure the quality of the rational
approximation of formal power series. The irrationality measure of an irrational
power series α ∈ F(K) is defined by

ν(α) = − lim sup
|Q|→∞

log(|α− P/Q|)/ log(|Q|),

where P,Q ∈ K[T ]. This irrationality measure is directly related to the growth of
the sequence of the degrees of the partial quotients an in the continued fraction
expansion of α. Indeed we have (see for instance [5, p.214])

ν(α) = 2 + lim sup
n>1

(deg(an+1)/
∑

16i6n

deg(ai)).

Here again the difference between K finite and K = Q is striking. We recall that,
by an adaptation of a classical theorem of Liouville, due to Mahler, if α ∈ F(K) is
algebraic over K(T ), such that [K(T, α) : K(T )] = n then we have ν(α) ∈ [2, n].
For algebraic real numbers this irrationality measure is known to be equal to 2
by the celebrated Roth theorem. It was proved by Uchiyama [10], shortly after
Roth theorem, that the same is true for fields of power series over K, if K has
characteristic zero. In the case K = Fq, the situation is more complex and Mahler
[8] observed that we may have ν(α) = n for certain algebraic elements of degree
n. This observation was the beginning of the study of Diophantine approximation
in positive characteristic. At the same time the study of continued fractions for
certain algebraic power series over finite fields was developed.

The starting point of this note is a particular continued fraction in the field
F(3). It was introduced in [9], and it is the root of the following quartic equation:
x4 + x2 − Tx + 1 = 0. This equation has a unique root in F(p) for all p > 2.
The continued fraction expansion for this root α in F(3), observed by computer,
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was conjectured in [9]. Some ten years later this conjecture was proved in [2]
and also, shortly afterwards, with a different method in [6]. Here we have α =
[0, a1, a2, . . . , an, . . . ] where an = λnT

un , (λn)n>1 is a sequence in F∗
3 and (un)n>1

another sequence in N∗. The knowledge of this last sequence in N∗ implies that here
we have ν(α) = 2, even though the sequence of the degrees of the partial quotients
(un) is unbounded. This is remarkable, see [6, p.209] and also [7, p.58]. In this
note, we only are interested in the first sequence (λn)n>1 in F∗

3, i.e. in {1, 2}. This
sequence is described in the following theorem.

Theorem 2. Let (Wn)n>0 be the sequence of finite words over the alphabet {1, 2},
defined recursively as follows:

W0 = ∅, W1 = 1, and Wn = Wn−1, 2,Wn−2, 2,Wn−1, for n > 2,

where commas indicate concatenation of words. Let W = (w(n))n>1 be the infinite

sequence beginning by Wn for all n > 0. Then the sequence W = (w(n))n>1 is

(1 +
√
2)-substitutive but it is not k-automatic for any integer k > 2.

This theorem was proved in [7, Theorem 4]. The reader can consult [7] for a
brief account on automatic and substitutive sequences, and also naturally [1] for a
full exposition on these matters.

We set θ =
∑

n>1 w(n)T
−n. Then θ can be considered in F(K), where K = Fp,

for any prime number p > 2 or K = Q, and θ is transcendental over K(T ) in
all cases. In the case K = Fp, this is simply a straightforward consequence of
Theorem 1. Indeed if θ were algebraic over Fp(T ), then the sequence (w(n))n>1

would be p-automatic, in contradiction with Theorem 2. In the case, K = Q, by
Uchiyama’s adaptation of Roth theorem, it will simply follow from the fact that
the irrationality measure for θ is equal to 3. This will be established in the next
section, as a consequence of our main result Theorem 3, in which we explicitly
give the degrees of the partial quotients of the continued fraction expansion for θ
when considered in the field Q((T−1)). We will end our text with a conjectural
description of this continued fraction expansion.

2. A transcendental continued fraction in Q((T−1))

We start from the sequence W = (w(n))n>1, defined above in Theorem 2, and
we consider the formal power series θ =

∑
n>1 w(n)T

−n ∈ Q((T−1)). We shall see
that this power series is not rational and we shall describe partially the infinite
sequence of the partial quotients in the theorem below.

First we define some notions needed for a deep study of the sequence (Wn)n>0

of finite words over the alphabet {1, 2}. If M is a finite word, we denote by |M |
the length of this word. This notation on words should not be confusing with the
use of the absolute value for elements in the power series fields. Hence we have
|W0| = 0 and |W1| = 1. We set ℓn = |Wn|. By the recursive definition of (Wn)n>0,
for n > 2, we have ℓn = 2ℓn−1 + ℓn−2 + 2. We will also use the following: if M =
m1,m2, . . . ,mn is a finite word we set φ(M) = m1T

n−1+m2T
n−2+· · ·+mn ∈ Q[T ]

and also Φ(M) = φ(M)T−|M| ∈ Q(T ). By extension, for an infinite word, with
our definitions of W and θ, we can simply write θ = Φ(W ). We have the following
theorem.

Theorem 3. Let θ =
∑

n>1 w(n)T
−n ∈ Q((T−1)), then θ is irrational and we have

the infinite continued fraction expansion θ = [0, a1, a2, . . . , an, . . . ] with an ∈ Q[T ]
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for n > 1. Let (ℓn)n>0 be the sequence of integers defined by

ℓ0 = 0, ℓ1 = 1 and ℓn+1 = 2ℓn + ℓn−1 + 2 for n > 1.

Let (dn)n>1 be the sequence of integers defined by dn = deg(an) for n > 1. Then

this sequence is described as follows: d1 = d2 = d3 = d4 = 1 and, for n > 1, we
have

d4n+1 = (3ℓn + ℓn−1 + 1)/2, d4n+3 = (ℓn + ℓn−1 + 1)/2

and

d4n+2 = 1, d4n+4 = 1.

Corollary 1. The irrationality measure of θ is equal to 3.

Proof of the corollary: We know that the irrationality measure of θ sat-
isfies ν(θ) = 2 + lim supn>1(dn+1/

∑
16i6n di). We observe that, for n > 1, we

have d4n+1 > max(d4n, d4n−1, d4n−2, d4n−3) and consequently, we have ν(θ) =
2 + limn>1(d4n+1/

∑
16i64n di). We set tn =

∑
16i64n di. We have t1 = 4 and

by induction, we obtain easily tn = 2 + d4n+1 for n > 1. Hence, we have ν(θ) =
2 + limn>1(d4n+1/(2 + d4n+1)) = 3.

The proof of Theorem 3 is obtained using three lemmas. Each of the first two
lemmas gives a sequence of good rational approximations to θ.

In the sequel, we shall avoid the comma for the concatenation of words.

Lemma 1. For n > 1, we set Sn = T (ℓn+ℓn−1+3)/2(T ℓn+1 − 1). Then, for n > 1,
there exists Rn ∈ Q[T ] such that

|θ −Rn/Sn| = |Sn|−ωn with ωn = 3− 4/(3ℓn + ℓn−1 + 5).

Proof of Lemma 1: For n > 1, we introduce the following words

Un = Wn2Wn−1 and Vn = 2Wn.

Note that Wn+1 = UnVn. We consider the infinite word

X1 = UnVnVn . . . Vn · · · = Un(Vn)
∞.

Let us consider now the element X2 ∈ Q((T−1)) such that Φ(X1) = X2. Indeed,
we can write

X2 =
φ(Un)

T |Un|
+

φ(Vn)

T |Un|+|Vn|
+

φ(Vn)

T |Un|+2|Vn|
+ . . .

Consequently X2 ∈ Q(T ) and we have

X2 =
φ(Un)

T |Un|
+

φ(Vn)

T |Un|+|Vn|
.

T |Vn|

T |Vn| − 1
=

(T |Vn| − 1)φ(Un) + φ(Vn)

T |Un|(T |Vn| − 1)
.

We set N2 = (T |Vn| − 1)φ(Un) + φ(Vn) and D2 = T |Un|(T |Vn| − 1) so that we
have X2 = N2/D2. In order to simplify the rational X2, we need to introduce the
following relation on finite words. For two finite words A and B , we write A •B if
and only if the letters ending A and B respectively are different. Note that A •B
if and only if T does not divide φ(A)−φ(B). For n = 1, we have U1 = 12, V1 = 21
and U1 • V1. For n = 2 we can write

U2 = W22W1 = G22W1 and V2 = 2W2 = 2W12W02W1 = H22W1 with G2•H2.
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We set (F1, G1, H1) = (∅, U1, V1) and (F2, G2, H2) = (2W1,W2, 2W12). So we have
U1 = G1F1, V1 = H1F1, U2 = G2F2 and V2 = H2F2. By induction, we can define
three finite words Fn, Gn and Hn such that, for n > 1,

Un = GnFn Vn = HnFn with Gn •Hn.

The sequence (Fn, Gn, Hn) satisfies, for n > 2, the following formulas:

Fn = 2W12W2 . . . 2Wn−1, Hn = 2Gn−1 and Gn = Un−1Hn−1.

We shall know compute the length of the words. We have |Un| = ℓn + ℓn−1 + 1
and |Vn| = ℓn + 1. But we also have |F1| = 0 and, for n > 2, by using a simple
induction, we get

|Fn| = n− 1 + ℓ1 + ℓ2 + · · ·+ ℓn−1 = (ℓn + ℓn−1 − 1)/2.

Consequently we have, for n > 1, |Un| − |Fn| = |Gn| = (ℓn + ℓn−1 + 3)/2.
It is easily verified that for two finite words A and B we have φ(AB) = T |B|φ(A)+
φ(B). Therefore, for three finite words A, B and C we also have φ(AC)−φ(BC) =
T |C|(φ(A) − φ(B)). We define now Rn ∈ Q[T ] by Rn = φ(Gn+1)− φ(Gn). Hence,
we can write

N2 = T |Vn|φ(Un) + φ(Vn)− φ(Un) = φ(UnVn)− φ(Un)

and

N2 = φ(UnHnFn)− φ(GnFn) = T |Fn|(φ(UnHn)− φ(Gn)) = T |Fn|Rn.

Since |Vn| = ℓn + 1, we can also write, in agreement with the formula given in the
lemma for Sn,

D2 = T |Fn|(T |Un|−|Fn|(T |Vn| − 1)) = T |Fn|Sn.

Consequently we have X2 = Rn/Sn. Note that we have N2(1) = φ(Vn)(1) 6= 0 and
consequently Rn(1) 6= 0.
We need now to study the approximation of θ by X2. First, for n > 1, we observe
the following equalities

Wn+2 = Wn+12Wn2Wn+1 = Wn2Wn−12Wn2Wn2Wn2Wn−12Wn = UnV
3
n Vn−1Vn.

Hence for all n > 1, the infinite word W begins by UnV
3
n Vn−1Vn whereas we have

X1 = UnV
∞
n . With our notation, if M1 and M2 are two different words then we

have |Φ(M1)−Φ(M2)| = |T |−t, where t is the rank of the first letter differing in the
words M1 and M2. Therefore we have |θ − Rn/Sn| = |Φ(W ) − Φ(X1)| = |T |−tn ,
if tn is the rank of the first letter differing in the words UnV

3
n Vn−1Vn and UnV

∞
n .

From this we deduce

|θ −Rn/Sn| = |T |−tn = |Sn|−tn/ deg(Sn) = |Sn|−ωn .

To compute this value tn, we introduce another relation between finite words. For
two finite words A and B , we write A • •B if and only if the letters beginning A
and B respectively are different. We define the following sequence (Jn)n>1 of finite
words:

J1 = ∅ and Jn = Wn−12Wn−22 . . .W12 for n > 2.

Then, by induction, we show that there exists a sequence (In)n>1 of finite words

I0 = 1, I1 = 21, I2 = 1221 etc . . . and In • •In−1 for n > 1

such that
Vn−1Vn = 2JnIn and Vn = 2JnIn−1 for n > 1.
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Hence we have

W = UnV
3
n 2JnIn . . . and X1 = UnV

3
n 2JnIn−1 . . .

and this implies tn = |Un|+ 3|Vn|+ |Jn|+ 2. We observe that, for n > 1, we have
|Jn| = |Fn| = (ℓn + ℓn−1 − 1)/2. Consequently we get

tn = ℓn + ℓn−1 + 1 + 3(ℓn + 1) + (ℓn + ℓn−1 − 1)/2 + 2 = (9ℓn + 3ℓn−1 + 11)/2.

Since deg(Sn) = (ℓn + ℓn−1 + 3)/2 + ℓn + 1 = (3ℓn + ℓn−1 + 5)/2, we obtain

ωn = tn/ deg(Sn) = 3− 4/(3ℓn + ℓn−1 + 5),

as stated in the lemma.

Lemma 2. For n > 1, we set S′
n = T 3ℓn+ℓn−1+4 − 1. Then, for n > 1, there exists

R′
n ∈ Q[T ] such that

|θ −R′
n/S

′
n| = |S′

n|−ω′

n with ω′
n = 2 + (ℓn + ℓn−1 + 1)/(6ℓn + 2ℓn−1 + 8).

Proof of Lemma 2: For n > 1, we introduce the following word

U ′
n = Un+12 = Wn+12Wn2.

We consider the infinite word

X3 = U ′
nU

′
n . . . U

′
n · · · = (U ′

n)
∞.

Let us consider now the element X4 ∈ Q((T−1)) such that Φ(X3) = X4. Indeed,
we can write

X4 =
φ(U ′

n)

T |U ′

n
|
+

φ(U ′
n)

T 2|U ′

n
|
+

φ(U ′
n)

T 3|U ′

n
|
+ · · · .

Consequently X4 ∈ Q(T ) and we have

X4 =
φ(U ′

n)

T |U ′

n
|
.

T |U ′

n
|

T |U ′

n
| − 1

=
φ(U ′

n)

T |U ′

n
| − 1

.

We have |U ′
n| = |Un+1|+1 = ℓn+1 + ℓn+2 = 3ℓn+ ℓn−1+4. Hence S′

n = T |U ′

n
| − 1

and we set R′
n = φ(U ′

n). Note that R′
n(0) 6= 0 and also R′

n(1) 6= 0.
We shall now study the approximation of θ by X4 = R′

n/S
′
n. First, for n > 1, we

observe the following equalities

Wn+3 = Wn+22Wn+12Wn+2 = Wn+12Wn2Wn+12Wn+12Wn+2

Wn+3 = U ′
nWn+12Wn+12Wn+2 = (U ′

n)
2Wn−12Wn2Wn+2.

Hence for all n > 1, the infinite word W begins by (U ′
n)

2Wn−12Wn2Wn+2 whereas

we have X3 = (U ′
n)

∞. Therefore we have |θ−R′
n/S

′
n| = |Φ(W )−Φ(X3)| = |T |−t′

n ,
if t′n is the rank of the first letter differing in the words (U ′

n)
2Wn−12Wn2Wn+2 and

(U ′
n)

∞. This will imply

|θ −R′
n/S

′
n| = |S′

n|−ω′

n where ω′
n = t′n/ deg(S

′
n).

To compute t′n, we have to compare the finite words Wn−12Wn2Wn+2 and U ′
n. For

n > 1, let us consider the word Jn, introduced in the proof of Lemma 1. For n > 1,
by induction, we prove that there are two finite words An and Bn such that we
have

Wn−12Wn2Wn+2 = JnAn, U ′
n = JnBn and An • •Bn.

Hence we have

W = (U ′
n)

2JnAn . . . and X3 = (U ′
n)

2JnBn . . .
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and this implies u′
n = 2|U ′

n|+ |Jn|. We know that |U ′
n| = deg(S′

n) = 3ℓn+ ℓn−1+4.
Since, for n > 1, we have |Jn| = (ℓn + ℓn−1 − 1)/2, we get

ω′
n = t′n/ deg(S

′
n) = 2 + (ℓn + ℓn−1 − 1)/(2 deg(S′

n)) for n > 1.

This gives us the desired value for ω′
n stated in the lemma.

Before proving Theorem 3, we need a last lemma to establish the irreducibility
of the rational functions Rn/Sn and R′

n/S
′
n.

Lemma 3. Let Rn, Sn, R
′
n and S′

n be the polynomials defined in the two preceding

lemmas. For n > 1, we have the equality:

RnS
′
n −R′

nSn = (−1)n(T − 1).

Consequently, for n > 1, we have

G.C.D.(Rn, Sn) = G.C.D.(R′
n, S

′
n) = 1.

Proof of Lemma 3: We shall use the finite words Un, Vn, Fn, Gn, Hn and
U ′
n, introduced in the previous lemmas. For n > 1, let us introduce in Q[T ] the

polynomials:

Pn = T |Fn+1|+1(T |Vn+1| + 1) and Qn = T |Gn|.

Note that we have |Fn+1|+1 = (3ℓn+ℓn−1+3)/2, |Vn+1| = ℓn+1+1 and |Gn| = (ℓn+
ℓn−1 + 3)/2. Consequently, using the recurrence relation on ℓn and the definitions
of Sn, S

′
n, Sn+1 and S′

n+1, a direct and elementary computation shows that, for
n > 1, we have

S′
n+1 = PnSn+1 + S′

n (1) and Sn+1 = QnS
′
n − Sn (2).

Now we shall see that, for n > 1, the very same equalities as above hold, if S is
replaced by R. Indeed, for n > 1, we have:

Rn+1 = φ(Gn+2)− φ(Gn+1) = φ(Un+1Hn+1)− φ(Gn+1)

= T |Hn+1|φ(Un+1) + φ(Hn+1)− φ(Gn+1)

= T |Hn+1|φ(Un+1) + φ(2Gn)− φ(Gn+1)

= T |Hn+1|φ(Un+1) + 2T |Gn| + φ(Gn)− φ(Gn+1)

= T |Gn|(T |Hn+1|−|Gn|φ(Un+1) + 2)−Rn

= T |Gn|(Tφ(Un+1) + 2)−Rn

= T |Gn|φ(U ′
n)−Rn = QnR

′
n −Rn,

since Hn+1 = 2Gn implies |Hn+1| − |Gn| = 1. To establish the next formula, we
will use the following observation: for n > 2 we have

Un = Wn2Wn−1 = Wn−12Wn−22Wn−12Wn−1 = Un−1Vn−1Vn−1.
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Then, we also have

R′
n+1 −R′

n = φ(U ′
n+2)− φ(U ′

n+1) = Tφ(Un+2) + 2− (Tφ(Un+1) + 2)

= T (φ(Un+2)− φ(Un+1)) = T (φ(Un+1Vn+1Vn+1)− φ(Un+1))

= T (T 2|Vn+1|φ(Un+1) + φ(Vn+1Vn+1)− φ(Un+1))

= T (T 2|Vn+1|φ(Un+1) + T |Vn+1|φ(Vn+1) + φ(Vn+1)− φ(Un+1))

= T ((T 2|Vn+1| − 1)φ(Un+1) + (T |Vn+1| + 1)φ(Vn+1))

= T (T |Vn+1| + 1)((T |Vn+1| − 1)φ(Un+1) + φ(Vn+1))

= T (T |Vn+1| + 1)(T |Fn+1|Rn+1) = PnRn+1.

Consequently, we have obtained

R′
n+1 = PnRn+1 +R′

n (3) and Rn+1 = QnR
′
n −Rn (4).

Combining (1), (2), (3) and (4), we have

Pn = (S′
n+1 − S′

n)/Sn+1 = (R′
n+1 −R′

n)/Rn+1 (5)

and

Qn = (Sn+1 + Sn)/S
′
n = (Rn+1 +Rn)/R

′
n. (6)

For n > 1, we set ∆n = RnS
′
n − SnR

′
n. From (5), we get

∆n+1 = Rn+1S
′
n − Sn+1R

′
n (7)

and, from (6), we get

∆n = Sn+1R
′
n −Rn+1S

′
n. (8)

From (7) and (8), we obtain

∆n+1 = −∆n and ∆n = (−1)n+1∆1 for n > 1.

Finally, for n = 1, we have

R1 = T 3 + 2T 2 + T − 1 and R′
1 = T 6 + 2T 5 + 2T 4 + T 3 + 2T 2 + T + 2

But also

S1 = T 2(T 2 − 1) and S′
1 = T 7 − 1.

From this we get directly ∆1 = −T +1 and therefore ∆n = (−1)n(T −1), for n > 1,
as desired. The statement on the G.C.D follows, since Rn(1) 6= 0 and R′

n(1) 6= 0.
So the proof of this lemma is complete.

Proof of Theorem 3: We first observe that, due to the very good ratio-
nal approximations for θ stated in Lemma 2 and Lemma 3, it is clear that θ is
irrational. Let us start by recalling classical results concerning the continued frac-
tion algorithm in the formal case. Let α be an irrational element in F(K) and
α = [a0, a1, . . . , an, . . . ] its continued fraction expansion. Let (xn/yn)n>0 be the
sequence of convergents to α. The polynomials xn and yn are defined recursively by
the same relation zn = anzn−1+zn−2, with initial conditions (x0, x1) = (a0, a0a1+1)
and (y0, y1) = (1, a1). We have G.C.D.(xn, yn) = 1 and deg(yn) = deg(a1) + · · ·+
deg(an), for n > 1. Moreover, we have the following equality

|α− xn/yn| = |yn|−2|an+1|−1 = |yn|−2−deg(an+1)/ deg(yn) for n > 0.
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Finally if x, y are in K[T ], with y 6= 0 and |α−x/y| < |y|−2 then x/y is a convergent
of α.
From the approximations given in Lemma 1 and Lemma 2, since we clearly have
ωn > 2 and ω′

n > 2 for n > 1, we can conclude that the rational functions Rn/Sn

and R′
n/S

′
n are convergent to θ. Hence, for n > 1, there are three integers N(n),

M(n) and L(n) such that we have

Rn/Sn = xN(n)/yN(n), R′
n/S

′
n = xM(n)/yM(n) and Rn+1/Sn+1 = xL(n)/yL(n).

Since the rational functions Rn/Sn and R′
n/S

′
n are in their lowest terms, we have

|Sn| = |yN(n)| and |S′
n| = |yM(n)|. On the other hand if we set Dn = deg(Sn) and

D′
n = deg(S′

n), we observe the following

Dn = (3ℓn + ℓn−1 + 5)/2 < D′
n = 3ℓn + ℓn−1 + 4 < Dn+1 for n > 1.

Consequently, for n > 1, we have N(n) < M(n) < L(n). Since we have deg(yn) =∑
16i6n deg(ai), we obtain

D′
n = Dn + dN(n)+1 + · · ·+ dM(n),

and

Dn+1 = D′
n + dM(n)+1 + · · ·+ dL(n).

Due to the rational approximation of the convergents, for n > 1, we also have

ωn = 2 + dN(n)+1/Dn and ω′
n = 2 + dM(n)+1/D

′
n.

From these two equalities, with the values for ωn and ω′
n given in the lemmas, for

n > 1, we get

dN(n)+1 = (3ℓn + ℓn−1 + 1)/2 and dM(n)+1 = (ℓn + ℓn−1 + 1)/2.

At last, a straightforward computation shows that

D′
n −Dn = dN(n)+1 + 1 and Dn+1 −D′

n = dM(n)+1 + 1.

Since di > 1 for i > 1, comparing with the above formulas, we conclude thatM(n) =
N(n) + 2 and dM(n) = 1, but also L(n) = M(n) + 2 and dL(n) = 1. We observe

that R1/S1 = (T 3 + 2T 2 + T − 1)/(T 4 − T 2) = [0, a1, a2, a3, a4]. Consequently, we
have N(1) = 4 and by induction, N(n) = 4n, M(n) = 4n+ 2 and L(n) = 4n + 4,
for n > 1. So the proof of the theorem is complete.

Remark 1. The reader will observe that the choice of the pair (1, 2) in the definition

of the infinite word W is arbitrary. Clearly, the structure of W is only depending on

a pair of symbols (a, b) with a 6= b. To introduce the generating function associated

to W , we could have taken an arbitrary pair (a, b) in Q2 with a 6= b. However,

deciding to keep close to the original sequence, we take (a, b) = (1, 2). The structure

of the infinite world for an arbitrary (a, b) implies the existence of the rational

approximations given in the first lemmas and the pseudo-coprimality obtained in

the last one. Note that, with (a, b) = (1,−1) for instance, we get S1 = T 2(T 2 − 1)
and R1 = (T 2 − 2)(T − 1), and the property of coprimality for the pair (R1, S1)
fails. This coprimality is necessary to get the regularity of the sequence of the degrees

as stated in Theorem 3, and when it fails this brings a slight perturbation in the

continued fraction expansion of the corresponding generating function. Of course,

we are well aware of the many possible generalizations and extensions, concerning
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the word W itself and the continued fraction expansion which is derived from it, in

the formal case, in characteristic zero and also in positive characteristic, but even

in the real case by specializing the indeterminate. However, the aim of this note is

simply to describe the continued fraction presented here below, thinking that it has

the accidental beauty of some singular mathematical objects.

We shall finally describe the precise form, and not only the degree, of the partial
quotients in the continued fraction expansion for θ. However, in order to avoid
long and sophisticated arguments, we have not tried to prove what is stated below.
The first partial quotients are given by expanding the convergent R1/S1. We have
R1/S1 = [0, a1, a2, a3, a4] and a direct computation gives

a1 = T − 2, a2 = T/2 + 1/4, a3 = 8T/5 + 76/25, a4 = −125T/48+ 25/24.

For the partial quotients from the fifth on, we have the following conjecture.
Let (ℓn)n>0 be the sequence of integers defined in Theorem 3. For n > 1, there

exists (λ1,n, λ2,n, λ3,n, λ4,n) ∈ Q4 such that

a4n+1 = λ1,n(T
(3ℓn+ℓn−1+3)/2 + T (ℓn+ℓn−1+1)/2 − 2)/(T − 1),

a4n+3 = λ3,n(T
(ℓn+ℓn−1+3)/2 − 1)/(T − 1)

and a4n+2 = λ2,n(T − 1), a4n+4 = λ4,n(T − 1).

Moreover the sequences (λi,n)n>1 in Q, for i = 1, 2, 3 and 4, are as follows:

λ1,n = (−1)n+1r2n, λ2,n = (−1)n+1(r2n + rnrn+1)
−1,

λ3,n = (−1)n+1(rn + rn+1)
2, λ4,n = (−1)n+1(r2n+1 + rnrn+1)

−1

where the sequence (rn)n>1 in Q is defined by

rn = 4(2ℓn − ℓn−1 + 1)/25 for n > 1.
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