L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

C. Chaouiya, Petri net modelling of biological networks, Briefings in Bioinformatics, vol.8, issue.4, pp.210-219, 2007.
DOI : 10.1093/bib/bbm029

F. Fages, S. Gay, and S. Soliman, Inferring reaction systems from ordinary differential equations, Theoretical Computer Science, vol.599, pp.64-78, 2015.
DOI : 10.1016/j.tcs.2014.07.032

URL : https://hal.archives-ouvertes.fr/hal-01103692

M. Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors???I. The deficiency zero and deficiency one theorems, Chemical Engineering Science, vol.42, issue.10, pp.2229-2268, 1987.
DOI : 10.1016/0009-2509(87)80099-4

J. Gagneur and S. Klamt, Computation of elementary modes: a unifying framework and the new binary approach, BMC Bioinformatics, vol.5, issue.1, p.175, 2004.
DOI : 10.1186/1471-2105-5-175

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

G. P. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems: Abstract Properties and Applications to Term Rewriting Systems, Journal of the ACM, vol.27, issue.4, pp.797-821, 1980.
DOI : 10.1145/322217.322230

N. Juty, BioModels: Content, Features, Functionality and Use. CPT: Pharmacometrics & Systems Pharmacology, 2015.

E. L. King and C. Altman, A Schematic Method of Deriving the Rate Laws for Enzyme-Catalyzed Reactions, The Journal of Physical Chemistry, vol.60, issue.10, pp.1375-1378, 1956.
DOI : 10.1021/j150544a010

C. Kuo-chen and S. Forsen, Graphical rules of steady-state reaction systems, Canadian Journal of Chemistry, vol.59, issue.4, pp.737-755, 1981.
DOI : 10.1139/v81-107

C. Kuttler, C. Lhoussaine, and M. Nebut, Rule-based modeling of transcriptional attenuation at the tryptophan operon, Transactions on Computational Systems Biology, pp.199-228, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00445565

G. Madelaine, C. Lhoussaine, and J. Niehren, Attractor Equivalence: An Observational Semantics for Reaction Networks, Formal Methods in Macro-Biology, pp.82-101, 2014.
DOI : 10.1007/978-3-319-10398-3_7

URL : https://hal.archives-ouvertes.fr/hal-00990924

G. Madelaine, C. Lhoussaine, J. Niehren, and E. Tonello, Structural simplification of chemical reaction networks in partial steady states, Biosystems, vol.149
DOI : 10.1016/j.biosystems.2016.08.003

URL : https://hal.archives-ouvertes.fr/hal-01350517

U. Mäder, A. G. Schmeisky, L. A. Flórez, and J. Stülke, Subtiwiki?a comprehensive community resource for the model organism bacillus subtilis. Nucleic acids research, 2011.

J. Niehren, Uniform confluence in concurrent computation, Journal of Functional Programming, vol.10, issue.5, pp.453-499, 2000.
DOI : 10.1017/S0956796800003762

URL : https://hal.archives-ouvertes.fr/inria-00536801

J. Niehren, M. John, C. Versari, F. Coutte, and P. Jacques, Qualitative Reasoning for Reaction Networks with Partial Kinetic Information, CMSB. 2015
DOI : 10.1007/978-3-319-23401-4_14

O. Radulescu, A. Gorban, A. Zinovyev, and A. Lilienbaum, Robust simplifications of multiscale biochemical networks, BMC Systems Biology, vol.2, issue.1, p.86, 2008.
DOI : 10.1186/1752-0509-2-86

URL : https://hal.archives-ouvertes.fr/inria-00331212

O. Radulescu, A. N. Gorban, A. Zinovyev, and V. Noel, Reduction of dynamical biochemical reactions networks in computational biology, Frontiers in Genetics, vol.3, 2012.
DOI : 10.3389/fgene.2012.00131

M. Sáez, C. Wiuf, and E. Feliu, Graphical reduction of reaction networks by linear elimination of species, Journal of Mathematical Biology, vol.40, issue.73, 2015.
DOI : 10.1021/ed069p544

M. Sáez, C. Wiuf, and E. Feliu, Graphical reduction of reaction networks by linear elimination of species, Journal of Mathematical Biology, vol.40, issue.73, pp.1-43, 2016.
DOI : 10.1021/ed069p544

B. Schmierer, A. L. Tournier, P. A. Bates, and C. S. Hill, Mathematical modeling identifies Smad nucleocytoplasmic shuttling as a dynamic signal-interpreting system, Proceedings of the National Academy of Sciences, pp.6608-6613, 2008.
DOI : 10.1073/pnas.0710134105

E. Tonello, M. R. Owen, and E. Farcot, On the elimination of intermediate species in chemical reaction networks, 2016.