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HARNACK INEQUALITY FOR KINETIC FOKKER-PLANCK EQUATIONS

WITH ROUGH COEFFICIENTS AND APPLICATION TO THE LANDAU

EQUATION

F. GOLSE, C. IMBERT, C. MOUHOT AND A. F. VASSEUR

Abstract. We extend the De Giorgi–Nash–Moser theory to a class of kinetic Fokker-Planck equa-
tions and deduce new results on the Landau-Coulomb equation. More precisely, we first study the
Hölder regularity and establish a Harnack inequality for solutions to a general linear equation of
Fokker-Planck type whose coefficients are merely measurable and essentially bounded, i.e. assum-
ing no regularity on the coefficients in order to later derive results for non-linear problems. This
general equation has the formal structure of the hypoelliptic equations “of type II”, sometimes
also called ultraparabolic equations of Kolmogorov type, but with rough coefficients: it combines a
first-order skew-symmetric operator with a second-order elliptic operator involving derivatives along
only part of the coordinates and with rough coefficients. These general results are then applied
to the non-negative essentially bounded weak solutions of the Landau equation with inverse-power
law γ ∈ [−d, 1] whose mass, energy and entropy density are bounded and mass is bounded away
from 0, and we deduce the Hölder regularity of these solutions.
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1. Introduction

1.1. The Landau equation. We consider the Landau equation

(1.1) ∂tf + v · ∇xf = ∇v · (A[f ]∇vf +B[f ]f)
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where 
A[f ](v) = ad,γ

ˆ
Rd

(
I − w

|w|
⊗ w

|w|

)
|w|γ+2f(v − w) dw,

B[f ](v) = bd,γ

ˆ
Rd
|w|γwf(v − w) dw

with γ ∈ [−d, 1] and ad,γ > 0. We note that the main physical case is that of Coulomb interactions
when γ = −d and d = 3 (giving rise to the Landau-Coulomb equation in plasma physics); the other
cases are hard potentials γ ∈ (0, 1], Maxwellian molecules γ = 0, and soft potentials γ ∈ [−d, 0). It
can be rewritten as follows

(1.2) ∂tf + v · ∇xf = ∇v · (A[f ]∇vf) +B[f ]∇vf + c[f ]f

where

c[f ](v) =

cd,γ
ˆ
Rd
|w|γf(v − w) dw if γ > −d,

cd,γf if γ = −d.
We assume that the mass, energy and entropy density of the weak solution f satisfy the following
control at a given space-time point (x, t):

(1.3) C(x, t)



M1 ≤M(x, t) =

ˆ
Rd
f(x, v, t) dv ≤M0 (local mass),

E(x, t) =
1

2

ˆ
Rd
f(x, v, t)|v|2 dv ≤ E0 (local energy),

H(x, t) =

ˆ
Rd
f(x, v, t) ln f(x, v, t) dv ≤ H0 (local entropy).

Theorem 1 (Hölder continuity for the Landau equation). Assume γ ∈ [−d, 1]. Let f be an
essentially bounded weak solution of (1.2) in B1×B1×(−1, 0]. Assume that C(x, t) (equation (1.3))
holds true for all B1× (−1, 0]. Then f is α-Hölder continuous with respect to (x, v, t) ∈ B 1

2
×B 1

2
×

(−1
2 , 0] and

‖f‖Cα(B1/2×B1/2×(−1/2,0]) ≤ C
(
‖f‖L2(B1×B1×(−1,0]) + ‖f‖1+

|γ|
d

L∞(B1×B1×(−1,0])

)
for some α and C depending on dimension, M1, M0, E0 and H0.

Under the assumptions of Theorems 1, it is known [22, 51] that the diffusion matrix A[f ] is
uniformly elliptic and B[f ] and c[f ] are essentially bounded for bounded velocities (see Lemmas 30
and 31 in Appendix). In particular, the assumption (1.7) given below, and under which our main
results (Theorems 2 and 3) hold true, is satisfied.

1.2. The question studied and its history. We are also motivated by the study of the following
nonlinear kinetic Fokker-Planck equation

(1.4) ∂tf + v · ∇xf = ρ[f ]∇v · (∇vf + vf) , t ≥ 0, x ∈ Rd, v ∈ Rd,
(with or without periodicity conditions with respect to the space variable) where d ∈ N∗, f =
f(x, v, t) ≥ 0 and ρ[f ] :=

´
Rd f(x, v, t) dv. The construction of global smooth solutions for such a

problem is one motivation of the present paper.
The linear kinetic Fokker-Planck equation ∂tf+v ·∇xf = ∇v ·(∇vf + vf) is sometimes called the

Kolmogorov-Fokker-Planck equation, as it was studied by Kolmogorov in the seminal paper [43]. In
this note, Kolmogorov explicitely calculated the fundamental solution and deduced regularisation
in both variables x and v, even though the operator ∇v · (∇v + v)− v · ∇x shows ellipticity in the v
variable only. It inspired Hörmander and his theory of hypoellipticity [39], where the regularisation
is recovered by more robust and more geometric commutator estimates (see also [50]).
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Another question which has attracted a lot of attention in calculus of variations and partial
differential equations along the 20th century is Hilbert’s 19th problem about the analytic regularity
of solutions to certain integral variational problems, when the quasilinear Euler-Lagrange equations
satisfy ellipticity conditions. Several previous results had established the analyticity conditionally
to some differentiability properties of the solution, but the full answer came with the landmark
works of De Giorgi [16, 17] and Nash [48], where they proved that any solution to these variational
problems with square integrable derivative is analytic. More precisely their key contribution is the
following1: reformulate the quasilinear parabolic problem as

(1.5) ∂tf = ∇v (A(v, t)∇vf) , t ≥ 0, v ∈ Rd

with f = f(v, t) ≥ 0 and A = A(v, t) satisfies the ellipticity condition 0 < λI ≤ A ≤ ΛI for
two constants λ,Λ > 0 but is, besides that, merely measurable. Then the solution f is Hölder
continuous.

The method has been extended to degenerate cases, like the p-Laplacian, first in the elliptic
case by Ladyzhenskaya and Uralt’seva [44], and then, degenerate parabolic cases were covered
by DiBenedetto [23] (see also DiBenedetto, Gianazza and Vespri [26, 25, 27]). More recently, the
method has been extended to integral operators, such as fractional diffusion, in [10, 9] — see also the
work of Kassmann [42] and of Kassmann and Felsinger [29]. Further application to fluid mechanics
can be found in [11, 35, 52].

1.3. Main results. In view of the Landau equation and the nonlinear (quasilinear) equation (1.4),
it is natural to ask whether a similar result as the one of De Giorgi-Nash holds for hypoelliptic
equations. More precisely, we consider the following kinetic Fokker-Planck equation

(1.6) ∂tf + v · ∇xf = ∇v · (A∇vf) +B · ∇vf + s, t ∈ (0, T ), (x, v) ∈ Ω,

where Ω is an open set of R2d, f = f(x, v, t), B and s are bounded measurable coefficients depending
in (x, v, t), and the d× d real matrices A, B and source term s are measurable and satisfy

(1.7)


0 < λI ≤ A ≤ ΛI

|B| ≤ Λ

s essentially bounded

for two constants λ,Λ. We establish the Hölder continuity of solutions to this problem. To state
the result, we have to define cylinders that respect two invariant transformations of the (class of)
equation(s): the scaling (x, v, t) 7→ (r3x, rv, r2t) and the transformation

(1.8) Tz0 : z 7→ (x0 + x+ tv0, v0 + v, t0 + t).

Given z0 = (x0, v0, t0) ∈ R2d+1, the cylinder Qr(z0) “centered” at z0 of “radius” r is defined as

(1.9) Qr(z0) =
{

(x, v, t) : |x− x0 − (t− t0)v0| < r3, |v − v0| < r, t ∈
(
t0 − r2, t0

]}
.

When z0 = 0, we shall omit to specify the base point: Qr := Qr(0, 0, 0).

Theorem 2 (Hölder continuity). Let f be a weak solution of (1.6) in Qext := Qr0(z0) and Qint :=
Qr1(z0) with r1 < r0. Then f is α-Hölder continuous with respect to (x, v, t) in Qint and

‖f‖Cα(Qint) ≤ C
(
‖f‖L2(Qext) + ‖s‖L∞(Qext)

)
for some α universal (i.e. α = α(d, λ,Λ)) and C = C(d, λ,Λ, Qext, Qint).

1We give the parabolic version due to Nash here.
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In order to prove such a result, we first prove that L2 sub-solutions are locally bounded; we refer
to such a result as an L2 − L∞ estimate. We then prove that solutions are Hölder continuous by
proving a lemma which is an hypoelliptic counterpart of De Giorgi’s “isoperimetric lemma”.

We moreover prove a “quantitative version” of the strong maximum principle: a Harnack in-
equality.

Theorem 3 (Harnack inequality). If f is non-negative weak solution of (1.6) in Q1, then

(1.10) sup
Q−

f ≤ C
(

inf
Q+

f + ‖s‖L∞(Q1)

)
where Q+ := QR and Q− := QR(0, 0,−∆) and C > 1 and R,∆ ∈ (0, 1) are small (in particular
Q± ⊂ Q1 and they are disjoint), and universal, i.e. only depend on dimension and ellipticity
constants.

Remark 4. Using the transformation Tz0(x, v, t) = (x0 + x + tv0, v0 + v, t0 + t), we get a Harnack
inequality for cylinders centered at an arbitrary point z0 = (x0, v0, t0).

1.4. Comments and previously known results. In [49], the authors obtain an L2−L∞ estimate
with completely different techniques; however they cannot reach the Hölder continuity estimate.
Our techniques rely on the velocity averaging method. Velocity averaging designates a special type
of smoothing effect for solutions of the free transport equation

(∂t + v · ∇x)f = S

observed for the first time in [1, 34] independently, later improved and generalized in [33, 28]. This
smoothing effect bears on averages of f in the velocity variable v, i.e. on expressions of the formˆ

Rd
f(x, v, t)φ(v) dv ,

say for C∞c test functions φ. Of course, no smoothing on f itself can be observed, since the transport
operator is hyperbolic and propagates the singularities. However, when S is of the form

S = ∇v · (A(x, v, t)∇vf) + s

where s is a given source term in L2, the smoothing effect of velocity averaging can be combined
with the H1 regularity in the v variable implied by the energy inequality in order to obtain some
amount of smoothing on the solution f itself. A first observation of this type (at the level of
a compactness argument) can be found in [45]. More recently, Bouchut [7] has obtained more
quantitative Sobolev regularity estimates. These estimates are one key ingredient in our proof.

We give two proofs of this L2−L∞ estimate, one following Moser’s approach, the other following
De Giorgi’s ideas. We emphasize that, in both approaches, the main ingredient is a local gain of
integrability of non-negative sub-solutions. This latter is obtained by combining a comparison prin-
ciple and a Sobolev regularity estimate. We then prove the Hölder continuity through a De Giorgi
type argument on the decrease of oscillation for solutions. We also derive the Harnack inequality
by combining the decrease of oscillation with a result about how the minimum of non-negative
solutions deteriorates with time.

In [55, 56], the authors get a Hölder estimate for weak solutions of so-called ultraparabolic
equations, including (1.6). Their proof relies on the construction of cut-off functions and a par-
ticular form of weak Poincaré inequality satisfied by non-negative weak sub-solutions. Our paper
proposes an alternate method based on velocity averaging. It illustrates the interesting connection
between velocity averaging and hypoelliptic-like structures. It also provides several tools for further
applications.

The C∞ smoothing of solutions to the Landau equation has been investigated so far in two
different settings: either for weak spatially homogeneous solutions (non-negative in L1 and with
finite energy) [6, 19, 54, 21] (see also the related entropy dissipation estimates in [22, 20]), or for
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classical spatially heterogeneous solutions [13, 46]. The analytic regularisation of weak spatially
homogeneous solutions was investigated in the case of Maxwellian or hard potentials in [12]. Let us
also mention that in [51], Silvestre derives an L∞ bound on the spatially homogeneous solutions for
soft potentials without relying on energy methods (which implies as well the smoothing by standard
parabolic techniques). Finally, we highlight the related results of regularisation for the Boltzmann
equation without long-range interactions [18, 14, 15], and the related perturbative results for the
Landau and (long-range interaction) Boltzmann equation [37, 36, 4, 5, 2, 57, 3]. From this review,
and the best of our knowledge, the regularity of a priori non-negative locally L∞ solutions (under
our assumption (1.3)) to the spatially heterogeneous Landau equation has not investigated so far.

A part of the results of this paper were announced in [32, 40].

1.5. Plan of the paper. In Section 2, we prove the universal gain of integrability for non-negative
sub-solutions. In Section 3, we derive from this gain of integrability a local upper bound of such
non-negative sub-solutions; we give two proofs: one following de Giorgi’s approach and the other
one following Moser’s iteration procedure. In Section 4, the Hölder estimate is derived by proving
a lemma of “reduction of oscillation”. In Section 5 we prove a Harnack inequality for non-negative
solutions. In Section 6, we prove a local gain of regularity of sub-solutions. In Section 7, we prove
that the velocity gradient of the solution is slightly better than square integrable.

1.6. Notation. We occasionally write A . B in order to say that A ≤ C̄B for some constant C̄
which only depends on dimension and ellipticity constants λ and Λ. Such a constant C̄ is called
universal.

The inverse transformation T −1
z0 : z 7→ z−1

0 ◦ z is defined by

T −1
z0 (z) = (x− x0 − (t− t0)v0, v − v0, t− t0).

The notation z0 ◦ z and z−1
0 refers to a Lie group structure associated with the equation.

2. Local gain of regularity / integrability

We consider the equation (1.6) and we want to establish a local gain of integrability of solutions in
order to apply De Giorgi-Moser’s iteration and get a local L∞ bound. Since we will need to perform
convex changes of unknown, it is necessary to obtain this gain for all (non-negative) sub-solutions.
The next theorem is stated in cylinders centered at the origin.

Theorem 5 (Gain of integrability for non-negative sub-solutions). Consider two cylinders Qint :=
Qr1 and Qext := Qr0 with 0 < r1 < r0. There exists p > 2 (only depending on dimension) such that
for all non-negative sub-solution f of (1.6) in Qext, we have

(2.1) ‖f‖2Lp(Qint)
≤ C̄

(
C2

0,1‖f‖
2
L2(Qext)

+ C0,1

ˆ
Qext

|s|21f>0

)
with

C0,1 =

(
1

r2
0 − r2

1

+
r0

r3
0 − r3

1

+
1

(r0 − r1)2
+ 1

)
and C̄ = C̄(d, λ,Λ) .

Remark 6. The exponent p is obtained by the Sobolev embedding H
1
3 (R2d+1) ↪→ Lp(R2d+1), that

is to say p := 6(2d+ 1)/(6d+ 1).

This result is a consequence of the comparison principle and the following gain of regularity.

Theorem 7 (Gain of regularity for sign-changing solutions). Consider z0 ∈ R2d+1 and two cylinders
Qint := Qr1(z0) and Qext := Qr0(z0) with 0 < r1 < r0. Then any (sign-changing) weak solution f
of (1.6) in Qext satisfies

(2.2) ‖f‖2
H

1
3
x,v,t(Qint)

≤ C
(
‖f‖2L2(Qext)

+ ‖s‖2L2(Qext)

)
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with C = C(d, λ,Λ, Qext, Qint).

Remark 8. Using Theorem 5 and De Giorgi-Moser’s iteration, it is in fact possible to prove that
this gain of regularity is also true for non-negative sub-solutions, as we will see in Section 6.

2.1. Global estimates and gain of regularity/integrability.

Lemma 9 (Global estimate). Let g be a weak solution of

(∂t + v · ∇x)g = ∇v · (A∇vg) +∇v ·H1 +H0 in R2d+1

with H1 and H0 in L2(R2d+1) and g,H0 and H1 supported in Rd ×B(0, r0)× R. Then

(2.3) ‖∇vg‖2L2 + ‖D
1
3
x g‖2L2 + ‖D

1
3
t g‖2L2 ≤ C

(
‖H1‖2L2 + ‖H0‖2L2

)
where C = C̄(1 + r2

0) and C̄ = C̄(d, λ,Λ). In particular, there exists p > 2 (only depending on
dimension) such that

(2.4) ‖g‖2Lp ≤ C
(
‖H1‖2L2 + ‖H0‖2L2

)
where C = C̄(1 + r2

0) and C̄ = C̄(d, λ,Λ).

Proof. Integrating against 2g in R2d+1 yields

2λ

ˆ
R2d+1

|∇vg|2 dx dv dt ≤
ˆ
R2d+1

(−2H1 · ∇vg + 2gH0) dx dv dt

≤ λ

2

ˆ
R2d+1

|∇vg|2 dx dv dt+
2

λ

ˆ
R2d+1

|H1|2 dx dv dt+ 2

ˆ
R2d+1

|g||H0|dx dv dt.

Moreover

2

ˆ
R2d+1

|g||H0| dx dv dt ≤ ε
ˆ
R2d+1

|g|2 dx dv dt+
1

ε

ˆ
R2d+1

|H0|2 dx dv dt.

Since g is supported in B(0, r0) in the velocity variable, we can use the Poincaré inequality to get

ε

ˆ
R2d+1

|g|2 dx dv dt ≤ CP r2
0ε

ˆ
R2d+1

|∇vg|2 dx dv dt

and we choose ε such that CP r
2
0ε = λ/2. This implies

(2.5) ‖∇vg‖2L2 ≤ C
(
‖H1‖2L2 + ‖H0‖2L2

)
.

Applying [7, Theorem 1.3] with p = 2, r = 0, β = 1, m = 1, κ = 1 and Ω = 1 yields

‖D
1
3
x g‖2L2 + ‖D

1
3
t g‖2L2 . ‖g‖2L2 + ‖∇vg‖L2‖(1 + |v|2)

1
2H0‖L2

+ ‖∇vg‖
4
3

L2‖(1 + |v|2)(H1 +A∇vg)‖
2
3

L2

+ ‖∇vg‖L2‖(1 + |v|2)
1
2 (H1 +A∇vg)‖L2 .

Using the fact that g, H0 and H1 are supported in Rd ×B(0, r0)× R, we get

‖D
1
3
x g‖2L2 + ‖D

1
3
t g‖2L2 . r2

0‖∇vg‖2L2 + (1 + r2
0)

1
2 ‖∇vg‖L2‖H0‖L2

+ (1 + r2
0)

2
3 ‖∇vg‖

4
3

L2

(
‖H1‖

2
3

L2 + ‖∇vg‖
2
3

L2

)
+ (1 + r2

0)
1
2 ‖∇vg‖L2 (‖H1‖L2 + ‖∇vg‖L2)

. (1 + r2
0)
(
‖∇vg‖2L2 + ‖H1‖2L2 + ‖∇vg‖L2‖H0‖L2

)
.

Combining this estimate with (2.5) yields (2.3). The proof is now complete. �
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2.2. The local energy estimate. The gain of integrability with respect to v and t is classical; it
derives from the natural energy estimate, after truncation. We follow here [47].

Lemma 10 (The local energy estimate). Under the assumptions of Theorems 5 and 7, any sub-
solution f satisfies

(2.6) sup
t

ˆ
Qtint

f2(·, ·, t) +

ˆ
Qint

|∇vf |2 ≤ C̄
(
C0,1

ˆ
Qext

f2 +

ˆ
Qext

|s|2
)

for Qtint := {(x, v) ∈ R2d : (x, v, t) ∈ Qint}, C̄ = C̄(d, λ,Λ) and

C0,1 =

(
1

r2
0 − r2

1

+
r0

r3
0 − r3

1

+
1

(r0 − r1)2
+ 1

)
.

Moreover, if the sub-solution f is non-negative, then

(2.7) sup
t

ˆ
Qtint

f2(·, ·, t) +

ˆ
Qint

|∇vf |2 ≤ C̄
(
C0,1

ˆ
Qext

f2 +

ˆ
Qext

|s|21f>0

)
.

Proof. Consider Ψ ∈ C∞c (R2d × R) with 0 ≤ Ψ ≤ 1 and integrate the inequation satisfied by f
against 2fΨ2 in R := R2d × [t1, 0] with t1 ∈ (−r2

1, 0] and getˆ
R
∂t(f

2)Ψ2 +

ˆ
R
v · ∇x(f2)Ψ2 ≤ 2

ˆ
R
∇v · (A∇vf)fΨ2 + 2

ˆ
R

(B · ∇vf)fΨ2 + 2

ˆ
R
fsΨ2.

Add
´
R f

2∂t(Ψ
2), integrate by parts and use the upper bound on A to getˆ

R
∂t(f

2Ψ2) + 2λ

ˆ
R
|∇vf |2Ψ2

≤
ˆ
R
f2(∂t + v · ∇x)(Ψ2)− 4

ˆ
R

ΨA∇vf · f∇vΨ + 2

ˆ
R

(B · ∇vf)fΨ2 + 2

ˆ
R
fsΨ2

≤
ˆ
R
f2(∂t + v · ∇x)(Ψ2) + 4Λ

ˆ
R

(|∇vf |Ψ)f(Ψ + |∇vΨ|) + 2

ˆ
R
fsΨ2

≤
ˆ
R
f2
[
(∂t + v · ∇x)(Ψ2) + 8Λ2λ−1(|∇vΨ|2 + Ψ2)

]
+ 2

ˆ
R
fsΨ2 + λ

ˆ
R
|∇vf |2Ψ2.

We thus get
(2.8)ˆ
R
∂t(f

2Ψ2)+λ

ˆ
R
|∇vf |2Ψ2 ≤ C̄

(
‖∂tΨ‖∞ + r0‖∇xΨ‖∞ + ‖∇vΨ‖2∞ + 1

)ˆ
R∩supp Ψ

f2+2

ˆ
R
fsΨ2

with C̄ = C̄(d, λ,Λ). Choose next Ψ2 such that Ψ(t = 0) = 0 and supp Ψ ⊂ Qext and get for t1 ∈ R:ˆ
R2d

f2(·, ·, t1)Ψ2(t1) dx dv + λ

ˆ
R2d+1

|∇vf |2Ψ2 dx dv dt ≤ C
ˆ
Qext

f2 + 2

ˆ
Qext

|f | |s|.

If Ψ additionally satisfies Ψ ≡ 1 in Qint, we get (2.6). Remark that (2.7) is a simple consequence
of (2.6). The proof is now complete. �

2.3. Local gain: proofs.

Proof of Theorems 5 and 7. We first remark that if f is a non-negative sub-solution of (1.6), then
f = f1f≥0 and it is also a sub-solution of the same equation when the source term s is replaced
with s1f≥0.

For i = 1, 1
2 , consider fi = fχi where χ1 and χ1/2 are two truncation functions such that

χ1 ≡ 1 in Qint and χ1 ≡ 0 outside Qmid,

χ 1
2
≡ 1 in Qmid and χ 1

2
≡ 0 outside Qext .
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The function f1 now satisfies

(∂t + v · ∇x)f1 ≤ ∇v · (A∇vf1) +∇v ·H1 +H0 in R2d+1

with H1 and H0 given byH1 = (−A∇vχ1)f 1
2

H0 = (Bχ1 −A∇vχ1) · ∇vf 1
2

+ α1f 1
2

+ s1{f≥0}χ1

with α1 = (∂t + v · ∇x)χ1. We remark that f1, H0 and H1 are supported in Qext.
We now consider the solution g of

(∂t + v · ∇x)g = ∇v · (A∇vg) +∇v ·H1 +H0 in R2d+1.

We remark that g is also supported in Qext, and since h := f1 − g is a sub-solution of the equation
∂th + v · ∇xh ≤ ∇v(A∇vh) with zero initial data at t = −r2

0, the comparison principle implies
that h ≤ 0 everywhere, and therefore 0 ≤ f1 ≤ g. It can be proved for instance by observing that
h+ is also a sub-solution of the same inequation and the standard energy estimate implies that its
L2
x,v-norm is non-increasing along the time variable.
Moreover,‖H1‖2L2 . ‖∇vχ1‖2L∞‖f‖2L2(Qext)

‖H0‖2L2 .
(
1 + ‖∇vχ1‖2L∞

)
‖∇vf‖2L2(Qmid) + ‖α1‖2L∞‖f‖2L2(Qext)

+ ‖s1{f≥0}‖2L2(Qext)
.

In view of Lemma 10, we know that

‖∇vf‖2L2(Qmid) . C0,1‖f‖2L2(Qext)
+ ‖s1{f≥0}‖2L2(Qext)

.

Hence,

‖H0‖2L2 + ‖H1‖2L2 .
[
(1 + ‖∇vχ1‖2L∞)(1 + C0,1) + ‖α1‖2L∞

]
‖f‖2L2(Qext)

+
(
2 + ‖∇vχ1‖2L∞

)
‖s1{f≥0}‖2L1(Qext)

.

In view of the definition of C0,1 in Lemma 10, we thus get

‖H0‖2L2 + ‖H1‖2L2 . C2
0,1‖f‖2L2(Qext)

+ (r0 − r1)−2‖s1{f≥0}‖2L1(Qext)
.

Lemma 9 then yields

‖g‖2Lp(Qint)
≤ C̄

(
C2

0,1‖f‖
2
L2(Qext)

+ C0,1

ˆ
Qext

|s|21f≥0

)
.

We then obtain (2.1) by using the fact that 0 ≤ f1 ≤ g. This achieves the proof of Theorem 5.
As for Theorem 7, Lemma 9 can be applied directly to f1 and the conclusion follows along the

same lines, with some simplifications. �

3. Local upper bounds for non-negative sub-solutions

In this section, we prove that non-negative L2 sub-solutions are in fact locally bounded.

Theorem 11 (Upper bounds for non-negative L2 sub-solutions). Given two cylinders Qext :=
Qr0(z0) and Q∞ := Qr∞(z0) with 0 < r∞ < r0, let f be a non-negative L2 sub-solution of (1.6) in
Qext with s ∈ Lq(Qext) and q > (2p)/(p − 1) with p only depending on dimension. There for any
g >, there exists κ = κ(d, λ,Λ, Qext, Q∞, g, q) > 0 such that{

‖s‖Lq(Qext) ≤ g

‖f‖L2(Qext) ≤ κ

}
⇒ f ≤ 1

2
in Q∞.
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Remark 12. The exponent p = 6(2d + 1)/(6d + 1) is the one given by the gain of integrability in
Theorem 5 (see Remark 6).

We give two proofs of such a result. The first one sticks to the case q = +∞ with no lower order
terms and use Moser’s approach. The second one deals with the general case and use De Giorgi’s
approach.

3.1. Moser’s approach.

Proof of Theorem 11 in the case without source term by Moser’s iteration. Using tranformations in-
troduced in Eq. (1.8), we reduce to the case z0 = 0.

We first observe that, for all q > 1, the function f q satisfies

(∂t + v∇x)f q ≤ ∇v · (A∇vf q) in Qr0 .

We now rewrite (2.1) with s = 0 from Qrn to Qrn+1 with rn+1 < rn as follows:

(3.1)

(ˆ
Qrn+1 (0)

(f q)p

) 2
p

≤ C̄C2
n

ˆ
Qrn (0)

f2q

where C̄ = C̄(d, λ,Λ) and

(3.2) Cn =

(
1

r2
n − r2

n+1

+
rn

r3
n − r3

n+1

+
1

(rn − rn+1)2

)
+ ‖B‖L∞ + 1.

Choose now q = qn = (p/2)n for n ∈ N and write an for (
´
Qn
f2qn)1/(2qn). Using that for C̄ =

C̄(d, λ,Λ, Qext) ≥ 1 large enough, we have |Qext| ≤ C̄, we get from (3.1)

(3.3) an+1 ≤ (C̄)
1

2qn (Cn)
1
qn an.

Finally we choose

rn+1 = rn −
1

a(n+ 1)2

for some a > 0 (only depending on r0 − r∞) so that (3.2) yields Cn ∼ a2n4 as n → +∞. In

particular, we can choose C̄ = C̄(d, λ,Λ, ‖B‖L∞) large enough so that Cn ≤ C̄
1
2a2n4 and we get

from (3.3) that

an+1 ≤ (C̄a2n4)
1
qn an.

The convergence of the following infinite product

∞∏
n=0

(C̄a2)
1
qn (n4)

1
qn < +∞

achieves the proof. �

3.2. De Giorgi’s approach.

Proof of Theorem 11 by De Giorgi’s approach. We again reduce to the case z0 = 0 thanks to the
transformation T −1

z0 defined in Eq. (1.8). For n ≥ 0 integer, consider radius rn, time Tn, cylinder
Qn and constant Cn as follows

rn = r∞ + (r0 − r∞)2−n, Tn = t0 − r2
n, Cn =

1

2
(1− 2−n),
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and cut-off functions Ψn (independent of time) as follows

Ψn ≡

1 in Q0
rn

0 outside Q0
rn−1

and


‖∇vΨn‖L∞ ≤

1

rn−1 − rn
≤ C0,∞2n

‖∇xΨk‖L∞ ≤
1

r3
n−1 − r3

n

≤ C0,∞2n

where C0,∞ = C(r0, r∞) only depends on r0 and r∞, and as before

Qτr := {(x, v) : (x, v, τ) ∈ Qr}.

The energy estimate. Remark that fn = (f − Cn)+ is a sub-solution of (1.6) in Qrn with
sn = s1f≥Cn . Then the energy estimate (2.8) obtained in the proof of Lemma 10 yields for all
Tn−1 ≤ τ ≤ Tn ≤ t ≤ 0,
(3.4)ˆ

Qtrn

f2
n + λ

ˆ
Qrn

|∇vfn|2 ≤
ˆ
Qτrn

f2
n +

(
rn‖∇xΨn‖∞ + ‖∇vΨn‖2∞ + 1

)ˆ
Qrn−1

f2
n + 2

ˆ
Qrn−1

fn|s|.

Averaging both sides of the inequality in τ ∈ (Tn−1, Tn) and using the estimates on the gradients
of the cut-off function yields

(3.5) Un := sup
t∈(Tn,0)

ˆ
Qtrn

f2
n ≤ C4n

ˆ
Qrn−1

f2
n + 2

ˆ
Qrn−1

fn|s|

where C = C(r0, r∞). Remark that,

(3.6) Un ≤ Un−1 ≤ · · · ≤ U0 ≤ κ ≤ 1

(we choose κ ≤ 1).

The non-linearization procedure. Using the (universal) exponent p > 2 given by Theorem 5,
we next estimate the terms in the right hand side of (3.5) as follows

ˆ
Qrn−1

f2
n ≤

(´
Qrn−1

fpn
) 2
p |{fn ≥ 0} ∩Qrn−1 |

1− 2
p

ˆ
Qrn−1

fn|s| ≤ g
(´

Qrn−1
fpn
) 1
p |{fn ≥ 0} ∩Qrn−1 |

1− 1
p
− 1
q

(3.7)

(we used that ‖s‖Lq(Qext) ≤ γ) if p and q satisfy

1− 1

p
− 1

q
> 0.

We next remark that {fn ≥ 0} = {fn−1 ≥ Cn − Cn−1 = 2−k−1} which in turn implies

(3.8) |{fn ≥ 0} ∩Qrn−1 | ≤ 22n+2

ˆ
Qrn−1

f2
n−1 ≤ C̄4nUn−1.

Combining these three estimates with (3.5) yields

(3.9) Un ≤ C24n

(ˆ
Qrn−1

fpn−1

) 2
p

U
1− 2

p

n−1 + ‖s‖Lq(Qext)

(ˆ
Qrn−1

fpn−1

) 1
p

U
1− 1

p
− 1
q

n−1


(we also used that fn ≤ fn−1) where C = C(d, λ,Λ, r0, r∞).
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Use of the gain of integrability. In view of Theorem 5, we know that(ˆ
Qrn−1

fpn−1

) 2
p

≤ C

(
8n

ˆ
Qrn−2

f2
n−1 + 4n

ˆ
Qrn−2

s21fn−1>0

)
with C = C(d, λ,Λ, r0, r∞). We next estimate the terms in the right hand side of the previous
equation depending of the source term as in (3.7) but with p = 2: we use (3.8) to getˆ

Qrn−2

s21fn−1≥0 ≤ g2|{fn−1 > 0} ∩Qrn−2 |
1− 2

q ≤ g22
2n− 4n

q U
1− 2

q

n−2 .

Hence, we can use (3.6) and U0 ≤ 1 again in order to write(ˆ
Qrn−1

fpn−1

) 2
p

≤ C
(

23nUn−2 + 2
4n− 4n

q U
1− 2

q

n−2

)
≤ C24nU

1− 2
q

n−2

with C = C(d, λ,Λ, r0, r∞, q, g). Then (3.9) and (3.6) imply

Un ≤ C24n

(
24nU

2− 2
p
− 2
q

n−2 + U
3
2
− 1
p
− 2
q

n−2

)
≤ C28nU

3
2
− 1
p
− 2
q

n−2 .

Conclusion. Remark that we can assume that C ≥ 1. We rewrite it as

(3.10) Vn ≤ βnV α
n−1

where Vn = U2n, β = 28C and α = 3
2 −

1
p −

2
q . Remark that α > 1 as soon as

1

q
<

1

2

(
1

2
− 1

p

)
.

Applying (3.10) recursively, we get

Vn ≤ βk+α(k−1)+α2(k−2)+···+αk−1
V αk

0 .

Remark now that

n+ α(n− 1) + · · ·+ αn−1 = n(1 + α+ · · ·+ αn−1)− α(1 + 2α+ · · ·+ (n− 1)αn−2)

= n
αn − 1

α− 1
− α d

dα

(
αn − 1

α− 1

)
=
n(αn − 1)

α− 1
− α

(
nαn−1(α− 1)− (αn − 1)

(α− 1)2

)
=
α(αn − 1)− n(α− 1)

(α− 1)2
≤ α

(α− 1)2
αn.

Hence

Vn ≤
(
β

α
(α−1)2 V0

)αn
.

This implies that U2n = Vn → 0 as n→ +∞ as soon as

β
α

(α−1)2 V0 ≤ (28C)
α

(α−1)2 κ < 1

where C = C(d, λ,Λ, r0, r∞, q, g). Hence,

U∞ =

ˆ
Qr∞

(
f − 1

2

)2

+

= 0

which means that f ≤ 1/2 in Qr∞ . This completes the proof of Theorem 11. �
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Figure 1. Cylinders involved in the statement of the De Giorgi intermediate-value Lemma.

4. Intermediate-value lemma and Hölder continuity

4.1. A De Giorgi intermediate-value lemma. An important step in the proof of regularity in
De Giorgi’s method for elliptic equations is based on an inequality of isoperimetric form (see the
proof of [17, Lemma II]). This inequality is a quantitative variant of the well-known fact that no
H1 function can have a jump discontinuity, and can also be understood as a quantitative minimum
principle. More precisely, given an H1 function u valued in [0, 1] and which takes the values 0 and
1 on sets of positive measure, De Giorgi’s isoperimetric inequality provides a lower bound on the
measure of the set of intermediate values {0 < u < 1}. In the present subsection, we establish an
analogue of this inequality adapted to our equation and the combination of the first order transport
operator and the second order elliptic operator in the velocity variable.

We prove the core lemma at “unit scale”. We recall that Q2 = B8 × B2 × (−4, 0] and Q1 =

B1 ×B1 × (−1, 0], Qω = Bω3 ×Bω × (−ω2, 0] and we denote the shifted cube Q̂ := Qω(0, 0,−1) =
Bω3 ×Bω × (−1− ω2,−1] (see Figure 1).

Lemma 13 (A De Giorgi intermediate-value lemma). Let ω = 1
4 . For any (universal) constants

δ1 ∈ (0, 1), δ2 ∈ (0, 1) there exist ν > 0 and θ ∈ (0, 1) (both universal) such that for any sub-solution
f of (1.6) in Q2 with

f ≤ 1 and |s| ≤ 1

and
|{f ≥ 1− θ} ∩Qω| ≥ δ1|Qω|

|{f ≤ 0} ∩ Q̂| ≥ δ2|Q̂|
we have

|{0 < f < 1− θ} ∩B1 ×B1 × (−2, 0]| ≥ ν.

Remark 14. While De Giorgi’s isoperimetric inequality is based on an explicit computation leading
to a precise estimate with effective constants, the proof of Lemma 13 is obtained by an argument
by contradiction, so that the values of θ and ν are not known explicitly.

Remark 15. The compactness argument used in the proof is reminiscent of one used by Guo in [38]
and of one used by the fourth author in [53].

Proof. We argue by contradiction by assuming that there exists a sequence (fk)k≥0 of sub-solutions:

(4.1) (∂t + v · ∇x)fk ≤ ∇v · (Ak∇vfk) +Bk · ∇vfk + sk
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such that fk ≤ 1 and |sk| ≤ 1 and {
θk → 0

αk → 0
as k → +∞

and
|{fk ≥ 1− θk} ∩Qω| ≥ δ1|Qω|

|{fk ≤ 0} ∩ Q̂| ≥ δ2|Q̂|

|{0 < fk < 1− θk} ∩ (Q1 ∪ Q̂)| → 0 as k → +∞.
The convexity of z 7→ z+ together with |sk| ≤ 1 implies that the non-negative part f+

k of fk satisfies
the same inequation, and therefore

(4.2) (∂t + v · ∇x)f+
k = ∇v · (Ak∇vf+

k ) +Bk · ∇vf+
k + 1− µk

for some non-negative measures µk.

A priori estimates for f+
k . The natural energy estimate is obtained by multiplying the equation

with f+
k Ψ2 with a smooth cut-off function Ψ supported in Q2 and valued in [0, 1], and using the

fact that f+
k ≤ 1 and |sk| ≤ 1:

λ

ˆ
R2d+1

|∇vf+
k |

2Ψ2 ≤ C̄
ˆ
R2d+1

(
Ψ2 + |∇vΨ|2 + Ψ|(∂t + v · ∇x)Ψ|

)
+ Λ

ˆ
R2d+1

|∇vf+
k |f

+
k Ψ2

≤ C̄
ˆ
R2d+1

(
Ψ2 + |∇vΨ|2 + Ψ|(∂t + v · ∇x)Ψ|

)
+
λ

2

ˆ
R2d+1

|∇vf+
k |

2Ψ2.

Hence

(4.3) λ

ˆ
R2d+1

|∇vf+
k |

2Ψ2 ≤ C̄
ˆ
R2d+1

(
Ψ2 + |∇vΨ|2 + Ψ|(∂t + v · ∇x)Ψ|

)
where C̄ = C̄(d, λ,Λ).

We can also multiply the equation by Ψ2 and get

−
ˆ
R2d+1

f+
k (∂t + v · ∇x)(Ψ2) = −

ˆ
R2d+1

Ak∇vf+
k · ∇v(Ψ

2) +

ˆ
R2d+1

Bk · ∇vf+
k Ψ2

+

ˆ
R2d+1

Ψ2 −
ˆ
R2d+1

Ψ2 dµk.

Combining the latter equation with (4.3), we deduce

(4.4)

ˆ
R2d+1

Ψ2 dµk ≤ C̄
ˆ
R2d+1

(
Ψ2 + |∇vΨ|2 + Ψ|(∂t + v · ∇x)Ψ|

)
where C̄ = C̄(d, λ,Λ).

Passage to the limit. On the one hand, Banach-Alaoglu theorem implies that

f+
k
∗
⇀ F in L∞loc(Q2)

and

(4.5) ∇vf+
k ⇀ ∇vF and

Ak∇vf
+
k ⇀ H1

Bk · ∇vf+
k ⇀ H0

in L2
loc(Q2)

for some weak limit F ∈ L∞loc(Q2) ∩ (L2
x,tH

1
v )loc(Q2). In particular, (4.3) implies that

(4.6)

ˆ
Q
|∇vF |2 .Q 1
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for all Q b Q2, with a control depending on Q. On the other hand, the bound (4.4) implies that

µk ⇀ µ in M(Q2).

We thus have

(∂t + v · ∇x)F = ∇vH1 +H0 + 1− µ.(4.7)

By velocity averaging (see Theorem 1.8 in [8]), together with the bound (4.3), we deduce the
strong convergence

f+
k → F in Lploc(Q2) for 1 ≤ p < +∞.

It implies the convergence in probability and thus the function F satisfies

|{F = 1} ∩Qω| ≥ δ1|Qω|(4.8)

|{F = 0} ∩ Q̂| ≥ δ2|Q̂|(4.9)

|{0 < F < 1} ∩ (B1 ×B1 × (−2, 0])| = 0 .

In view of (4.6), since indicator functions are not in H1 unless they are constant, we have that for
almost every (x, t) ∈ B1 × (−1, 0),{

either for almost every v ∈ B1, F (x, v, t) = 0

or for almost every v ∈ B1, F (x, v, t) = 1.

In other words, F (x, v, t) = 1P (x, t) for some measurable set P ⊂ B1 × (−1, 0). In view of (4.8)
and (4.9), P satisfies

(4.10)

|P ∩Bω3 × (−ω2, 0)| > 0

|Bω3 × (−1− ω2,−1) \ P | > 0.

Propagation. We thus get from (4.7)

∂tF + v · ∇xF ≤ ∇vH1 +H0 + 1 in B1 ×B1 × (−2, 0).

Consider a cut-off funtion ξ ∈ D(Rd) such thatˆ
Rd
ζ(z) dz = 1, ζ(z) = ζ(−z), supp ζ ⊂ B 1

2
.

Given v0 ∈ B 1
2
, since F only depends on (t, x), we can use a test-function of the form ζ(v − v0),

and get for all v0 ∈ B 1
2
,

∂tF + v0 · ∇xF ≤
ˆ
Rd

[
|H1(x, v, t)∇vζ(v − v0)|+ |H0(x, v, t)ζ(v − v0)|

]
dv + 1

in (x, t) ∈ B1 × (−2, 0). Since F is an indicator function and H0, H1 ∈ L2
loc(Q2), this implies for

v0 ∈ B 1
2
,

(4.11) ∂tF + v0 · ∇xF ≤ 0 in B1 × (−2, 0).

We next remark that

(4.12)

 for all (x, t) ∈ Bω3 × (−ω2, 0) and (x0, t0) ∈ Bω3 × (−1− ω2,−1),

there exists v0 ∈ Bω so that (x0, v0, t0) ∈ Q̂ and (x, t) = (x0 + sv0, t0 + s).

Indeed, the time shift s is fixed by t = t0 + s and belongs to (1− ω2, 1 + ω2). Then the velocity v0

is fixed by x = x0 + sv0 and satisfies

|v0| =
|x− x0|
t− t0

<
2ω3

1− ω2
≤ ω
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since ω = 1
4 ≤

1√
3
. Since |B1 × (−1 − ω2,−1) \ P | > 0 (see (4.10)), we can use (4.11) and (4.12)

and conclude that F ≡ 0 in Qω, and contradicts (4.10). The proof is complete. �

4.2. Improvement of oscillation. It is classical that Hölder continuity is a consequence of the
decrease of the oscillation of the solution “at unit scale”.

Lemma 16 (Improvement of oscillation). There exist λ0 ∈ (0, 1), ω ∈ (0, 1/2) and β > 0 (all
universal) such that any f solution of (1.6) in Q2 with oscQ2 f ≤ 2 and |s| ≤ β satisfies

oscQω
2
f ≤ 2− λ0.

This lemma is a consequence of the following one.

Lemma 17 (A measure-to-pointwise estimate). Given δ2 > 0, there exist λ0 ∈ (0, 1), ω ∈ (0, 1/2)
and β > 0 (depending on δ2 but not on the sub-solution) such that any f sub-solution of (1.6) in

Q2 with f ≤ 1 and |s| ≤ β such that |{f ≤ 0} ∩ Q̂| ≥ δ2|Q̂| satisfies

(4.13) f ≤ 1− λ0 a.e. in Qω
2
.

Proof of Lemma 16. Let f be a solution of (1.6) in Q2 with oscQ2 f ≤ 2 and |s| ≤ β. We can reduce

to the case where |f | ≤ 1. Indeed, we remark that there exists a constant C such that f̃ = f − C
satisfies (1.6) in Q2(0) with |f̃ | ≤ 1 and the same source term.

If |{f ≤ 0} ∩ Q̂| ≥ |Q̂|/2, then apply Lemma 17 with δ2 = 1/2.
In the other case, considering −f implies that the essential infimum of f is raised. In both cases,

we get the desired improvement of the oscillation of f . This completes the proof of the lemma. �

We now turn to the proof of Lemma 17.

Proof of Lemma 17. The proof proceeds in several steps.

Choice of parameters. Theorem 11 provides us with κ correponding to the upper bound g = 1
on the source term and Qext = Qω and Q∞ = Qω

2
. Lemma 13 applied with δ2 and δ1 =

√
κ/|Qω|

provides us with ν and θ universal. We choose next k0 the smallest positive integer such that

k0ν > |B1 ×B1 × (−2, 0)|.

We finally choose β such that β ≤ θk0 .

Iteration. We define f0 = f and

fk+1 =
1

θ
(fk − (1− θ)) = θ−k(f − (1− θk)).

They satisfy fk ≤ 1 and

(∂t + v · ∇x)fk ≤ ∇v · (A∇vfk) +B · ∇vfk + sk

with sk = θ−ks. In particular |sk| ≤ θ−k0β ≤ 1 which allows to apply Theorem 11 with the upper
bound g = 1 as above. Remark that

(4.14) |{f0 ≤ 0} ∩ Q̂| ≥ δ2|Q̂| and {fk+1 ≤ 0} ⊃ {fk ≤ 0}.

Our goal is to prove that there exists at least one index k ∈ {1, . . . , k0} such that

|{fk ≥ 0} ∩Qω| ≤ δ1|Qω|.

Indeed, remarking that for such an index k1

‖(fk1)+‖L2(Qω) ≤
[∣∣{fk1 ≥ 0} ∩Qω

∣∣] 1
2

≤
√
δ1|Qω| ≤ κ,
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Theorem 11 then implies that

f ≤ 1− 1

2
θk1 ≤ 1− 1

2
θk0 in Qω

2

which concludes the proof.
Let us prove the claim by contradiction. Assume that for all k = 1, . . . , k0,

|{fk ≥ 0} ∩Qω| ≥ δ1|Qω|.
Since fk+1 = 1

θ (fk − (1− θ)), this also implies for k = 0, . . . , k0 − 1,

|{fk ≥ 1− θ} ∩Qω| ≥ δ1|Qω|.
But (4.14) also implies that for all k ≥ 0,

|{fk ≤ 0} ∩ Q̂| ≥ δ2|Q̂|.
Hence Lemma 13 implies that for k = 0, . . . , k0 − 1,

|{0 ≤ fk ≤ 1− θ} ∩ (B1 ×B1 × (−2, 0))| ≥ ν.
Now remark that

|{fk+1 ≤ 0} ∩ (B1 ×B1 × (−2, 0))| = |{fk ≤ 0} ∩ (B1 ×B1 × (−2, 0))|
+ |{0 ≤ fk ≤ 1− θ} ∩ (B1 ×B1 × (−2, 0))|
≥ |{fk ≤ 0} ∩ (B1 ×B1 × (−2, 0))|+ ν.

In particular
|B1 ×B1 × (−2, 0)| ≥ |{fk0 ≤ 0} ∩ (B1 ×B1 × (−2, 0))| ≥ k0ν

which is impossible for k0 as chosen above. The proof is now complete. �

4.3. Proof of the Hölder estimate.

Proof of Theorem 2. Consider an L2 solution f of Eq. (1.6) in a cylinder Qext = Qr0(z0). By
Theorem 11, we know that f is locally bounded in Qext. In particular, f is bounded in Qmid =
Q r0+r1

2

(z0) and

‖f‖L∞(Qmid) ≤ C0

(
‖f‖L2(Qext) + ‖s‖L∞(Qext)

)
for some constant C0 = C(d, λ,Λ, Qext, Qmid). If f ≡ 0 in Qext, there is nothing to prove. If f is
not identically 0, recalling that β is given by Lemma 16, we assume that

‖f‖L∞(Qmid) ≤ 1 and ‖s‖L∞(Qext) ≤ β
by considering, if necessary,

f̃ =
f

C0

(
‖f‖L2(Qext) + ‖s‖L∞(Qext)

)
+ β−1‖s‖L∞(Qext)

.

Let z1 ∈ Qint := Qr1(z0). We want to prove that for all r > 0 such that Q2r(z1) ⊂ Qmid,

(4.15) oscQr(z1) f ≤ Crα

for some universal α ∈ (0, 1) and some constant C = C(d, λ,Λ, r0, r1). Let r̃ > 0 denote the largest
r ∈ (0, 1) such that Q2r(z0) ⊂ Qmid. We remark that for r ∈ (0, r̃), Q2r(z1) = T −1

z1 (Q2r) where Tz1
is defined in Eq. (1.8) and f̄ = f ◦ Tz1 satisfies (1.6) in Q2r̃ with the source term s̄ := s ◦ Tz1 and
the coefficients Ā := A ◦ Tz1 and B̄ := B ◦ Tz1 . In particular f̄ and s̄ satisfy

‖f̄‖L∞(Q2r̃) ≤ 1 and ‖s̄‖L∞(Q2r̃) ≤ β
and (4.15) is equivalent to: for all r ∈ (0, r̃),

(4.16) oscQr f̄ ≤ Crα.
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We recall how to scale solutions. For all r ∈ (0, r̃), the function

f̄r(x, v, t) = f̄(r3x, rv, r2t)

is defined in Q2 and satisfies (1.6) withB̄r(x, v, t) = rB̄(r3x, rv, r2t)

s̄r(x, v, t) = r2s̄(r3x, rv, r2t).

Since oscQ2r̃ f̄ ≤ 2, we have oscQ2 f̄r̃ ≤ 2 and Lemma 16 implies that

oscQω
2
f̄r̃ = oscQω

2 r̃
f̄ ≤ 2θ

with θ = 1 − λ0/2 (we used the fact that r̃ ≤ 1 to ensure that ‖s̄r̃‖L∞(Q2) ≤ β). We remark that

we can assume that θ ≥ 1/2 and we recall that ω ∈ (0, 1/2). We next apply Lemma 16 to θ−1f̄r̃1
with r̃1 = (ω/4)r̃, which rescales the L∞ bound on the source term by a factor (ω/4)2θ−1 < 1 as
compared to ‖s̄r̃‖L∞(Q2) ≤ β. Hence the bounds assumed are still valid and we get

oscQr̃2 f̄ ≤ 2θ2

with r̃2 = (ω/2)r̃1. Inductively, we deduce that

oscQr̃k f̄ ≤ 2θk

with r̃k = (ω/2)kr̃/2. This yields (4.16) for r = r̃k with

α =
ln θ

ln(ω/2)
and C = 2

(
2

r̃

)α
.

If now r ∈ [r̃k+1, r̃k], then

oscQr f̄ ≤ oscQrk f̄ ≤ Cr̃
α
k = C

(
2

ω

)α
r̃αk+1 ≤ C̃rα

with C̃ = C(2/ω)α. Observe finally that the constant C and C̃ are uniformly bounded above as z0

varies in Qint since r̃ ≥ r1 − r0. The proof is now complete. �

5. Harnack inequality

In this section, we derive Harnack inequality for solutions to Eq. (1.6). We use the approach
initially introduced by DiBenedetto [24]: we start with Hölder continuous solutions and we consider
expanding cylinders to control the spreading of the lower bound of non-negative solutions (see
Lemma 22). The Harnack inequality is a consequence of the decrease of oscillation we proved earlier
and a so-called “doubling property” that estimates how the minimum of a solution propagates with
time. Let us first recall the decrease of oscillation proposition.

Proposition 18 (Decrease of oscillation). There exist δ ∈ (0, 1) and ω ∈ (0, 1/2) (both universal)
such that for any r ∈ (0, 1) and any solution f of (1.6) in some cylinder Q2r(z) satisfies

oscQω
4 r

(z) f ≤ (1− δ)
(
oscQr(z) f + 2β−1‖s‖L∞

)
.

Remark 19. The conclusion of the proposition is equivalent to

oscQω
4 r
f ◦ Tz ≤ (1− δ)

(
oscQr f ◦ Tz + 2β−1‖s‖L∞

)
with Tz(y, w, s) = (x+ y + sv, v + w, t+ s) where z = (x, v, t).
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Figure 2. The cylinders Q+, Q−, Q−[1] and Q−[2]. Harnack inequality relates the
supremum of a solution over Q− and its infimum over Q+. The proof consists in
constructing a sequence of points lying in Q−[1] and whose corresponding values
explode. Neighborhoods of points included in Q−[2] are also considered.

Proof. By considering

f̃ =
f ◦ Tz

oscQ2r(z) f/2 + ‖s‖L∞/β
,

and a rescaling f̃r, we can assume that z = 0 and oscQ2 f̃r ≤ 2 and ‖s‖L∞ ≤ β (we use here that

r ≤ 1). We then apply Lemma 16 to f̃r and get the desired result with 1− δ = 1− λ0/2. �

5.1. How minima propagate with time. The goal of this subsection is to prove the following
proposition. In order to state it, we introduce two cylinders which contain Q−:

Q− ⊂ Q−[1] ⊂ Q−[2] ⊂ Q1.

See Figure 2. We recall that Q+ = QR and Q− = QR(0, 0,−∆) and R,∆ ∈ (0, 1) are small so
that in particular Q± ⊂ Q1 and they are disjoint. We let Q−[i] be equal to Qρi(0, 0,−∆) with
R < ρ1 < ρ2 < 1.

In the following propositions, we introduce elongated cylinders Qel where the time is stretched
longer in the past than what the scaling would induce:

Qel
1 = B(ω/4)3 ×Bω/4 × (−1, 0]

Qel
r (z) = Tz

(
B(ω/4)3r3 ×B(ω/4)r × (−r2, 0]

)
.

Proposition 20 (The propagation of minima). Assume that f is a non-negative super-solution of
(1.6) in Q1 with a non-negative source term s. There exists r0 > 0, R > 0 (universal) such that
for any r ∈ (0, r0) and z ∈ Q− such that Qel

r (z) ⊂ Q−[2], we have

min
Qel
r (z)

f ≤ Cpm r−q min
Q+

f

for some universal constants Cpm and q > 0.

We first derive from Lemma 17 the following doubling property at the origin. For the two next
lemmas, it is easier that 0 is the final time of the first cylinder.

Lemma 21 (The doubling property at the origin). There exists h ∈ (0, 1) (universal) such that for
any non-negative super-solution f of (1.6) in B8 ×B2 × (−1, 4] with s ≥ 0, we have

inf
Q1
f ≥ h inf

Q0
f
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with Q1 = Qel
2 (0, 0, 4) and Q0 = Qel

1 .

Proof. We first note that since s ≥ 0, the function f is a super-solution of (1.6) with s = 0. We
first prove that

(5.1) inf
Qω/2(0,0,1)

f ≥ h0 inf
Qω/4

f

for some universal constant h0; see Figure 3.

Figure 3. The doubling property. On the left, the cylinders Qω/4 and Qω/2(0, 0, 1).

In the middle, the elongated cylinders Q0 and Q1. On the right, the iterated cylin-
ders Q0, . . . , QN (Lemma 22).

If infQω/4 f = 0, there is nothing to prove. If not, the function

g =
f

infQω/4 f

satisfies (1.6) in Q2 (up to translation in time – this is where we use that s = 0) and

|{g ≥ 1} ∩Qω| ≥ |Qω/4| = δ2|Qω|

for some universal δ2, where Qω plays the role of Q̂ in Lemma 17. We then apply Lemma 17 (with
time shifted by +1) to g̃ = 1− g ≤ 1, we get g ≥ h0 in B(ω/2)3 × Bω/2 × (1− (ω/2)2, 1], that is to
say, (5.1) indeed holds true.

Apply now the result to f̃(x, v, t) = f(x, v, t− T ) for T ∈ [0, 1− ω2] and get

(5.2) inf
B(ω/2)3×Bω/2×(0,1]

f ≥ h0 inf
Q0
f.

By applying (5.2) on time intervals (1, 2], (2, 3] and (3, 4], we propagate the infimum till time t = 4
and get the desired result for h = h4

0. �

Applying iteratively the previous lemma, we obtain straightforwardly the following lemma whose
proof is omitted.

Lemma 22 (The iterated doubling property at the origin). There exists h > 0 (universal) such
that for any f non-negative super-solution of (1.6) in B23N ×B2N × (−1, TN ), we have

(5.3) inf
QN

f ≥ hN inf
Q0
f

with
Qk = BR3

k
×BRk × (Tk−1, Tk] for k ≥ 1
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where Rk = (ω/4)2k and Tk = 4
3(4k − 1) for k ≥ 0.

Remark 23. In [41], a measure estimate is also applied iteratively to prove a Harnack inequality
for fully nonlinear parabolic equations in non-divergence form.

We can now prove Proposition 20.

Proof of Proposition 20. In the following proof, we need iterated cylinders that are not centered at
the origin and with arbitrary radius.

Qkr (z) := Tz
(
rQk

)
.

The cylinder Qk is first scaled by r (this is rQk) and then centered around z (this is Tz
(
rQk

)
).

Let z∞ ∈ Q+ be such that minQ+ f = f(z∞).

Lemma 24. There exist R, ∆, r0 (small, universal) such that

a) for all r ∈ (0, r0) and z ∈ Q−, the iterated cylinders Qkr (z) (k ∈ N) which are included in
{t ≤ 0} are in fact included in Q1(0);

b) the union of the iterated cylinders
⋃+∞
k=1Q

k
r (z) contains Q+.

The proof is elementary but tedious. It is given in Appendix.
Applying Lemma 22, we get

inf
Qel
r (z)

f ≤ h−N inf
QNr (z)

f ≤ h−N min
Q+

f

with N such that z∞ ∈ QNr (z), i.e. r−1(z−1 ◦ z∞) ∈ QN . In particular, r−2(t∞ − t) ∈ [TN−1, TN ].
Since z∞ ∈ Q+ and z ∈ Q−, we know that

4N−1 ≤ TN−1 ≤ t∞ − t
r2

≤ 1/2 +R2

r2
.

In particular,

h−N ≤
(

1/2 +R2

4

) q
2

r−q

where q = − ln γ/ ln 2 > 0. We get the desired inequality with Cpm = ((1/2 + R2)/4)
q
2 . The proof

of the proposition is thus complete. �

5.2. Proof of the Harnack inequality. We can now turn to the proof of Theorem 3.

Proof of Theorem 3. We first remark that replacing f(x, v, t) with f(x, v, t) + ‖s‖L∞t if necessary,
we can assume that s ≥ 0. Dividing f by 2β−1‖s‖L∞ if necessary, we can assume that ‖s‖L∞ = β/2
(if s 6≡ 0).

We are going to find a universal constant C = CH such that (1.10) cannot hold false. In other
words, we are going to find a universal CH such that

(5.4) m+ 1 ≤ CHM
entails a contradiction where

M := sup
Q−

f = f(z0) and m := inf
Q+

f = f(z∞)

for some z0 ∈ Q− and z∞ ∈ Q+. We used here the fact that u is (Hölder) continuous.
Our goal is to construct by induction a sequence (zk)k≥0 in Q−[1] (we recall that Q− ⊂ Q−[1] ⊂

Q−[2] ⊂ Q1, see Figure 2) such that

(5.5) f(zk) ≥ (1− δ′)−kM
for some universal δ′ ∈ (0, 1). This implies in particular that f(zk) → +∞ as k → +∞ which is
absurd since f is bounded in Q−.
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Remark first that (5.5) holds true for k = 0. Let us assume that we already constructed z0, . . . , zk
and let us construct zk+1. Let zk = (xk, vk, tk). We choose rk > 0 such that

(5.6) f(zk) = r−2q
k m

where q is given by Proposition 20. Inequality (5.4) and the induction hypothesis (5.5) imply

(5.7) r2q
k ≤ CH(1− δ′)k.

From the decrease of oscillation (Proposition 18), we know that

1 + oscQrk f ≥ (1− δ)−1 oscqk f

(recall 2β−1‖s‖L∞ = 1) with

Qk = Qrk(zk) and qk = Qωrk/4(zk).

In particular, zk ∈ qk. Let zk+1 ∈ Qk be such that

max
Qk

f = f(zk+1).

Then we get

(5.8) 1 + f(zk+1) ≥ (1− δ)−1

(
f(zk)−min

qk
f

)
.

Recall that zk ∈ Q−[1]. Choosing CH small, we can ensure through (5.7) that Qrk(zk) ⊂ Q−[2].
We also remark that

qk ⊃ Qel
(ω/4)2rk

(zk).

We thus can apply Proposition 20 and get

min
qk

f ≤ min
Qel

(ω/4)2rk
(zk)

f ≤ C̃pmr
−q
k m

with C̃pm = Cpm(4/ω)q. The use of (5.6) in the previous inequality yields

(5.9) min
qk

f ≤ C̃pmr
q
kf(zk) ≤ C̃pm

√
CHf(zk).

Now combining (5.8) and (5.9), we get

1 + f(zk+1) ≥ (1− δ)−1(1− C̃pm

√
CH)f(zk).

Use next that 1 ≤ CHM (this is a consequence of (5.4)) and the induction hypothesis and get

f(zk+1) ≥ (1− δ)−1(1− C̃pm

√
CH)(1− δ′)−kM − CHM

≥ j(1− δ′)−kM.

with

j = (1− δ)−1(1− C̃pm

√
CH)− CH .

We thus choose δ′ such that

(1− δ′)−1 = j

and we can choose CH small enough so that δ′ ∈ (0, 1). In particular we get

f(zk+1) ≥ (1− δ′)−k−1M

which is the desired inequality.
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We are left with proving that the sequence {zk} stays in Q−[1]. The fact that zk+1 lies in
Qrk(zk) = Tzk(Qrk(0)). This implies in particular that |vk+1 − vk| ≤ rk which in turn yields

|vk − v0| ≤
∑
l≥0

rl ≤ C
1/(2q)
H

∑
l≥0

(1− δ′)
k
2q =

C
1/(2q)
H

1− (1− δ′)1/(2q)
.

Using now that the fact that δ′ is explicitely given as a function of δ and CH (see above), we
conclude that |vk − v0| can be arbitrarily small uniformly in k. We can argue in the same spirit for
|xk − x0| and |tk − t0|. Since z0 ∈ Q−, we conclude that we can indeed ensure that zk lies in Q−[1].
The proof of the theorem is now complete. �

6. Local gain of regularity for sub-solutions

In this section, we investigate the regularity of sub-solutions to Eq. (1.6) beyond the gain of
integrability proved above. Observe that, on the one hand, Theorem 5 applies to sub-solutions but
only concludes to the gain of integrability. On the other hand, Theorem 7 proves a gain of Sobolev
regularity but only applies to solutions (not sub-solutions). It might seem, at first sight, that the
lack of ellipticity in all directions means the gain of regularity of solutions is false, since in the
elliptic and parabolic case it is entirely based on the energy estimate. However we show here that,
using the local upper bound proved above by the De Giorgi–Moser iteration, and refined averaging
lemmas, this result still holds in essence for our equation, even though the gain of regularity is only
Hs with s > 0 small. We prove the following result:

Theorem 25 (Gain of regularity for non-negative sub-solutions). Consider z0 ∈ R2d+1 and two
cylinders Qint := Qr1(z0) and Qext := Qr0(z0) with 0 < r1 < r0. Then there is some s ∈ (0, 1/3) so
that any weak non-negative sub-solution f of (1.6) in Qext satisfies

(6.1) ‖f‖Hs
x,v,t(Qint)

≤ C
(
‖f‖L2(Qext)

+ ‖s‖L∞(Qext)

)
with C = C(d, λ,Λ, Qext, Qint).

Proof of Theorem 25. We define Qmid in between Qint and Qext and the same truncation functions
as before. Theorem 11 implies that

‖f‖L∞(Qmid) . ‖f‖L2(Qext)
+ ‖s‖L∞(Qext)

.

We want to apply [7, Theorem 1.3] on f in Qmid. However since f is only a sub-solution it
satisfies the equation

∂tf + v · ∇xf = ∇v · (A∇vf) +B · ∇vf + s− µ in Qext

where we have included the defect non-negative measure µ ≥ 0 accounting for the inequation. We
can now repeat the reasoning from the proof of Lemma 13 and reduce to the case

∂tg + v · ∇xg = ∇v · (A∇vg) +∇v ·H1 +H0 − µ̃ in R2d+1

with g ≡ f in Qint and g, the measure µ̃ ≥ 0, H0 and H1 supported in Qmid, and with g, ∇vg,
H0 and H1 bounded in L2 on Qmid. Then by integrating in x, v, t we deduce that µ̃ has bounded

variation in terms of the previous bounds. Since for q > (4d + 2), the space W
1
2
,q

x,v,t embeds into

continuous bounded functions of x, v, t, we deduce that the space of measures is included in W
− 1

2
,q∗

x,v,t

and therefore

(6.2) µ̃ = (1−∆x,t)
1
4 (1−∆v)h with h ∈ Lq∗(Qmid)

and the bound on the Lq
∗
(Qmid) depends on the previous bounds above, and where q∗ = 1/(1−1/q)

is the conjugate exponent of q. Observe that q∗ is striclty smaller than 2 and close to one, for
instance q∗ ∈ (1, 14/13) in dimension d = 3. We then apply [7, Theorem 1.3] with κ = 1, r = 1

2 ,
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m = 2, β = 1, p = q∗: we deduce that g belongs to W
1
8
,p

x,t L
p
v (observe that we use a full Laplacian

derivative in v in Eq. (6.2) in order to be in the framework of [7, Theorem 1.3], even though

(1−∆v)
1/4 would have been enough for the purpose of having h ∈ Lq∗). By interpolation with the

L∞ estimate, we obtain then that g ∈ Hs
x,tL

2
v for some s ∈ (0, 1

8) small enough. Finally, we combine

the latter estimate with the energy estimate g ∈ L2
x,tH

1
v we conclude with g ∈ Hs

x,v,t. Since the
truncation function is equal to one on the smaller cube Qint, it translates into f ∈ Hs

x,v,t on Qint

and concludes the proof. �

7. Gain of integrability of the velocity gradient

This section is devoted to the proof of the following theorem.

Theorem 26 (Gain of integrability for ∇vf). Let f be a solution of (1.6) without lower order
terms (B ≡ 0 and s ≡ 0) in some cylinder Qr0(z0). There exists a universal ε > 0 such that for all
Q[i] = Qri(z0), i = 0, 1, 2 with r2 < r1 < r0, ∇vf ∈ L2+ε(Q2)

(7.1)

ˆ
Q[2]
|∇vf |2+ε dz ≤ C

(ˆ
Q[1]
|∇vf |2 dz

) 2+ε
2

with C = C(d, λ,Λ, Q2, Qint, Qext).

The proof follows along the lines of the one of [31, Theorem 2.1]. It consists in deriving an
almost reverse Hölder inequality which in turn implies the result thanks to the analogous of [31,
Proposition 1.3]. The following measure-theoretical lemma will be used as a black box in the proof
of Theorem 26. It implies the use of cylinders with different shape:

Q(z0, r) = {z = (x, v, t) : |xi − x0
i | < r3, |vi − v0

i | < r,−r2 < t− t0 ≤ 0}
where x = (x1, . . . , xd) and v = (v1, . . . , vd). The scaling of the equation preserves this family of
cylinders but not the Lie group action Tz.

Lemma 27 (A Gehring lemma). Let g ≥ 0 in Q such that there exists q > 1 such that for all
z0 ∈ Q and R such that Q4R(z0) ⊂ Q,

 
QR(z0)

gq dz ≤ b

( 
Q4R(z0)

g dz

)q
+ θ

 
Q4R(z0)

gq dz

for some θ > 0. There exists θ0 = θ0(q, d) such that if θ < θ0, then g ∈ Lploc(Q) for p ∈ [q, q + ε)
and ( 

QR
gp dz

) 1
p

≤ cp
( 
Q4R

gq dz

) 1
q

,

the constants ε > 0 depends only on b, q, θ and dimension, and cp further depends on p.

The proof of Lemma 27 is an easy adaptation of the one of [30, Proposition 5.1], by changing
Euclidian cubes with cylinders QR.

The proof of Theorem 26 is a consequence of some estimates involving weighted means of the
solution. Given z0 ∈ R2d+1, they are defined as follows

f̃2R(t) =
1

cR4d

ˆ
R2d

f(t, x, v)χ2R(x, v, t) dx dv

(for some c defined below) where χ2R is a cut-off function such that

χ2R(x, v, t) =
d∏
i=1

φR3(xi − x0
i )φR(vi − v0

i )
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with φR(a) = φ(a/R) for some φ such that
√
φ ∈ C∞(R) and φ ≡ 1 in [−1, 1] and suppφ ⊂ [−2, 2].

We remark that χ2R ≡ 1 in QR and χ2R ≡ 0 outside Q2R.

Lemma 28. Let f be a solution of (1.6) in Q0. Then for Q3R(z0) ⊂ Q0,ˆ
QR(z0)

|∇vf |2 dz ≤ CR−2

ˆ
Q2R(z0)

|f − f̃2R|2 dz(7.2)

sup
t∈(t0−R2,t0]

ˆ
QtR(z0)

|f(t)− f̃R(t)|2 dx dv ≤ C
ˆ
Q3R(z0)

|∇vf |2 dz(7.3)

where QtR(z0) = {(x, v) : (t, x, v) ∈ QR(z0)}.

Remark 29. This lemma corresponds to [31, Lemmas 2.1 & 2.2].

Proof. For the sake of clarity, we put z0 = 0 and R = 1. Consider τ2 ∈ C∞(R,R) such that

0 ≤ τ2 ≤ 1, τ2 ≡ 0 in (−∞,−22] and τ2 ≡ 1 in [−1, 0]. Use 2(f − f̃2)χ2τ2 as a test function for
(1.6) and get
ˆ
R2d

(f(0)− f̃2(0))2χ2 dx dv + 2

ˆ
R2d+1

(A∇vf · ∇vf)χ2τ2 dx dv dt

=

ˆ
R2d+1

(f − f̃2)2χ2(∂tτ2) dx dv dt−
ˆ
R2d+1

v · ∇x
[
(f − f̃2)2

]
χ2τ2 dx dv dt

− 2

ˆ
R2d+1

(f − f̃2)A∇vf · ∇vχ2τ2 dx dv dt.

Remark that the definition of f̃2 implies that the remaining term

−2

ˆ
R2d+1

(∂tf̃2)(f − f̃2)χ2τ2

vanishes. This equality yieldsˆ
R2d

(f(0)− f̃2(0))2χ2 dx dv + λ

ˆ
R2d+1

|∇vf |2χ2τ2 dx dv dt

≤
ˆ
R2d+1

(f − f̃2)2

(
χ2|∂tτ2|+ |v · ∇xχ2|τ2 +

Λ2

λ
|∇v
√
χ2|2τ2

)
dx dv dt

which yields (7.2). Changing the final time, we also get

sup
t∈(−1,0]

ˆ
R2d

[
f(t)− f̃2(t)

]2
χ2(t) dx dv ≤ C

ˆ
Q2

|f − f̃2|2 dx dv dt.

Now the function F = f − f̃2 is such that
´
F (x, v, t) dx dv = 0. In particular, we haveˆ

Q2

(f − f̃2)2 dx dv dt ≤ C
ˆ
Q2

(
|∇vf |2 + |D

1
3
x f |2

)
dx dv dt.

Observe that if there are no lower order terms (B = 0 and s = 0), then we have for all q ∈ (1, 2],

(7.4)

ˆ
Q2

|D
1
3
x f |q dx dv dt ≤ C

ˆ
Q3

|∇vf |q dx dv dt.

Indeed, in view of the proof of (2.2), it is enough to apply [7, Theorem 1.3] with such a q and use
the Poincaré inequality (assuming the cutoff functions to have convex super-level sets).

Combining the three previous estimates yields

sup
t∈(−1,0]

ˆ
Qt1

(f(t)− f̃2(t))2χ2(t) dx dv ≤ C
ˆ
Q3

|∇vf |2 dx dv dt.
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Finally, we write for t ∈ (−1, 0]

1

2

ˆ
Qt1

(f(t)− f̃1(t))2χ2(t) ≤
ˆ
Qt1

(f(t)− f̃2(t))2χ2(t) +

ˆ
Qt1

(f̃2(t)− f̃R(t))2χ2(t)

≤
ˆ
Qt1

(f(t)− f̃2(t))2χ2(t) + |Qt1|

(
1

c

ˆ
Qt1

(f − f̃2(t))χ1(x, v, t) dx dv

)2

≤ C

ˆ
Qt1

(f(t)− f̃2(t))2χ2(t)

and we get the second desired estimate since χ2 ≡ 1 in Q1. �

We now turn to the proof of Theorem 26. The use of (7.4) is the main difference with [31].

Proof of Theorem 26. Pick p > 2 and let q denote its conjugate exponent: 1
q + 1

p = 1. We follow

[31] in writing (omitting the center of cylinders z0), thanks to (7.2), 
Q1

|∇vf |2 .
ˆ
Q2

|f − f̃2|2

≤ sup
t∈(t0−4,t0]

(ˆ
Qt2

|f − f̃2|2
) 1

2 ˆ t0

t0−4
dt

(ˆ
Qt2

|f − f̃2|2
) 1

2

.

(ˆ
Q4

|∇vf |2
) 1

2
ˆ t0

t0−4
dt

(ˆ
Qt2

|f − f̃2|q
) 1

2q
(ˆ

Qt2

|f − f̃2|p
) 1

2p

where (7.3) and Hölder inequality are used successively.
We now use Sobolev inequalities and Hölder inequality (twice) successively to get

 
Q1

|∇vf |2 .
(ˆ
Q4

|∇vf |2
) 1

2

×

ˆ t0

t0−4

(ˆ
Qt2

|∇vf |q + |D1/3
x f |q

) 1
2q

dt


×

(ˆ
Qt2

|∇vf |2 + |D1/3
x f |2

) 1
4

.

(ˆ
Q4

|∇vf |2
) 1

2
(ˆ
Q2

|∇vf |q + |D1/3
x f |q

) 1
2q

×

ˆ t0

t0−4

(ˆ
Qt2

|∇vf |2 + |D1/3
x f |2

) q
2(2q−1)

dt


2q−1
2q

.

(ˆ
Q4

|∇vf |2
) 1

2

×
(ˆ
Q2

|∇vf |q + |D1/3
x f |q

) 1
2q

×
(ˆ
Q2

|∇vf |2 + |D1/3
x f |2

) 1
4

.

We now use (7.4) and get

 
Q1

|∇vf |2 .
(ˆ
Q4

|∇vf |2
) 1

2
(ˆ
Q2

|∇vf |q
) 1

2q
(ˆ
Q2

|∇vf |2
) 1

4

.

(ˆ
Q4

|∇vf |2
) 3

4
(ˆ
Q2

|∇vf |q
) 1

2q

.
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Now use and get for all ε > 0,
 
Q1

|∇vf |2 .
( 
Q4

|∇vf |2
) 3

4
( 
Q4

|∇vf |q
) 1

2q

.

( 
Q4

|∇vf |2
) 3

4
( 
Q4

|∇vf |q
) 1

2q

.

After rescaling, we get the following
 
QR
|∇vf |2 .

( 
Q4R

|∇vf |2
) 3

4
( 
Q4R

|∇vf |q
) 1

2q

. ε
 
Q4R

|∇vf |2 + cε

( 
Q4R

|∇vf |q
) 2
q

.

Apply now Proposition 27 in order to achieve the proof of Theorem 26. �

Appendix A. Known estimates for the Landau equation

Lemma 30 (Lower bound - [22, 51]). Assume there exist positive constants M1,M0, E0 and H0

such that (1.3) holds true. Then
detA[f ] ≥ c(1 + |v|)κ

with

κ =

{
(d− 1)(γ + 2) + γ if γ ∈ [−2, 1]

3γ + 2 if γ ∈ [−d,−2)

where c only depends on dimension, γ, M0, M1, E0 and H0.

Lemma 31 (Upper bounds - [22, 51]). Assume there exist positive constants M1,M0, E0 and H0

such that (1.3) holds true. Assume that f ∈ L∞(Rd). Then

|A[f ]| ≤

{
C(1 + |v|)γ+2 if γ ∈ [−2, 1]

C‖f‖
|γ+2|
d∞ if γ ∈ [−d,−2)

|B[f ]| ≤

{
C(1 + |v|)γ+1 if γ ∈ [−1, 1]

C‖f‖
|γ+1|
d∞ if γ ∈ [−d,−1)

|c[f ]| ≤

{
C(1 + |v|)γ if γ ∈ [0, 1]

C‖f‖
|γ|
d∞ if γ ∈ [−d, 0).

where C only depends on dimension, γ, M0, E0.

Appendix B. Proof of a technical lemma

Proof of Lemma 24. To justify a) and b), we remark that

P− ⊂
+∞⋃
k=1

Qk ⊂ P+

where

P− := {(y, w, s) : s ≥ 4

3

(
42

ω2
ρ2 − 1

)
, |y| ≤ ρ3, |w| ≤ ρ},

P+ := {(y, w, s) : s ≥ 4

3

(
4

ω2
ρ2 − 1

)
, |y| ≤ ρ3, |w| ≤ ρ},
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see Figure 4.

Figure 4. Paraboloids containing/contained in the union of iterated cylinders.

In what follows, R and r0 are chosen as functions of ∆. In particular,

R ≤
√

∆ and r0 ≤
√

∆.

As far as a) is concerned, we should ensure that for all z ∈ Q− and r ∈ (0, r0),

(z ◦ rP+) ∩ {t ≤ 0} ⊂ Q1(0).

If z = (x−, v−, t−) and z+ = (x+, v+, t+) ∈ rP+ are such that z ◦ z+ ∈ {t ≤ 0}, we have

0 ≥ t− + t+

≥ (−∆−R2) +
4

3
((4/ω2)ρ2 − r2)

≥ −4∆ + (42/3ω2)ρ2

where ρ = |v+|. This implies in particular

ρ2 ≤ 3ω2

4
∆.

In particular, for ∆ ∈ (0, 1),

|v− + v+| ≤ R+ ρ

≤ (1 +
√

3ω/2)
√

∆

|x− + x+ + t+v−| ≤ R3 + ρ3 +R

≤ (1 + (
√

3ω/2)3)∆3/2 +
√

∆

≤ (2 + (
√

3ω/2)3)
√

∆.

We thus can choose ∆ small enough (recall ω = 1/
√

5) to ensure a).
As far as b) is concerned, notice that for z+ ∈ Q+ and z ∈ Q−, we have

z−1 ◦ z+ = (t+ − t, x+ − x− (t+ − t)v, v+ − v).

Choosing R2 ≤ ∆ ≤ 1
2 we have 2R ≤ (4R)

1
3 and we get

|v+ − v| ≤ 2R ≤ (4R)
1
3

|x+ − x− (t+ − t)v| ≤ 2R3 + (∆ +R2)R = 3R3 + ∆R ≤ 4R

(since R ≤ 1 and ∆ ≤ 1) and
t+ − t ≥ ∆−R2.
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In particular z−1 ◦ z+ ∈ rP− if

∆−R2 ≥ 4

3

(
42

ω2
(4R)

1
3 − r2

)
.

It is enough satisfy

∆ ≥ R2 +
43

3ω2
(4R)

1
3 .

Hence, for ∆ given, we can choose R = R(∆) small enough to get the desired inequality and in
turn point b). �
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[9] Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur. Regularity theory for parabolic nonlinear integral operators.
J. Amer. Math. Soc., 24(3):849–869, 2011.

[10] Luis A. Caffarelli and Alexis Vasseur. Drift diffusion equations with fractional diffusion and the quasi-geostrophic
equation. Ann. of Math. (2), 171(3):1903–1930, 2010.

[11] Maria C. Caputo and Alexis Vasseur. Global regularity of solutions to systems of reaction-diffusion with sub-
quadratic growth in any dimension. Comm. Partial Differential Equations, 34(10-12):1228–1250, 2009.

[12] Hua Chen, Wei-Xi Li, and Chao-Jiang Xu. Analytic smoothness effect of solutions for spatially homogeneous
Landau equation. J. Differential Equations, 248(1):77–94, 2010.

[13] Yemin Chen, Laurent Desvillettes, and Lingbing He. Smoothing effects for classical solutions of the full Landau
equation. Arch. Ration. Mech. Anal., 193(1):21–55, 2009.

[14] Yemin Chen and Lingbing He. Smoothing estimates for Boltzmann equation with full-range interactions: spatially
homogeneous case. Arch. Ration. Mech. Anal., 201(2):501–548, 2011.

[15] Yemin Chen and Lingbing He. Smoothing estimates for Boltzmann equation with full-range interactions: Spa-
tially inhomogeneous case. Arch. Ration. Mech. Anal., 203(2):343–377, 2012.
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91128 Palaiseau Cedex, France

e-mail: francois.golse@polytechnique.edu

Cyril Imbert
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