Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation

Abstract : We extend the De Giorgi–Nash–Moser theory to a class of kinetic Fokker-Planck equations and deduce new results on the Landau-Coulomb equation. More precisely, we first study the Hölder regularity and establish a Harnack inequality for solutions to a general linear equation of Fokker-Planck type whose coefficients are merely measurable and essentially bounded, i.e. assuming no regularity on the coefficients in order to later derive results for non-linear problems. This general equation has the formal structure of the hypoelliptic equations " of type II " , sometimes also called ultraparabolic equations of Kolmogorov type, but with rough coefficients: it combines a first-order skew-symmetric operator with a second-order elliptic operator involving derivatives along only part of the coordinates and with rough coefficients. These general results are then applied to the non-negative essentially bounded weak solutions of the Landau equation with inverse-power law γ ∈ [−d, 1] whose mass, energy and entropy density are bounded and mass is bounded away from 0, and we deduce the Hölder regularity of these solutions.
Type de document :
Pré-publication, Document de travail
30 pages, 4 figures. 2016
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01348065
Contributeur : Cyril Imbert <>
Soumis le : vendredi 22 juillet 2016 - 17:29:22
Dernière modification le : mercredi 23 janvier 2019 - 10:28:25

Fichiers

dgh-gimv-hal1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01348065, version 1
  • ARXIV : 1607.08068

Citation

F Golse, Cyril Imbert, Clément Mouhot, Alexis Vasseur. Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation. 30 pages, 4 figures. 2016. 〈hal-01348065v1〉

Partager

Métriques

Consultations de la notice

192

Téléchargements de fichiers

48