
HAL Id: hal-01347637
https://hal.sorbonne-universite.fr/hal-01347637v2

Submitted on 7 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliable fixed-point implementation of linear data-flows
Thibault Hilaire, Anastasia Volkova, Maminionja Ravoson

To cite this version:
Thibault Hilaire, Anastasia Volkova, Maminionja Ravoson. Reliable fixed-point implementation of
linear data-flows. IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016,
Dallas, United States. �hal-01347637v2�

https://hal.sorbonne-universite.fr/hal-01347637v2
https://hal.archives-ouvertes.fr

Reliable fixed-point implementation of linear
data-flows

Thibault Hilaire, Anastasia Volkova, Maminionja Ravoson
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

Email: first name.last name@lip6.fr

Abstract—In this article, we propose a complete methodology
to implement a signal processing or control-engineering algo-
rithm described with a linear data-flow into numerical code
using fixed-point arithmetic. Our approach is based on a reliable
determination of the Worst-Case Peak gain of a filter as well
as on rigorous error analysis of roundoff error propagation. It
guarantees that no overflow will occur and that the output error
due to the finite precision implementation is less than a given
bound.

Without loss of generality, we consider the linear data-
flows given in the form of Simulink block diagram. It is first
transposed into an internal matrix-based representation and then
the reliable evaluation of the magnitudes of each internal variable
is performed. Our approach allows determining the minimum
word-length required to achieve a given accuracy. Finally, the
methodology is illustrated with numerical examples.

I. INTRODUCTION

The implementation of embedded algorithms is a tedious
task for many reasons. Due to the limited resources available
(power, memory, computing units, processing time, etc.), the
transformation from a mathematical model (whatever its form:
equations, transfer function, data-flow graph, etc.) into embed-
ded code is not straightforward. One principal pitfall concerns
the accuracy part: generally finite precision arithmetic, like the
Fixed-Point (FxP) arithmetic is used, and the computational
errors induced by limited bit-width may be significant.

Moreover, in FxP arithmetic, the developer has to deal with
the binary-point alignment, fixed-point conversion, etc., while
in floating-point arithmetic this is done by the hardware.

The two main bottlenecks for the Fixed-Point implementa-
tion are the setting of the FxP formats (they depend on the
magnitude of each variable) and the roundoff error analysis.
We are interested in determining the impact of roundoff errors
on the output(s) of the implemented system, therefore we need
to rigorously analyse the difference between the exact system
and the implemented one. These two issues may be not so
easy to deal reliably with, especially in the cases where the
system has an internal feedback, like for the Infinite Impulse
Response (IIR) filters.

In practice, the FxP conversion is done using simulations,
typically using Matlab/Simulink tools1:
a) run the system with some inputs (using floating-point

double precision arithmetic) and determine the magnitudes
of all variables;

This work has been partially sponsored by french ANR agency under grant
No ANR-13-INSE-0007-04 MetaLibm.

1http://www.mathworks.com

+
+

−
A

delay sum operator
constant

multiplication

z�1

Fig. 1. Blocks of linear data-flows.

b) deduce the FxP formats and the FxP operations;
c) run the FxP implementation of the system and compare it

with the simulations from step a);
d) if the result is not convincing, increase the word-length,

and return to step b).
This process is unsatisfactory for various reasons. First, a
finite-precision (floating-point) simulation is taken as a ref-
erence for comparison which can be inaccurate. Secondly, the
input sequences to be tested are often not representative. More-
over, these non-exhaustive and time-consuming simulations do
not give any reliable guarantee on the FxP implementation.
The saturation technique is widely used to deal with overflows,
however it does not ensure the correct value of the output.

In our work we consider only linear algorithms, i.e. data-
flow systems built only with the sum operators (+ or −
operations), constant multiplications and delays (see Fig. 1).
The examples of such algorithms are the IIR and FIR (Finite
Impulse Response) filters, Linear Time Invariant (LTI) con-
trollers, etc.

In order to overcome the drawbacks of the simulation-based
techniques and provide mathematical guarantees on the FxP
implementation, we use an analytical data-flow representation
called Specialized Implicit Framework (SIF) [1].

We propose a technique on representation of the linear
data-flows with SIF formalism. Then, we can easily deter-
mine the inputs-outputs relationship as transfer functions, and
then establish analytically the impact of the finite precision
implementation. The implementation flow is encapsulated
into an automatized code generator. A rigorous approach
on determining the magnitudes and the Fixed-Point formats
has been developed for the generator [2], [3]. Furthermore,
without using any simulations we can optimize the word-
lengths within the algorithm evaluation to satisfy the output
precision constraints.

The paper is organized as follows. Our complete flow from
data-flow system to fixed-point code is described in Section II
with some necessary prerequisites. Section III focuses on the
transformation of Simulink linear data-flow systems to our

Conversion
to SIF

linear
data-flow WCPG

analysis
FxP

formats
Roundoff

error
analysis

Code
generator

VHDL

C

wordlengths

word-length
optimization

Fig. 2. Data-flow implementation steps.

Specialized Implicit Framework. The fixed-point conversion
and the complete roundoff analysis are done in Section IV.
Finally, some illustrative examples of fixed-point implementa-
tion under precision constraints are given in Section V.

Notation: throughout this paper, real numbers are in low-
ercase, column vectors in lowercase boldface and matrices in
uppercase boldface; In is a n× n identity matrix.

II. METHODOLOGY AND PREREQUISITES

A. Methodology

In order to provide rigorous error analysis of finite-precision
implementation effects, we propose to use an analytical repre-
sentation of a linear system, SIF, which is described in details
in Section II-B. This is a matrix representation, which can be
obtained for any data-flow graph. It preserves all the properties
of the system but is easier to operate with, in our context.

Our approach consists of following. First, we represent the
data-flow with SIF formalism. Then, we deduce the magni-
tudes of all variables within the system. In comparison to
the commonly used approach, we do not use any simulations
to compute them. Considering that the inputs are bounded,
our approach is based on reliable evaluation of the maximum
amplification of the output of a system using the Worst-Case
Peak Gain theorem [2]. This gives us a theoretical guarantee
on the computed magnitudes and does not depend on a specific
choice of inputs. See Section II-D for detailed description.

Given an output error bound and word-length constraints for
all variables we choose FxP formats for the implementation
(using reliably computed magnitudes) such that the output
code ensures that no overflow occurs.

Finally, we deduce the parameters for algorithm evaluation
in FxP such that the computed output satisfies an a priori given
error bound for each iteration of the system. See Section IV-B.

However, the propagation of the roundoff errors through
recursive systems is non-linear and can have a significant
impact on the output. We take into account the roundoff errors
propagation and provide a rigorous bound on the difference
between the implemented and the ideal systems.

Therefore, our approach can be represented as following
steps, as shown in Fig. 2:

a) transform a data-flow to the SIF formalism;
b) rigorously compute magnitudes using the Worst-Case

Peak-Gain analysis;
c) given word-length constraints determine the FxP formats

based on rigorous magnitudes, while taking into account
the propagation of the computational errors;

d) generate the software or hardware code.

Moreover, if the word-lengths are not fixed, the Fixed-Point
Formats computed on step c) can be optimized to meet an
output error-bound criteria without using any simulations.

B. Specialized Implicit Framework

The Specialized Implicit Framework has been first proposed
in [1] as a unifying tool in order to describe and encompass all
the possible realizations of a given transfer function (like the
direct forms, state-spaces, cascade or parallel decompositions,
lattice filters, etc.). It allows the study and comparison of
their finite precision effects. SIF is an extension of the state-
space realization, modified in order to allow chained Sum-of-
Products (SoP) operations.

In fact, all linear data-flows (those with delays, multipli-
cations by constants and additions) can be represented with
the SIF. This macroscopic description is more suited for the
analysis than a graph relationship as it gives direct analytical
formula for the finite precision error analysis [1]. Both the
Single Input Single Output (SISO) and the Multiple-Inputs
Multiple Outputs (MIMO) can be described with SIF.

Denote u(k) and y(k) the vector of q inputs and the vector
of p outputs respectively. The n variables that are stored from
one step to the other are in the state vector x(k), while the l
intermediate results are collected in the vector t(k). Then, the
SIF is the following set of equations: J 0 0
−K In 0
−L 0 Ip

t(k + 1)
x(k + 1)
y(k)

=

0 M N
0 P Q
0 R S

 t(k)
x(k)
u(k)

 (1)

The vector t(k) is not used for computations at step k, which
characterizes the concept of intermediate variables.

The matrix J is lower-triangular with 1 on its diagonal, so
the first value of t(k+1) is first computed, then the second one
is computed using the first and so on (thus, the computation of
J−1 is not necessary)). The implicit term Jt(k+ 1) naturally
serves for describing the specific order of the computation.
Therefore, the general algorithm to compute the SIF is:

Jt(k + 1)←Mx(k) + Nu(k)

x(k + 1)←Kt(k + 1) + Px(k) + Qu(k) (2)
y(k)← Lt(k + 1) + Rx(k) + Su(k)

The matrices J , K and L allow us to describe the se-
quence of computations. For example, y = M2M1x can be
computed as y = (M2M1)x or as y = M2(M1x). The
latter expression will be described as(

I 0
−M2 I

)(
t
y

)
=

(
M1

0

)
x, (3)

with t holding the intermediate value M1x.
The same approach will be used to transform any linear

data-flow into a SIF in Section III.
Throughout the paper we consider that the computations

associated to the equations (1) are ordered from top to bottom2,
associated in a one to one manner to the Algorithm (2).

2Of course, there is no need to consider the null coefficients. The associated
computations may be removed.

m+ 1 −`
w

s

−2m 20 2−12m−1 2`

Fig. 3. Representation of a fixed-point number in format (m, `).

It can be easily established that equation (1) is equivalent in
infinite precision to the state-space filter (AZ ,BZ ,CZ ,DZ):{

x(k + 1) = AZx(k) + BZu(k)
y(k) = CZx(k) + DZu(k)

(4)

with:
AZ = KJ−1M + P , BZ = KJ−1N + Q,
CZ = LJ−1M + R, DZ = LJ−1N + S.

(5)

However, equation (4) corresponds to a different set of
coefficients than the one in (1). Therefore, while in infinite
precision (1) and (4) are equivalent, in finite precision they
have different numerical properties. Thus, the SIF not only
describes the input/output relationship but also fully captures
properties of computational algorithm.

The main interest of such a framework is that it allows
expressing various algorithms of the same filter in a unifying
form, in order to study and compare the effect of the finite
precision arithmetic on them, and then to choose the best FxP
algorithm to implement this filter. All the classical measures
used to evaluate the impact of the quantization of the coeffi-
cients (sensitivity-based measure like in [4], [5], [6]) and the
impact of the roundoff errors ([5], [7], [8], [9], [10]) have been
extended to the SIF [11], [12].

C. Fixed-Point Arithmetic

In this paper, only the signed fixed-point arithmetic with
2’s complement representation is used. Let z be a w-bit fixed-
point number:

z = −2mzm +

m−1∑
i=`

2izi (6)

where m and ` are the positions of the most significant bit
(MSB) and the least significant bit (LSB) of z, respectively.
Let the couple (m, `) denote the Fixed-Point format of z (see
Fig. 3). The word-length w can be obtained with:

w = m− `+ 1, (7)

In order to convert a non-zero real number r into a fixed-
point number r̃, the first step is to evaluate the binade in which
r resides, and more precisely the position of the MSB of r̃.
The main formula to compute mr is given by:

mr =

{ ⌈
log2(r)

⌉
if r > 0⌊

log2(−r)
⌋

+ 1 if r < 0
(8)

For some very special cases (where r rounded to r̃ ∈
[−2mr−1; 2mr−1 − 2`r] while r is outside this interval), (8)
needs to be adjusted (see [13]). Then the fractional part `r is
obtained from (7) and we have:

r̃ =
⌊
r · 2−`r

⌉
· 2`r , (9)

where
⌊
·
⌉

is the round-to-nearest-integer operator. In the ma-
chine r is represented as a w-bit signed integer R =

⌊
r · 2−`r

⌉
.

D. The Worst-Case Peak Gain theorem

The following theorem is used to provide the maximum
possible value for the outputs of the algorithm, and thus define
their FxP formats (using (8)) with a guarantee that no overflow
will occur. It is also used to determine the impact of the
internal roundoff error on the output (see Section IV-C).

Let H := (A,B,C,D) be a q-input p-output Bounded-
Input Bounded-Output stable MIMO LTI filter in state-space
representation:

H
{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(10)

with A ∈ Rn×n, B ∈ Rn×q , C ∈ Rp×n and D ∈ Rp×q .

Theorem 1 (Worst-Case Peak Gain theorem) Let H be a
state-space system. If an input {u(k)}k>0 is known to be
bounded by ū (∀k > 0, |ui(k)| 6 ūi, 1 6 i 6 q), then
the output {y(k)}k>0 will be bounded3 iff the spectral radius
ρ(A) is strictly less than 1.

In that case, the output is (element-by-element) bounded by

∀k, |y(k)| 6 |〈〈H〉〉 ū| , (11)

where 〈〈H〉〉 is the Worst-Case Peak Gain (WCPG) matrix of
the system [15], [16]. It can be computed as

〈〈H〉〉 , |D|+
∞∑
k=0

∣∣CAkB
∣∣ . (12)

Moreover, for any ε > 0, there always exists a finite input
sequence {u(k)}06k6N such that the inequality (11) is almost
attained for one output i, i.e.∣∣yi(N)−

(
〈〈H〉〉 ū

)
i

∣∣ < ε. (13)

There exist numerous other approaches to determine the
output interval, such as involving Affine Arithmetic [17],
which may lead to overestimations, or simulations [18], which
in turn are inefficient and not rigorous. It can be shown that
the WCPG approach gives the smallest interval containing
all possible values of y(k). Moreover, in [2] an algorithm
to evaluate the WCPG at arbitrary precision was proposed.

III. SIMULINK-TO-SIF CONVERSION

A. Simulink block diagram

Simulink, by Mathworks, is a widely used environment for
model-based design of dynamic systems. It uses mainly a
graphical block diagram to describe the model.

Internally, the block diagram is stored in an xml file (more
specifically in .slx format). In this format the <System>
tag contains the model description, and the <Block> and
<Line> tags inside hold blocks of elements and their inter-
connections.

Consider a very simple data-flow diagram given on Fig. 4.
It consists of standard gain, delay and sum blocks. All the

3This property is known as the Bounded Input Bounded Output (BIBO)
stability [14].

y(k)

x(k)x(k+1)

t(k+1)
1

1

u1(k)
5

2
u2(k)

Z-1 6

3

Fig. 4. A very simple Simulink block diagram.

information on the block parameters can be easily retrieved
by parsing the xml file.

B. The conversion algorithm

The SIF representation is a set of equations which compute
the output, the states and the intermediate variables from the
value of inputs, current states and the intermediate variables,
and where each equation is a Sum-of-Products (SoPs).

In order to systematically transform any Simulink linear
data-flow model to the SIF representation, we assume follow-
ing rules. Since each delay element represents a computation
that is saved from one time instance to another, in SIF we note
it as a state variable. The gain elements are naturally inter-
preted in SIF as coefficients of the variables in corresponding
SoPs. The outputs of gain and sum operators are naturally
considered as temporary variables in SIF (unless they feed a
delay or system output) since they are not stored from one
system iteration to another. After noting all the variables of
the system, their corresponding SoPs can be easily formed.
Therefore, a system of equations corresponding to the data-
flow can be obtained.

By design, most of the time there is a chain of sum blocks in
a data-flow. For a finite-precision implementation the order of
computations has a significant impact on the precision of the
result. To apply our SoP computation technique presented in
IV-B, merging all directly cascading sum blocks is necessary.
Moreover, in case of a subsystem present in the diagram, a care
was taken to flatten the design before getting blocks equations.
For instance, the simple example of a data-flow diagram given
in Fig. 4 corresponds to the following system of equations: t(k + 1) = 6 · x(k) + 5 · u1(k)

x(k + 1) = 1 · u2(k)
y = 3 · t(k + 1)

From this system of equations, it is then straightforward to
identify matrices J , K, L, M , N , P , Q, R, S of the
SIF. An important detail is to preserve the order in which
the variables appear in SoPs in order to match exactly the
data-flow diagram. In our toy example, we have J =

(
1
)
,

L =
(
3
)
, M =

(
6
)
, N =

(
0 5

)
, P =

(
0
)
, Q =

(
0 1

)
,

and the other matrices are null.
However, the order of labeling the temporary variables

during the conversion can compromise the lower triangularity
of the matrix J . Since J represents the order of computation
of the intermediate variables within the data-flow and depen-
dencies between them, it can be interpreted as an adjacency
matrix for a directed acyclic graph. Therefore, a topological
sort algorithm can be applied to determine the correct order of
computations. Here the depth-first search algorithm was used

to ensure the lower triangular form of J along with necessary
reorganizations of matrices N , K and L.

IV. FIXED-POINT IMPLEMENTATION AND ROUNDOFF
ERROR ANALYSIS

A. Fixed-Point formats
The first step of the fixed-point implementation is the

determination of the FxP format of every internal variable
within algorithm computation. Applying the WCPG theorem
we can obtain the magnitudes for the outputs of the system.
However, we can obtain the intervals for the intermediate
and state variables as well [13]. To achieve this we concate-
nate the output vector y with vectors t and x, and make
necessary concatenations in the right side of (10). Thus,
instead of considering the filter H we consider the filter
Hu = (AZ ,BZ ,N1,N2) with

N1 ,

J−1M
AZ

CZ

 ,N2 ,

J−1N
BZ

DZ

 . (14)

Then, applying the WCPG theorem upon the filter Hu we
obtain the magnitudes t̄, x̄ and ȳ by t̄

x̄
ȳ

 = 〈〈Hu〉〉 ū. (15)

The MSB positions mt, mx and my are obtained with (8).
The evaluation of the magnitude can be improved by taking

into account the propagation of roundoff errors that may,
in some rare cases, yield an overflow. An algorithm for
determining the FxP formats with a non-overflow guarantee
was presented in [3].

B. Sum-of-Products
As shown in Section II-B, the evaluation of linear data flow

involves the evaluation of some sum-of-products, i.e. sums of
variables (inputs, states and intermediate variables) multiplied
by constant coefficients (those of the gain blocks). Let us
consider here one sum-of-product (SoP):

s =

N∑
i=1

ci · vi =

N∑
i=1

pi, (16)

where pi denotes the product ci × vi, ci is a constant and vi

a variable, for 1 6 i 6 N .
In our context, the MSB positions of the variables are known

(deduced using the reliably computed magnitudes) and the
MSB of the constants are computed using (8). In the SIF the
sum-of-product results are stored either in the intermediate,
state or output variables, so their MSB are also known. Thus,
it is easy to deduce the FxP format of the accumulation in
order to guarantee a roundoff error less than a given bound.

Denote (ms, `s) the required FxP format for the result. Then
from [12], in order to guarantee a faithful rounding (i.e. the
SoP evaluation error bounded by 2`s) it is sufficient to perform
the multiplication and accumulation with the format (ms, `s−
g) with g = dlog2Ne. The g extra guard bits are discarded
after the accumulation is performed, as shown in Fig. 5.

s

s

s

s

s

s

g
s

s

ms `s

Fig. 5. Sum-of-Products performed with FxP format (ms, `s − g).

C. Roundoff error analysis

The evaluation of each SoP in fixed-point arithmetic may
provide an additional error. When implemented, the Algo-
rithm (2) is changed to
Jt∗(k+1)←Mx∗(k) + Nu(k) +εt(k)
x∗(k+1)←Kt∗(k+1) + Px∗(k) + Qu(k) +εx(k)

y∗(k)←Lt∗(k+1) + Rx∗(k) + Su(k) +εy(k)
(17)

where εt(k), εx(k) and εy(k) are the vectors of roundoff
errors due to the sum-of-products evaluation.

Denote ε(k) the column vector that aggregates those error
vectors; and ` and w the vectors aggregating the LSB positions
and word-lengths of the intermediate variables, states and
outputs (in that order), respectively.

From the Section IV-B it follows that we can compute SoPs
with faithful rounding. Using equations (7) and (15) we obtain
that the errors ε(k) are element-by-element bounded by ε̄:

ε̄ , 2` = 2
⌈
〈〈Hu〉〉 ū

⌉
2
× 2−w, (18)

where dxe2 is the operator that gives the power-of-2 immedi-
ately greater than x, × is the entrywise product and assuming
the power of 2 of a vector is done element-by-element.

H

Hε

u(k)

ε(k)

+

y(k)

∆y(k)

y∗(k)

Fig. 6. Equivalent system, with errors separated.

In order to capture the effects of the FxP implementation we
must take into account the propagation of the roundoff errors
through the data-flow.

Due to the linearity of the system H, we can express the
implemented system as the initial system with an error ∆y(k)
added to the outputs, as shown in Fig. 6. The vector ∆y(k)
shows the propagation of the error ε(k) through the special
error-system Hε. It is obtained by performing a difference
between the implemented system (17) and the exact one. Its
state-space representation is (AZ ,M1,CZ ,M2), with:

M1 ,
(
KJ−1 In 0

)
, M2 ,

(
LJ−1 0 Ip

)
. (19)

Using such a decomposition and the bound (18) on the
roundoff errors, we can apply the WCPG theorem upon the
system Hε to obtain the maximum amplification of the errors

to the output. Then, for all time instances k the difference
between the exact output y(k) and the implemented output
y∗(k) is bounded by ∆y:

∆y , 2 〈〈Hε〉〉
(⌈
〈〈Hu〉〉 ū

⌉
2
× 2−w

)
. (20)

Therefore, we have a reliable analytical bound on the
data-flow implementation error, which takes into account the
(possible) non-linear propagation of roundoff errors. As we
can see, our approach does not involve any simulations.

D. Word-length optimization

We can note that the output error bound ∆y depends only
on the word-lengths vector w. For hardware implementation,
where it is possible to have different word-lengths for each
variable and operator (multiple word-length paradigm), it
should be possible to find the word-lengths that minimize a
criteria, like area, power consumption, etc., while satisfying a
constraint on the output error.

Although this is out of the scope of this article, such
optimization problem can be solved when the cost function
is not too complicated: for linear cost function (like the sum
of the word-lengths), it can be solved with some Mixed-Integer
Non Linear Programming solver, like Bonmin4.

When considering homogeneous word-lengths, the mini-
mum word-length wmin that guarantees that the output error
is less than a given ε is

wmin =

⌈
log2

(
〈〈Hε〉〉

⌈
〈〈Hu〉〉 ū

⌉
2

ε

)⌉
+ 1. (21)

It can be used to compare realizations.

V. ILLUSTRATIVE EXAMPLES

Z-1

1
u(k)

-a1

b0

1
y(k)

b1

-a2

b2

Z-1

-a3

b3

Z-1

Fig. 7. Direct Form II transposed data-flow.

g1

-1

-1

g2

-1

-1

-1

g3-1

-1

1
u(k)

1
y(k)

Z-1

Z-1

Z-1

0.5

Fig. 8. Lattice Wave Digital Filter data-flow.

4Basic Open-source Nonlinear Mixed INteger programming, https://
projects.coin-or.org/Bonmin

To illustrate our flow from a linear data-flow diagram to
reliable fixed-point implementation, we use two realizations
of the same 3rd order Butterworth filter with cutoff frequency
0.2. The transfer function was designed with Matlab. The first
realization is a Direct Form II transposed, which requires 7
coefficients to be stored. The second one is a Lattice Wave
Digital Filter [19], which requires only 3 coefficients. The
corresponding data-flows are given in Fig. 7 and Fig. 8.

The two data-flow graphs were translated into our internal
framework using the Simulink-to-SIF converter described in
the Section III. Then, for a given ū, equal here to 5.25, the
MSBs of the intermediate variables, states and output were
deduced using (15).

For a given homogeneous word-length w (i.e. the same
w for all variables), the error for each sum-of-products was
deduced along with the final output error, which takes into
account the propagation of the computational errors.

Finally, instead of exhibiting the output error with respect
to the variable word-lengths, we prefer to use a more realistic
indicator, like the total number of bits used for the com-
putations as shown in Fig. 9. We can observe that Lattice
Wave realization requires less coefficients to be stored and,
consequently, slightly smaller total amount of bits than the
Direct Form II transposed to attain the same output error.
In our example, the Direct Form II transposed realization
requires 17 bits per variable to ensure an output error less
than ε = 10−2, whereas 16 bits per variable are enough for
the Lattice Wave one.

0 50 100 150 200 250 300 350 400

100

10−2

10−4

10−6

Total number of bits used in the computations

∆
y

Direct Form II transposed
Lattice Wave Digital Filter

Fig. 9. Output error when the word-length w goes from 4 to 32.

VI. CONCLUSION

We proposed a reliable method to implement linear data-
flows with fixed-point arithmetic, while ensuring that no
overflow occurs and controlling the output error. It is based
on an analytical description that describes all the computations
of a data-flow, and allows performing analytical roundoff error
analysis, thanks to the Worst-Case Peak Gain theorem.

The output error depends exclusively on the word-lengths
used to store the intermediate variables and states, and to
perform the sum-of-products. However, these variables have
different impact on the overall output error. Therefore, as
a perspective, we should focus on solving the word-length

optimization problem, in order to find the word-lengths that
minimize a surface or power consumption criteria, while guar-
anteeing an output error constraint. Finally, the corresponding
code (C or VHDL) will be generated with third-party tools,
like FloPoCo5 [20] or Stratus6 [21].

REFERENCES

[1] T. Hilaire, P. Chevrel, and J. Whidborne, “A unifying framework for
finite wordlength realizations,” IEEE Trans. on Circuits and Systems,
vol. 8, no. 54, pp. 1765–1774, August 2007.

[2] A. Volkova, T. Hilaire, and C. Lauter, “Reliable evaluation of the worst-
case peak gain matrix in multiple precision,” in Computer Arithmetic
(ARITH), 2015 IEEE 22nd Symposium on, June 2015, pp. 96–103.

[3] ——, “Determining fixed-point formats for a digital filter implementa-
tion using the worst-case peak gain measure,” in 2015 49th Asilomar
Conference on Signals, Systems and Computers, Nov 2015, pp. 737–741.

[4] G. Li, “On the structure of digital controllers with finite word length
consideration,” IEEE Trans. on Autom. Control, vol. 43, May 1998.

[5] M. Gevers and G. Li, Parametrizations in Control, Estimation and
Filtering Probems. Springer-Verlag, 1993.

[6] R. Istepanian and J. Whidborne, Eds., Digital Controller implementation
and fragility. Springer, 2001.

[7] B. Widrow and I. Kollár, Quantization Noise: Roundoff Error in Digital
Computation, Signal Processing, Control, and Communications. Cam-
bridge, UK: Cambridge University Press, 2008.

[8] C. Mullis and R. Roberts, “Synthesis of minimum roundoff noise fixed
point digital filters,” in IEEE Transactions on Circuits and Systems, vol.
CAS-23, no. 9, September 1976.

[9] T. Hinamoto, H. Ohnishi, and W. Lu, “Roundoff noise minimization of
state-space digital filters using separate and joint error feedback/coor-
dinate transformation optimization,” in IEEE Transactions on Circuits
and Systems, Fundamental Theory and Applications, vol. 50, 2003.

[10] D. Menard and O. Sentieys, “A methodology for evaluating the precision
of fixed-point systems,” in ICASSP, 2002, pp. 3152–3155.

[11] T. Hilaire and P. Chevrel, “Sensitivity-based pole and input-output errors
of linear filters as indicators of the implementation deterioration in fixed-
point context,” EURASIP Journal on Advances in Signal Processing,
vol. special issue on Quantization of VLSI Digital Signal Processing
Systems, January 2011.

[12] B. Lopez, T. Hilaire, and L.-S. Didier, “Formatting bits to better im-
plement signal processing algorithms,” in 4th international Conference
on Pervasive and Embedded Computing and Communication Systems
(PECCS), Lisbon, Portugal, Jan. 2014.

[13] T. Hilaire and B. Lopez, “Reliable implementation of linear filters with
fixed-point arithmetic,” in Proc. IEEE Workshop on Signal Processing
Systems (SiPS), 2013.

[14] T. Kailath, Linear Systems. Prentice-Hall, 1980.
[15] V. Balakrishnan and S. Boyd, “On computing the worst-case peak gain

of linear systems,” Systems & Control Letters, vol. 19, 1992.
[16] S. P. Boyd and J. Doyle, “Comparison of peak and rms gains for discrete-

time systems,” Syst. Control Lett., vol. 9, no. 1, pp. 1–6, June 1987.
[17] J. Lopez, C. Carreras, and O. Nieto-Taladriz, “Improved interval-

based characterization of fixed-point LTI systems with feedback loops,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, vol. 26, no. 11, pp. 1923–1933, November 2007.

[18] S. Kim, K. Kum, and W. Sung, “Fixed-point optimization utility for C
and C++ based digital signal processing programs,” IEEE Transactions
on Circuits and Systems, vol. 45, November 1998.

[19] A. Fettweiss, “Wave digital filters: Theory and practice,” Proc. of the
IEEE, vol. 74, no. 2, 1986.

[20] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, Jul. 2011.

[21] S. Belloeil, D. Dupuis, C. Masson, J.-P. Chaput, and H. Mehrez,
“Stratus: A procedural circuit description language based upon Python,”
in International Conference on Microelectronics, 2007, pp. 275–278.

5http://flopoco.gforge.inria.fr/
6https://soc-extras.lip6.fr/en/coriolis/stratus/

