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The Worst-Case Peak Gain (WCPG) of a Linear Time Invariant
(LTT) filter is used to determine the output interval of a filter and in
error propagation analysis [5].

Consider a stable LTI filter H in state-space representation:

x(k+1) = Ax(k)+ Bu(k)
& { y(k) = Cx(k) + Du(k) (1)

where u(k) is the input vector, y(k) is the output vector, x(k) is the
state vector and matrices A, B, C, D contain the filter coefficients.

The WCPG of a linear filter can be computed [1] as the infinite
sum W := [D| + 7, |CA*B|. In [6] the authors have proposed an
algorithm for the reliable evaluation of the WCPG matrix in multiple
precision.

However, usually the filter coefficients are rounded prior to imple-
mentation, changing A, B, C and D by rounding. To provide a re-
liable filter implementation, these rounding errors must be taken into
account in the WCPG computation. We represent the rounded coef-
ficients as interval [2] matrices with small radii. Let M! := (M., M,.)
to be an interval matrix centered in M, with radius M,. Then,
the WCPG matrix of a filter H = (AI,BI,CI,DI) is an interval

W= [DI| + 5, |C'AT B! |
In this work we adapt the algorithm presented in [6] to obtain a reli-

able evaluation of the WCPG interval. The WCPG is computed in two
stages: the reliable truncation of the infinite sum and the summation.
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We determine the truncation order only for the center matrices
but add a correction term after the final step. This step requires to
perform an eigenvalue decomposition. To obtain trusted error bounds
on the computed eigenvalues we use the Theory of Verified Inclusions
developed by S. Rump [4].

The summation is done using Interval Arithmetic in midpoint-
radius form. However, powering a dense interval matrix can lead to an
interval explosion. Instead of powering A’ we power an almost diag-
onal matrix T!, for which ||TZ||; < 1 is true. We use an analogue of
Gershgorin circle theorem [3] to verify a spectral norm condition that
needs to be satisfied for the WCPG sum to converge.

It is obvious that we cannot guarantee an a priori given bound on
the WCPG matrix radius W, because the radii of the input matrices
are the limiting factors. However, when given point coefficient matrices
(intervals with zero radii) and an absolute error bound € we guarantee
that the output WCPG interval in not larger than ¢ in width.

References

[1] V. Balakrishnan and S. Boyd. On computing the worst-case peak gain of linear
systems. Systems € Control Letters, 19:265-269, 1992.

[2] H. Dawood. Theories of Interval Arithmetic: Mathematical Foundations and
Applications. LAP Lambert Academic Publishing, 2011.

[3] S. Gershgorin. Uber die Abgrenzung der Eigenwerte einer Matrix. Bull. Acad.
Sci. URSS, 1931(6):749-754, 1931.

[4] S. M. Rump. New results on verified inclusions. In Accurate Scientific Computa-
tions, Symposium, Proceedings, 1985.

[5] A. Volkova, T. Hilaire, and C. Lauter. Determining fixed-point formats for a
digital filter implementation using the worst-case peak gain measure. In 2015
49th Asilomar Conference on Signals, Systems and Computers, Nov 2015.

[6] A. Volkova, T. Hilaire, and C. Lauter. Reliable evaluation of the worst-case peak
gain matrix in multiple precision. In Computer Arithmetic (ARITH), 2015 IEEE
22nd Symposium on, pages 96-103, June 2015.



