A. L. Benabid, P. Pollak, C. Gervason, D. Hoffmann, D. M. Gao et al., Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus, The Lancet, vol.337, issue.8738, pp.403-409, 1991.
DOI : 10.1016/0140-6736(91)91175-T

P. Limousin, P. Pollak, A. Benazzouz, D. Hoffmann, J. F. Le-bas et al., Effect on parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation, The Lancet, vol.345, issue.8942, pp.91-96, 1995.
DOI : 10.1016/S0140-6736(95)90062-4

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin et al., Electrical Stimulation of the Subthalamic Nucleus in Advanced Parkinson's Disease, New England Journal of Medicine, vol.339, issue.16, pp.1105-1116, 1998.
DOI : 10.1056/NEJM199810153391603

K. L. Collins, E. M. Lehmann, and P. G. , Deep brain stimulation for movement disorders, Neurobiology of Disease, vol.38, issue.3, pp.338-383, 2010.
DOI : 10.1016/j.nbd.2009.11.019

A. Benazzouz, C. Gross, J. Féger, T. Boraud, and B. Bioulac, Reversal of Rigidity and Improvement in Motor Performance by Subthalamic High-frequency Stimulation in MPTP-treated Monkeys, European Journal of Neuroscience, vol.21, issue.Suppl. 1, pp.382-389, 1993.
DOI : 10.1111/j.1460-9568.1993.tb00505.x

A. L. Benabid, Deep brain stimulation for Parkinson???s disease, Current Opinion in Neurobiology, vol.13, issue.6, pp.696-706, 2003.
DOI : 10.1016/j.conb.2003.11.001

C. Hammond, R. Ammari, B. Bioulac, and L. Garcia, Latest view on the mechanism of action of deep brain stimulation, Movement Disorders, vol.27, issue.Part 1, pp.2111-2132, 2008.
DOI : 10.1002/mds.22120

URL : https://hal.archives-ouvertes.fr/inserm-00483505

R. J. Coffey, Deep Brain Stimulation Devices: A Brief Technical History and Review, Artificial Organs, vol.39, issue.3, pp.208-228, 2009.
DOI : 10.1111/j.1525-1594.2008.00620.x

D. R. Merrill, M. Bikson, and J. G. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols, Journal of Neuroscience Methods, vol.141, issue.2, pp.171-98, 2005.
DOI : 10.1016/j.jneumeth.2004.10.020

W. Meissner, C. E. Gross, D. Harnack, B. Bioulac, and A. Benazzouz, Deep brain stimulation for Parkinson's disease: Potential risk of tissue damage associated with external stimulation, Annals of Neurology, vol.21, issue.3, pp.449-50, 2004.
DOI : 10.1002/ana.20002

J. Volkmann, E. Moro, and R. Pahwa, Basic algorithms for the programming of deep brain stimulation in Parkinson's disease, Movement Disorders, vol.44, issue.S14, pp.284-293, 2006.
DOI : 10.1002/mds.20961

J. Holsheimer, E. A. Dijkstra, H. Demeulemeester, and B. Nuttin, Chronaxie calculated from current???duration and voltage???duration data, Journal of Neuroscience Methods, vol.97, issue.1, pp.45-50, 2000.
DOI : 10.1016/S0165-0270(00)00163-1

K. S. Bankiewicz, E. H. Oldfield, C. C. Chiueh, J. L. Doppman, D. M. Jacobowitz et al., Hemiparkinsonism in monkeys after unilateral internal carotid artery artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), Life Sciences, vol.39, issue.1, pp.7-16, 1986.
DOI : 10.1016/0024-3205(86)90431-5

R. Heikkila, A. Hess, and R. Duvoisin, Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice, Science, vol.224, issue.4656, pp.1451-1453, 1984.
DOI : 10.1126/science.6610213

U. Ungerstedt, 6-hydroxy-dopamine induced degeneration of central monoamine neurons, European Journal of Pharmacology, vol.5, issue.1, pp.107-117, 1968.
DOI : 10.1016/0014-2999(68)90164-7

K. Nowak, E. Mix, J. Gimsa, U. Strauss, K. K. Sriperumbudur et al., Optimizing a Rodent Model of Parkinson's Disease for Exploring the Effects and Mechanisms of Deep Brain Stimulation, Parkinson's Disease, vol.39, issue.5, p.414682, 2011.
DOI : 10.1038/nrn2653

C. Delaville, J. Chetrit, K. Abdallah, S. Morin, L. Cardoit et al., Emerging dysfunctions consequent to combined monoaminergic depletions in parkinsonism, Neurobiology of Disease, vol.45, issue.2, pp.763-773, 2012.
DOI : 10.1016/j.nbd.2011.10.023

URL : https://hal.archives-ouvertes.fr/hal-01178540

H. Matsumura, G. Kinoshita, S. Satoh, T. Osaka, and O. Hayaishi, A novel apparatus that permits multiple routes for infusions and body-fluid collections in a freely-moving animal, Journal of Neuroscience Methods, vol.57, issue.2, pp.145-154, 1995.
DOI : 10.1016/0165-0270(94)00107-R

A. L. Spieles-engemann, M. M. Behbehani, T. J. Collier, S. L. Wohlgenant, K. Steece-collier et al., Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss, Neurobiology of Disease, vol.39, issue.1, pp.105-120, 2010.
DOI : 10.1016/j.nbd.2010.03.009

S. C. Dulawa, D. K. Grandy, M. J. Low, M. P. Paulus, and M. A. Geyer, Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli, J. Neurosci, vol.19, issue.21, pp.9550-9556, 1999.

Y. Wu, B. I. Hyland, and J. J. Chen, Biomechanical and electromyogram characterization of neuroleptic-induced rigidity in the rat, Neuroscience, vol.147, issue.1, pp.183-96, 2007.
DOI : 10.1016/j.neuroscience.2007.02.045

A. P. Carobrez and L. J. Bertoglio, Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on, Neuroscience & Biobehavioral Reviews, vol.29, issue.8, pp.1193-205, 2005.
DOI : 10.1016/j.neubiorev.2005.04.017

A. Sclafani and K. Ackroff, Reinforcement value of sucrose measured by progressive ratio operant licking in the rat, Physiology & Behavior, vol.79, issue.4-5, pp.663-70, 2003.
DOI : 10.1016/S0031-9384(03)00143-4

M. Russold and J. C. Jarvis, Implantable stimulator featuring multiple programs, adjustable stimulation amplitude and bi-directional communication for implantation in mice, Medical & Biological Engineering & Computing, vol.43, issue.4, pp.695-704, 2007.
DOI : 10.1007/s11517-007-0190-1

D. Harnack, W. Meissner, R. Paulat, H. Hilgenfeld, W. Müller et al., Continuous high-frequency stimulation in freely moving rats: Development of an implantable microstimulation system, 64 Channel Programmable Closed-Loop Neurostimulator With 8 Channel Neural Amplifier and Logarithmic ADC, pp.278-291, 2008.
DOI : 10.1016/j.jneumeth.2007.08.019

X. Qian, H. Hao, B. Ma, X. Wen, and L. Li, Study on DBS device for small animals, Conf. Proc. IEEE Eng. Med. Biol. Soc, vol.2011, pp.6773-6779, 2011.

C. Forni, O. Mainard, C. Melon, D. Goguenheim, L. Kerkerian-le et al., Portable microstimulator for chronic deep brain stimulation in freely moving rats, Journal of Neuroscience Methods, vol.209, issue.1, pp.50-57, 2012.
DOI : 10.1016/j.jneumeth.2012.05.027

URL : https://hal.archives-ouvertes.fr/hal-00843328

M. Azin, D. J. Guggenmos, S. Barbay, R. J. Nudo, and P. Mohseni, A Battery-Powered Activity-Dependent Intracortical Microstimulation IC for Brain-Machine-Brain Interface, IEEE Journal of Solid-State Circuits, vol.46, issue.4, pp.731-745, 2011.
DOI : 10.1109/JSSC.2011.2108770

P. J. Langlois, A. Demosthenous, I. Pachnis, and N. Donaldson, High-Power Integrated Stimulator Output Stages With Floating Discharge Over a Wide Voltage Range for Nerve Stimulation, IEEE Transactions on Biomedical Circuits and Systems, vol.4, issue.1, pp.39-48, 2010.
DOI : 10.1109/TBCAS.2009.2034138

X. Liu, A. Demosthenous, and N. Donaldson, A dual-mode neural stimulator capable of delivering constant current in current-mode and high stimulus charge in semi-voltage-mode, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.2075-2078, 2010.
DOI : 10.1109/ISCAS.2010.5537239

K. Abdelhalim and R. Genov, CMOS DAC-sharing stimulator for neural recording and stimulation arrays, 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp.1712-1715, 2011.
DOI : 10.1109/ISCAS.2011.5937912

M. Hasanuzzaman, G. Simard, N. I. Krouchev, R. Raut, and M. Sawan, Capacitive-data links, energy-efficient and high-voltage compliant visual intracortical microstimulation system, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp.646-649, 2013.
DOI : 10.1109/ISCAS.2013.6571925

E. Noorsal, K. Sooksood, H. Xu, R. Hornig, J. Becker et al., A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants, IEEE Journal of Solid-State Circuits, vol.47, issue.1, pp.244-256, 2012.
DOI : 10.1109/JSSC.2011.2164667

J. Sit and R. Sarpeshkar, A Low-Power Blocking-Capacitor-Free Charge-Balanced Electrode-Stimulator Chip With Less Than 6 nA DC Error for 1-mA Full-Scale Stimulation, IEEE Transactions on Biomedical Circuits and Systems, vol.1, issue.3, pp.172-83, 2007.
DOI : 10.1109/TBCAS.2007.911631

F. Soulier, J. Lerat, L. Gouyet, S. Bernard, and G. Cathébras, A Neural Stimulator Output Stage for Dodecapolar Electrodes, 2008 IEEE Computer Society Annual Symposium on VLSI, pp.487-490, 2008.
DOI : 10.1109/ISVLSI.2008.84

URL : https://hal.archives-ouvertes.fr/lirmm-00279905

T. Tokuda, K. Hiyama, S. Sawamura, K. Sasagawa, Y. Terasawa et al., CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis, IEEE Transactions on Electron Devices, vol.56, issue.11, pp.2577-2585, 2009.
DOI : 10.1109/TED.2009.2030552

J. Tan, X. Liu, K. H. Wee, S. Yen, Y. P. Xu et al., A monolithic programmable nerve/muscle stimulator, 2011 5th International IEEE/EMBS Conference on Neural Engineering, pp.511-514, 2011.
DOI : 10.1109/NER.2011.5910598

E. K. Lee and A. Lam, A Matching Technique for Biphasic Stimulation Pulse, 2007 IEEE International Symposium on Circuits and Systems, pp.817-820, 2007.
DOI : 10.1109/ISCAS.2007.378031

S. Chang, W. Chung, and C. Chuang, System Design of Implantable Micro-stimulator for Medical Treatments, APCCAS 2006, 2006 IEEE Asia Pacific Conference on Circuits and Systems, pp.478-481, 2006.
DOI : 10.1109/APCCAS.2006.342493

T. G. Constandinou, J. Georgiou, and C. Toumazou, A partial-currentsteering biphasic stimulation driver for neural prostheses, IEEE Int. Symp. Circuits Syst. IEEE, pp.2506-2509, 2008.

C. A. Gong, M. Shiue, C. Su, and Y. Chang, An Efficient Micro-Stimulator Array Using Unitary-Size DAC With Adiabatic Baseband Scheme, 2006 13th IEEE International Conference on Electronics, Circuits and Systems, pp.29-32, 2006.
DOI : 10.1109/ICECS.2006.379673

D. Jiang, A. Demosthenous, T. Perkins, X. Liu, and N. Donaldson, A Stimulator ASIC Featuring Versatile Management for Vestibular Prostheses, IEEE Transactions on Biomedical Circuits and Systems, vol.5, issue.2, pp.147-59, 2011.
DOI : 10.1109/TBCAS.2011.2138139

W. Ngamkham, M. N. Van-dongen, and W. A. Serdijn, Biphasic stimulator circuit for a wide range of electrode-tissue impedance dedicated to cochlear implants, 2012 IEEE International Symposium on Circuits and Systems, pp.1083-1086, 2012.
DOI : 10.1109/ISCAS.2012.6271417

C. Sawigun, W. Ngamkham, M. Van-dongen, and A. S. Wouter, A least-voltage drop high output resistance current source for neural stimulation, 2010 Biomedical Circuits and Systems Conference (BioCAS), pp.110-113, 2010.
DOI : 10.1109/BIOCAS.2010.5709583

D. Shen and Y. Chu, A linearized current stimulator for deep brain stimulation, Conf. Proc. IEEE Eng. Med. Biol. Soc, vol.2010, pp.6485-6493, 2010.

R. Shulyzki, K. Abdelhalim, and R. Genov, CMOS current-copying neural stimulator with OTA-sharing, Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp.1232-1235, 2010.
DOI : 10.1109/ISCAS.2010.5537284

A. Eftekhar, T. Constandinou, I. Triantis, C. Toumazou, and E. Drakakis, Towards a reconfigurable sense-and-stimulate neural interface generating biphasic interleaved stimulus, 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp.438-441, 2007.
DOI : 10.1109/CNE.2007.369703

R. Bhandari, S. Negi, and F. Solzbacher, Wafer-scale fabrication of penetrating neural microelectrode arrays, Biomedical Microdevices, vol.56, issue.1-2, pp.797-807, 2010.
DOI : 10.1007/s10544-010-9434-1

F. Kolbl, J. Sabatier, G. N-'kaoua, F. Naudet, E. Faggiani et al., Characterization of a non linear fractional model of electrode-tissue impedance for neuronal stimulation, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp.338-341, 2013.
DOI : 10.1109/BioCAS.2013.6679708

URL : https://hal.archives-ouvertes.fr/hal-00986311

S. F. Lempka, S. Miocinovic, M. D. Johnson, J. L. Vitek, and C. C. Mcintyre, impedance spectroscopy of deep brain stimulation electrodes, Journal of Neural Engineering, vol.6, issue.4, p.46001, 2009.
DOI : 10.1088/1741-2560/6/4/046001

R. Latham, Biomedical applications of batteries, Solid State Ionics, vol.172, issue.1-4, pp.7-11, 2004.
DOI : 10.1016/j.ssi.2004.04.024

C. L. Schmidt and P. M. Skarstad, The future of lithium and lithium-ion batteries in implantable medical devices, Journal of Power Sources, vol.97, issue.98, pp.97-98, 2001.
DOI : 10.1016/S0378-7753(01)00648-6

D. C. Bock, A. C. Marschilok, K. J. Takeuchi, and E. S. Takeuchi, Batteries used to power implantable biomedical devices, Electrochimica Acta, vol.84, pp.155-164, 2012.
DOI : 10.1016/j.electacta.2012.03.057

X. Wei and J. Liu, Power sources and electrical recharging strategies for implantable medical devices, Frontiers of Energy and Power Engineering in China, vol.14, issue.1, pp.1-13, 2008.
DOI : 10.1007/s11708-008-0016-3

F. Kölbl-received-the and M. Sc, Sc degree in electrical engineering teaching from ENS Cachan, France, in 2011. He obtained the Agrgation de Gnie Electrique in 2011. He integrated in 2011 the Bioelectronic group of the IMS Laboratoy to prepare a PhD diploma at the University of Bordeaux. He is currently Teaching and Research Assistant at the University of Bordeaux. His research is focused on circuits interacting with living tissues and, specially, the design of circuits and systems for electrical stimulation in different pathological contexts