K. P. Adragni and R. D. Cook, Sufficient dimension reduction and prediction in regression, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.68, issue.3, pp.4385-4405, 2009.
DOI : 10.1198/016214503000000927

URL : http://rsta.royalsocietypublishing.org/content/roypta/367/1906/4385.full.pdf

C. Archambeau and M. Verleysen, Robust Bayesian clustering, Neural Networks, vol.20, issue.1, pp.129-138, 2007.
DOI : 10.1016/j.neunet.2006.06.009

URL : http://www.cs.ucl.ac.uk/staff/c.archambeau/publ/nn_ca07_web.pdf

J. Baek, G. J. Mclachlan, and L. K. Flack, Mixtures of Factor Analyzers with Common Factor Loadings: Applications to the Clustering and Visualization of High-Dimensional Data, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.32, issue.7, pp.1298-1309, 2010.
DOI : 10.1109/TPAMI.2009.149

C. Bernard-michel, S. Douté, M. Fauvel, L. Gardes, and S. Girard, Retrieval of Mars surface physical properties from OMEGA hyperspectral images using regularized sliced inverse regression, Journal of Geophysical Research, vol.20, issue.2
DOI : 10.1137/1.9780898717921

URL : https://hal.archives-ouvertes.fr/inria-00276116

C. M. Bishop and M. Svensen, Robust Bayesian mixture modelling, Neurocomputing, vol.64, pp.235-252, 2005.

C. Bouveyron, S. Girard, and C. Schmid, High-dimensional data clustering, Computational Statistics & Data Analysis, vol.52, issue.1, pp.502-519, 2007.
DOI : 10.1016/j.csda.2007.02.009

URL : https://hal.archives-ouvertes.fr/inria-00548591

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

F. Chamroukhi, Non-Normal Mixtures of Experts, ArXiv e-prints

D. Cook and F. Lecture, Fisher Lecture: Dimension Reduction in Regression, Statistical Science, vol.22, issue.1, pp.1-26, 2007.
DOI : 10.1214/088342306000000682

R. D. De-veaux, Mixtures of linear regressions, Computational Statistics & Data Analysis, vol.8, issue.3, pp.227-245, 1989.
DOI : 10.1016/0167-9473(89)90043-1

A. Deleforge, F. Forbes, and R. Horaud, High-dimensional regression with gaussian mixtures and partially-latent response variables, Statistics and Computing, vol.19, issue.11, pp.893-911, 2015.
DOI : 10.1109/TNN.2008.2003467

URL : https://hal.archives-ouvertes.fr/hal-01107604

E. Devijver, Finite mixture regression: A sparse variable selection by model selection for clustering, Electronic Journal of Statistics, vol.9, issue.2, pp.2642-2674, 2015.
DOI : 10.1214/15-EJS1082

URL : https://hal.archives-ouvertes.fr/hal-01060079

P. Ding, Bayesian robust inference of sample selection using selection- models, Journal of Multivariate Analysis, vol.124, pp.451-464, 2014.
DOI : 10.1016/j.jmva.2013.11.014

P. Ding, Distribution, The American Statistician, vol.40, issue.3, pp.293-295, 2016.
DOI : 10.1080/01621459.1987.10478458

URL : https://hal.archives-ouvertes.fr/hal-01420274

F. Forbes and D. Wraith, A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: application to robust clustering, Statistics and Computing, vol.94, issue.1, pp.971-984, 2014.
DOI : 10.1016/S0378-3758(00)00208-1

J. Friedman, Multivariate Adaptive Regression Splines, The Annals of Statistics, vol.19, issue.1, pp.1-141, 1991.
DOI : 10.1214/aos/1176347963

S. Frühwirth-schnatter, Finite Mixture and Markov Switching Models, 2006.

L. A. García-escudero, A. Gordaliza, F. Greselin, S. Ingrassia, and A. Mayo-iscar, Robust estimation of mixtures of regressions with random covariates, via trimming and constraints, Statistics and Computing, vol.71, issue.2, pp.27-377, 2017.
DOI : 10.1016/j.csda.2013.07.019

N. Gershenfeld, Nonlinear Inference and Cluster-Weighted Modeling, Annals of the New York Academy of Sciences, vol.808, issue.1 Nonlinear Sig, pp.18-24, 1997.
DOI : 10.1103/PhysRevLett.65.945

S. M. Goldfeld and R. E. Quandt, A Markov model for switching regressions, Journal of Econometrics, vol.1, issue.1, pp.3-15, 1973.
DOI : 10.1016/0304-4076(73)90002-X

C. Hennig, Identifiablity of Models for Clusterwise Linear Regression, Journal of Classification, vol.17, issue.2, pp.273-296, 2000.
DOI : 10.1007/s003570000022

S. Ingrassia, S. C. Minotti, and G. Vittadini, Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions, Journal of Classification, vol.71, issue.3, pp.363-401, 2012.
DOI : 10.1007/978-1-4615-4651-1

Z. Jiang and P. Ding, distributions, Journal of Statistical Planning and Inference, vol.177, pp.50-63, 2016.
DOI : 10.1016/j.jspi.2016.04.004

URL : https://hal.archives-ouvertes.fr/cea-01508502

S. Lee and G. Mclachlan, Finite mixtures of multivariate skew t-distributions: some recent and new results, Statistics and Computing, vol.82, issue.4, pp.181-202, 2014.
DOI : 10.1109/DICTA.2009.88

K. Li, Sliced Inverse Regression for Dimension Reduction, Journal of the American Statistical Association, vol.13, issue.414, pp.316-327, 1991.
DOI : 10.1214/aos/1176345514

URL : http://www.unc.edu/~chongz/Spring2012/SIR.pdf

T. Lin, Robust mixture modeling using multivariate skew t??distributions, Statistics and Computing, vol.14, issue.3, pp.343-356, 2010.
DOI : 10.1002/9780470191613

C. Liu, Robit regression: A simple robust alternative to logistic and probit regression, Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives, pp.227-238, 2004.

Y. V. Marchenko and M. G. Genton, Model, Journal of the American Statistical Association, vol.14, issue.497, pp.304-317, 2012.
DOI : 10.2307/146317

X. Meng and D. Van-dyk, The EM Algorithm-an Old Folk-song Sung to a Fast New Tune, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.59, issue.3, pp.511-567, 1997.
DOI : 10.1111/1467-9868.00082

D. Peel and G. Mclachlan, Robust mixture modeling using the t distribution, Statistics and Computing, vol.10, issue.4, pp.339-348, 2000.
DOI : 10.1023/A:1008981510081

J. C. Pinheiro, C. Liu, and Y. N. Wu, Distribution, Journal of Computational and Graphical Statistics, vol.10, issue.2, pp.249-276, 2001.
DOI : 10.1198/10618600152628059

URL : https://hal.archives-ouvertes.fr/hal-00615365

R. Rosipal and N. Krämer, Overview and Recent Advances in Partial Least Squares, Subspace, Latent Structure and Feature Selection, pp.34-51, 2006.
DOI : 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2

N. Städler, P. Bühlmann, and S. Van-de-geer, ???1-penalization for mixture regression models, TEST, vol.101, issue.2, pp.209-256, 2010.
DOI : 10.1007/978-1-4757-2545-2

S. Subedi, A. Punzo, S. Ingrassia, and P. Mcnicholas, Clustering and classification via cluster-weighted factor analyzers, Advances in Data Analysis and Classification, vol.5, issue.3, pp.5-40, 2013.
DOI : 10.1207/s15327906mbr0503_6

URL : http://arxiv.org/pdf/1209.6463.pdf

S. Subedi, A. Punzo, S. Ingrassia, and P. Mcnicholas, Cluster-weighted $$t$$ t -factor analyzers for robust model-based clustering and dimension reduction, Statistical Methods & Applications, vol.7, issue.1, pp.623-649, 2015.
DOI : 10.1007/s11634-013-0124-8

M. E. Tipping, Sparse Bayesian learning and the relevance vector machine, J. Machine Learning Res, vol.1, pp.211-244, 2001.

V. Vapnik, Statistical Learning Theory

D. Wraith and F. Forbes, Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering, Computational Statistics & Data Analysis, vol.90, pp.90-61, 2015.
DOI : 10.1016/j.csda.2015.04.008

URL : https://hal.archives-ouvertes.fr/hal-01254178

H. Wu, Kernel Sliced Inverse Regression with Applications to Classification, Journal of Computational and Graphical Statistics, vol.17, issue.3, pp.590-610, 2008.
DOI : 10.1198/106186008X345161

L. Xu, M. Jordan, and G. Hinton, An alternative model for mixtures of experts, Adv. Neural Inform. Proc. Systems, pp.633-640, 1995.

W. Yao, Y. Wei, and C. Yu, Robust mixture regression using the <mml:math altimg="si171.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>t</mml:mi></mml:math>-distribution, Computational Statistics & Data Analysis, vol.71, pp.116-127, 2014.
DOI : 10.1016/j.csda.2013.07.019