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Abstract

For an elliptic selfadjoint operator P = −[uµν∂µ∂ν + vν∂ν + w] acting on a fiber bundle over
a compact Riemannian manifold, where uµν , vµ, w are N ×N -matrices, we develop a method
to compute the heat-trace coefficients ar which allows to get them by a pure computational
machinery. It is exemplified in any even dimension by the value of a1 written both in terms
of uµν = gµνu, vµ, w or diffeomorphic and gauge invariants. We also address the question:
when is it possible to get explicit formulae for ar?
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1. Introduction

We consider a compact Riemannian manifold (M, g) without boundary and of dimension
d together with the nonminimal differential operator

P := −[uµν(x)∂µ∂ν + vν(x)∂ν + w(x)]. (1.1)

which is a differential operator on a smooth vector bundle V over M of fiber CN where
uµν , vν , w are N × N -matrices valued functions. This bundle is endowed with a hermitean
metric. We work in a local trivialization of V over an open subset of M which is also a
chart on M with coordinates (xµ). In this trivialization, the adjoint for the hermitean metric
corresponds to the adjoint of matrices and the trace on endomorphisms on V becomes the
usual trace tr on matrices. Since we want P to be a selfadjoint and elliptic operator on
L2(M,V ), we first assume that uµν(x) ξµξν is a positive definite matrix in MN :

uµν(x) ξµξν has only strictly positive eigenvalues for any ξ 6= 0. (1.2)

We may assume without loss of generality that uµν = uνµ. In particular uµµ is a positive
matrix for each µ and each uµν is selfadjoint.
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The asymptotics of the heat-trace

Tr e−tP ∼
t↓0+

∞∑
r=0

ar(P ) tr−d/2 (1.3)

exists by standard techniques (see [1, Section 1.8.1]), so we want to compute these coefficients
ar(P ).
While the spectrum of P is a priori inaccessible, the computation of few coefficients of this
asymptotics is eventually possible. The related physical context is quite large: the operators
P appeared in gauge field theories, string theory or the so-called non-commutative gravity
theory (see for instance the references quoted in [2, 3, 4]). The knowledge of the coefficients
ar are important in physics. For instance, the one-loop renormalization in dimension four
requires a1 and a2.

When the principal symbol of P is scalar (uµν = gµν1N), there are essentially two main
roads towards the calculation of heat coefficients (with numerous variants): the first is ana-
lytical and based on elliptic pseudodifferential operators while the second is more concerned
by the geometry of the Riemannian manifoldM itself with the search for invariants or confor-
mal covariance. Compared with the flourishing literature existing when the principal symbol
is scalar, there are only few works when it is not. One can quote for instance the case of
operators acting on differential forms [5, 6, 7, 8]. The first general results are in [9] or in
the context of spin geometry using the Dirac operators or Stein-Weiss operators [10] also
motivated by physics [2]. See also the approach in [11, 12, 13, 14, 15, 16, 17, 18, 19].
The present work has a natural algebraic flavor inherited from the framework of operators
on Hilbert space comprising its own standard analytical part, so is related with the first
road. In particular, it gives all ingredients to produce mechanically the heat coefficients. It
is also inspired by the geometry à la Connes where P = D2 for a commutative spectral triple
(A,H,D), thus has a deep motivation for noncommutative geometry.

Let us now enter into few technical difficulties.
While the formula for a0(P ) is easily obtained, the computation of a1(P ) is much more
involved. To locate some difficulties, we first recall the parametrix approach, namely the use
of momentum space coordinates (x, ξ) ∈ T ∗xM :

d2(x, ξ) = uµν(x) ξµξν ,
d1(x, ξ) = −ivµ(x) ξµ ,
d0(x) = −w(x).

Then we can try to use the generic formula (see [5])

ar(P ) = 1
(2π)d

1
−i2π

∫
dx dλ dξ e−λ tr [b2r(x, ξ, λ)] (1.4)

where λ belongs to a anticlockwise curve C around R+ and (x, ξ) ∈ T ∗(M). Here the functions
b2r are defined recursively by

b0(x, ξ, λ) := (d2(x, ξ)− λ)−1,

br(x, ξ, λ) := −
∑

r=j+|α|+2−k
j<r

(−i)|α|
α! (∂αξ bj)(∂αxdk) b0.
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The functions b2r, even for r = 1, generate typically terms of the form

tr[A1(λ)B1A2(λ)B2A3(λ) · · · ]

where all matrices Ai(λ) = (d2(x, ξ)− λ)−ni commute but do not commute a priori with Bi,
so that the integral in λ is quite difficult to evaluate in an efficient way. Of course, one can
use the spectral decomposition d2 = ∑

i λi πi (depending on x and ξ) to get,
∑

i1,i2,i3,...

[ ∫
λ∈C

dλ e−λ (λi1 − λ)−ni1 (λi2 − λ)−ni2 (λi3 − λ)−ni3 · · ·
]

tr(πi1B1πi2B2πi3 · · · ). (1.5)

While the λ-integral is easy via residue calculus, the difficulty is then to recombine the sum.
This approach is conceptually based on an approximation of the resolvent (P − λ)−1.

Because of previous difficulties, we are going to follow another strategy, using a purely
functional approach for the kernel of e−tP which is based on the Volterra series (see [20, p.
78],[4, Section 1.17.2]). This approach is not new and has been used for the same purpose in
[9, 2, 3].
However our strategy is more algebraic and more in the spirit of rearrangement lemmas
worked out in [21, 22]. In particular we do not go through the spectral decomposition of uµν
crucially used in [9] (although in a slightly more general case than the one of Section 4). To
explain this strategy, we need first to fix a few notation points.

Let K(t, x, x′) be the kernel of e−tP where P is as in (1.1) and satisfies (1.2). Then

Tr[e−tP ] =
∫
dx tr[K(t, x, x)],

K(t, x, x) = 1
(2π)d

∫
dξ e−ix.ξ (e−tP eix.ξ).

When f is a matrix-valued function on M , we get

−P (eix.ξf)(x) =
(
eix.ξ [−uµνξµξν + 2iuµνξµ∂ν + ivµξµ + w(x)]f

)
(x)

= −
(
eix.ξ [H +K + P ]f

)
(x)

where we used

H(x, ξ) := uµν(x) ξµξν , (1.6)
K(x, ξ) := −iξµ[vµ(x) + 2uµν(x) ∂ν ]. (1.7)

Thus H is the principal symbol of P and it is non-scalar for non-trivial matrices uµν .
If 1(x) = 1 is the unit matrix valued function, we get e−tP eix.ξ = eix.ξ e−t(H+K+P ) 1, so

that, after the change of variables ξ → t1/2ξ, the heat kernel can be rewritten as

K(t, x, x) = 1
(2π)d

∫
dξ e−t(H+K+P ) 1 = 1

td/2
1

(2π)d

∫
dξ e−H−

√
tK−tP 1. (1.8)

A repetitive application of Duhamel formula (or Lagrange’s variation of constant formula)
gives the Volterra series (also known to physicists as Born series):

eA+B = eA +
∞∑
k=1

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sk−1

0
dsk e

(1−s1)AB e(s1−s2)A · · · e(sk−1−sk)AB eskA .
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Since this series does not necessarily converge for unbounded operators, we use only its first
terms to generate the asymptotics (1.3) from (1.8). When A = −H and B = −

√
tK − tP , it

yields for the integrand of (1.8)

e−H−
√
tK−tP1 =

(
e−H −

√
t
∫ 1

0
ds1 e

(s1−1)H K e−s1H

+ t
[ ∫ 1

0
ds1

∫ s1

0
ds2 e

(s1−1)H K e(s2−s1)H K e−s2H −
∫ 1

0
ds1 e

(s1−1)H P e−s1H
]

+O(t2)
)
1. (1.9)

After integration in ξ, the term in
√
t is zero since K is linear in ξ while H is quadratic in ξ,

so that

trK(t, x, x) '
t↓0

1
td/2 [a0(x) + t a1(x) +O(t2)]

with the local coefficients

a0(x) = tr 1
(2π)d

∫
dξ e−H(x,ξ), (1.10)

a1(x) = tr 1
(2π)d

∫
dξ
[ ∫ 1

0
ds1

∫ s1

0
ds2 e

(s1−1)H K e(s2−s1)H K e−s2H
]

− tr 1
(2π)d

∫
dξ [

∫ 1

0
ds1 e

(s1−1)H P e−s1H ] (1.11)

where the function 1 has been absorbed in the last e−siH .
The coefficients a0(P ) and a1(P ) are obtained after an integration in x. Since we will not
perform that integration which converges when manifold M is compact, we restrict to ar(x).

We now briefly explain how we can compute ar(P ). Expanding K and P in ar(x), one
shows in Section 2 that all difficulties reduce to compute algebraic expressions like (modulo
the trace)

1
(2π)d

∫
dξ

∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sk−1

0
dsk e

(s1−1)H B1 e
(s2−s1)H B2 · · ·Bk e

−skH (1.12)

where the Bi are N × N -matrices equal to uµν , vµ, w or their derivatives of order two at
most. Moreover, we see (1.12) as anMN -valued operator acting on the variables (B1, . . . , Bk)
which precisely allows to focus on the integrations on ξ and si independently of these variables.
Then we first compute the integration in ξ, followed by the iterated integrations in si. The
main result of this section is (2.18) which represents the most general operator used in the
computation of ar. We end up Section 2 by a summary of the method. We show that the
previously mentioned integrations are manageable in Section 3. Actually, we prove that we
can reduce the computations to few universal integrals and count the exact number of them
which are necessary to get ar(x) in arbitrary dimension. In Section 4, we reduce to the case
uµν = gµνu where u is a positive matrix and explicitly compute the local coefficient a1 in
Theorem 4.3 in terms of (u, vµ, w). Looking after geometric invariants like for instance the
scalar curvature of M , we swap the variables (u, vµ, w) with some others based on a given
connection A on V . This allows to study the diffeomorphic invariance and covariance under
the gauge group of the bundle V . The coefficient a1 can then be simply written in any
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even dimension in terms of a covariant derivative (combining A and Christoffel symbols). In
Section 5, we use our general results to address the following question: is it possible to get
explicit formulae for ar avoiding the spectral decomposition like (1.5)? We show that the
answer is negative when d is odd. Finally, the case uµν = gµνu + Xµν is considered as an
extension of uµν = gµν1 +Xµν which appeared in the literature.

2. Formal computation of ar(P )

This section is devoted to show that the computation of ar(x) as (1.11) reduces to the
one of the terms as in (1.12). Since a point x ∈M is fixed here, we forget to mention it, but
many of the structures below are implicitly defined as functions of x.

For k ∈ N, let ∆k be the k-simplex
∆k := {s = (s0, · · · sk) ∈ Rk+1

+ | 0 ≤ sk ≤ sk−1 ≤ · · · ≤ s2 ≤ s1 ≤ s0 = 1},
∆0 := ∅ by convention.

We use the algebra MN of N ×N -complex matrices.
Denote by MN [ξ, ∂] the complex vector space of polynomials both in ξ = (ξµ) ∈ Rd and
∂ = (∂µ) which are MN -valued differential operators and polynomial in ξ; for instance,
P, K, H ∈ MN [ξ, ∂] with P of order zero in ξ and two in ∂, K of order one in ξ and ∂, and
H of order two in ξ and zero in ∂.

For any k ∈ N, define a map fk(ξ) : MN [ξ, ∂]⊗k → MN [ξ, ∂], evidently related to (1.12),
by

fk(ξ)[B1 ⊗ · · · ⊗Bk] :=
∫

∆k

ds e(s1−1)H(ξ) B1 e
(s2−s1)H(ξ) B2 · · ·Bk e

−skH(ξ), (2.1)

f0(ξ)[a] := a e−H(ξ), for a ∈ C =: M⊗0

N . (2.2)
Here, by convention, each ∂µ in Bi ∈MN [ξ, ∂] acts on all its right remaining terms. Remark
that the map ξ 7→ fk(ξ) is even.
We first rewrite (1.9) in these notations (omitting the ξ-dependence):

e−H−
√
tK−tP1 = e−H +

∞∑
k=1

(−1)kfk[(
√
tK + tP )⊗ · · · ⊗ (

√
tK + tP )] (2.3)

= e−H

− t1/2f1[K]
+ t(f2[K ⊗K]− f1[P ])
+ t3/2(f2[K ⊗ P ] + f2[P ⊗K]− f3[K ⊗K ⊗K])
+ t2(f2[P ⊗ P ]− f3[K ⊗K ⊗ P ]− f3[K ⊗ P ⊗K]− f3[P ⊗K ⊗K])
+O(t2).

Since all powers of t in (2n+ 1)/2 have odd powers of ξµ1 · · · ξµp (with odd p), the ξ-integrals
in (1.12) will be zero since fk is even in ξ, so only

a0(x) = tr 1
(2π)d

∫
dξ f0[1], (2.4)

a1(x) = tr 1
(2π)d

∫
dξ (f2[K ⊗K]− f1[P ]), (2.5)

a2(x) = tr 1
(2π)d

∫
dξ (f2[P ⊗ P ]− f3[K ⊗K ⊗ P ]− f3[K ⊗ P ⊗K]− f3[P ⊗K ⊗K])
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etc survive.
Our first (important) step is to erase the differential operator aspect of K and P as variables
of fk to obtain variables in the space MN [ξ] of MN -valued polynomials in ξ: because a ∂
contained in Bi will apply on e(si+1−si)HBi+1 · · ·Bke

−skH , by a direct use of Leibniz rule and
the fact that

∂ e−sH = −
∫ s

0
ds1 e

(s1−s)H (∂H) e−s1H , (2.6)

we obtain the following

Lemma 2.1 When all Bj are in MN [ξ, ∂], the functions fk for k ∈ N∗ satisfy

fk(ξ)[B1 ⊗ · · · ⊗Bi∂ ⊗ · · · ⊗Bk] =
k∑

j=i+1
fk(ξ)[B1 ⊗ · · · ⊗ (∂Bj)⊗ · · · ⊗Bk]

−
k∑
j=i

fk+1(ξ)[B1 ⊗ · · · ⊗Bj ⊗ (∂H)⊗Bj+1 ⊗ · · · ⊗Bk]. (2.7)

Proof By definition (omitting the ξ-dependence)

fk[B1 ⊗ · · · ⊗Bi∂ ⊗ · · · ⊗Bk]

=
∫

∆k

ds e(s1−1)HB1 e
(s2−s1)H B2 · · ·Bi∂(e(si+1−si)HBi+1 · · ·Bk e

−skH).

The derivation ∂ acts on each factor in the parenthesis:
– On the argument Bj, j ≥ i+ 1, which gives the first term of (2.7).
– On a factor e(sj+1−sj)H for i ≤ j ≤ k − 1, we use (2.6)

∂ e(sj+1−sj)H = −
∫ sj−sj+1

0
ds′ es

′+sj+1−sj)H (∂H) e−s′H = −
∫ sj

sj+1
ds e(s−sj)H (∂H) e(sj+1−s)H

with s = s′ + sj+1, so that in the integral, one obtains the term

−
∫ 1

0
ds1

∫ s1

0
ds2 · · ·

∫ sk−1

0

∫ sj

sj+1
ds e(s1−1)HB1e

(s2−s1)HB2 · · ·

· · ·Bje
(s−sj)H(∂H) e(sj+1−s)HBj+1 · · ·Bk e

−skH).

Since, as directly checked,
∫ 1

0 ds1 · · ·
∫ sk−1

0 dsk
∫ sj
sj+1 ds =

∫
∆k+1

ds′ with s′j = sj for j ≤ i − 1,
s′i = s and s′j = sj−1 for j ≥ i+ 1, this term is −fk+1[B1⊗· · ·⊗Bj⊗ (∂H)⊗Bj+1⊗· · ·⊗Bk].

– Finally, on the factor e−skH , one has ∂ e−skH = −
∫ sk
0 e(s−sk)H (∂H) e−sH which gives the

last term: −fk+1[B1 ⊗ · · · ⊗Bk ⊗ (∂H)].

Thus (2.3) reduces to compute fk[B1 ⊗ · · · ⊗Bk] where Bi ∈MN [ξ].
Our second step is now to take care of the ξ-dependence: by hypothesis, each Bi in the
tensor product B1 ⊗ · · · ⊗Bk has the form ∑

Bµ1...µ`i ξµ1 · · · ξµ`i with B
µ1...µ`i ∈MN , so that

B1⊗· · ·⊗Bk is a sum of terms like Bµ1...µ`
k ξµ1 · · · ξµ` where B

µ1...µ`
k ∈M⊗k

N . As a consequence,
by linearity of fk in each variable, computation of ar requires only to evaluate terms like

1
(2π)d

∫
dξ ξµ1 · · · ξµ` fk(ξ)[B

µ1...µ`
k ] ∈MN with Bµ1...µ`

k ∈M⊗k
N , (2.8)
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and we may assume that ` = 2p, p ∈ N.
The next step in our strategy is now to rewrite the fk appearing in (2.8) in a way which

is independent of the variables Bµ1...µ`
k , a rewriting obtained in (2.11). Then the driving idea

is to show firstly that such fk can be computed and secondly that its repeated action on
all variables which pop up by linearity (repeat that K has two terms while P has three
terms augmented by the action of derivatives, see for instance (1.11)) is therefore a direct
computational machinery.
For such rewriting we need a few definitions justified on the way.

For k ∈ N, define the (finite-dimensional) Hilbert spaces

Hk := M⊗k
N , H0 := C,

endowed with the scalar product

〈A1 ⊗ · · · ⊗ Ak, B1 ⊗ · · · ⊗Bk〉Hk := tr(A∗1B1) · · · tr(A∗kBk), 〈a0, b0〉H0 := a0b0,

so each MN is seen with its Hilbert–Schmidt norm and ‖A1 ⊗ · · · ⊗Ak‖2
Hk = ∏k

j=1 tr(A∗jAj).
We look at (2.8) as the action of the operator 1

(2π)d
∫
dξ ξµ1 · · · ξµl fk(ξ) acting on the finite

dimensional Hilbert space Hk.
Denote by B(E,F ) the set of bounded linear operators between the vector spaces E and F
and let B(E) := B(E,E). For k ∈ N, let

Ĥk := Hk+1, so Ĥ0 = MN ,

m : Ĥk →MN , m(B0 ⊗ · · · ⊗Bk) := B0 · · ·Bk (multiplication of matrices),
κ : Hk → Ĥk , κ(B1 ⊗ · · · ⊗Bk) := 1⊗B1 ⊗ · · · ⊗Bk ,

ι : M⊗k+1

N → B(Hk,MN), ι(A0 ⊗ · · · ⊗ Ak)[B1 ⊗ · · · ⊗Bk] := A0B1A1 · · ·BkAk ,

ι : MN → B(C,MN), ι(A0)[a] := aA0 ,

ρ : M⊗k+1

N → B(Ĥk), ρ(A0 ⊗ · · · ⊗ Ak)[B0 ⊗ · · · ⊗Bk] := B0A0 ⊗ · · · ⊗BkAk.

For A ∈MN and k ∈ N, define the operators

Ri(A) : Ĥk → Ĥk for i = 0, . . . , k
Ri(A)[B0 ⊗ · · · ⊗Bk] := B0 ⊗ · · · ⊗BiA⊗ · · · ⊗Bk.

Thus

ρ(A0 ⊗ · · · ⊗ Ak) = R0(A0) · · ·Rk(Ak). (2.9)

As shown in Proposition A.1, ι is an isomorphism. The links between the three spaces
M⊗k+1

N , B(Ĥk) and B(Hk,MN) are summarized in the following commutative diagram where
(m ◦ κ∗)(C)[B1 ⊗ · · · ⊗Bk] = m(C[1⊗B1 ⊗ · · · ⊗Bk]):

B(Ĥk)

m ◦κ∗

��

M⊗k+1
N

ρ
44

'
ι **
B(Hk,MN)

(2.10)
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For any matrix A ∈MN and s ∈ ∆k, define

ck(s, A) := (1− s1)A⊗ 1⊗ · · · ⊗ 1 + (s1 − s2)1⊗ A⊗ 1⊗ · · · ⊗ 1

+ · · ·+ (sk−1 − sk)1⊗ · · · ⊗ A⊗ 1 + sk 1⊗ · · · ⊗ 1⊗ A,
c0(s, A) := A

where the tensor products have k + 1 terms, so that ck(s, A) ∈M⊗k+1

N .
This allows a compact notation since now

fk(ξ) =
∫

∆k

ds ι[e−ξαξβ ck(s,uαβ)] ∈ B(Hk,MN), with f0(ξ) = ι(e−ξαξβuαβ), (2.11)

and these integrals converge because the integrand is continuous and the domain ∆k is
compact.
Since we want to use operator algebra techniques, with the help of ck(s, A) ∈ M⊗k+1

N , it
is useful to lift the computation of (2.11) to the (finite dimensional C∗-algebra) B(Ĥk) as
viewed in diagram (2.10). Thus, we define

Ck(s, A) := ρ(ck(s, A)) ∈ B(Ĥk),

and then, by (2.9)

Ck(s, A) = (1− s1)R0(A) + (s1 − s2)R1(A) + · · ·+ (sk−1 − sk)Rk−1(A) + sk Rk(A).

Remark 2.2 All these distinctions between Hk and Ĥk or ck(s, A) and Ck(s, A) seem inno-
cent so tedious. But we will see later on that the distinctions between the different spaces
in (2.10) play a conceptual role in the difficulty to compute the coefficients ar. Essen-
tially, the computations and results take place in B(Ĥk) and not necessarily in the subspace
M⊗k+1

N ⊂ B(Ĥk) (see (2.18) for instance). �

Given a diagonalizable matrix A = C diag(λ1, . . . , λn)C−1 ∈MN , let Cij := CEijC−1 for
i, j = 1, . . . , n where the Eij form the elementary basis of MN defined by [Eij]kl := δik δjl.
We have the easily proved result:

Lemma 2.3 We have
i) Ri(A1A2) = Ri(A2)Ri(A1) and [Ri(A1), Rj(A2)] = 0 when i 6= j.
ii) Ri(A)∗ = Ri(A∗).
iii) When A is diagonalizable, ACij = λiC

ij and CijA = λj C
ij.

Thus, all operators Ri(A) on Ĥk for any k ∈ N have common eigenvectors

Ri(A)[Ci0j0 ⊗ · · · ⊗ Cikjk ] = λji C
i0j0 ⊗ · · · ⊗ Cikjk ,

and same spectra as A.
In particular, there are strictly positive operators if A is a strictly positive matrix.

This means that Ck(s, A) ≥ 0 if A ≥ 0 and s ∈ ∆k, and this justifies the previous lift.
Now, evaluating (2.11) amounts to compute the following operators in B(Ĥk):

Tk,p(x) := 1
(2π)d

∫
∆k

ds
∫
dξ ξµ1 · · · ξµ2p e

−ξαξβ Ck(s,uαβ(x)) : Ĥk → Ĥk, p ∈ N, k ∈ N. (2.12)

T0,0(x) := 1
(2π)d

∫
dξ e−ξαξβu

αβ(x) ∈MN ' ρ(MN) ⊂ B(Ĥ0), (2.13)
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where Tk,p depends on x through uαβ only. Their interest stems from the fact they are
independent of arguments B0 ⊗ · · · ⊗ Bk ∈ Ĥk on which they are applied, so are the corner
stones of this work. Using (2.10), the precise link between Tk,p and fk(ξ) is

m ◦ κ∗ ◦ Tk,p = 1
(2π)d

∫
dξ ξµ1 · · · ξµ2p fk(ξ). (2.14)

The fact that Tk,p is a bounded operator is justified by the following

Lemma 2.4 The above integrals (2.12) and (2.13) converge and Tk,p ∈ B(Ĥk).

Proof We may assume k ∈ N∗ since for k = 0, same arguments apply.
For any strictly positive matrix A with minimal eigenvalues λmin(A) > 0, Lemma 2.3 shows
that, for any s ∈ ∆k,

Ck(s, A) ≥ [(1− s1)λmin(A) + (s1 − s2)λmin(A) + · · ·+ skλmin(A)]1Ĥk = λmin(A)1Ĥk .

We claim that the map ξ ∈ Rd 7→ λmin(ξαξβuαβ) is continuous: the maps ξ ∈ Rd 7→ ξαξβu
αβ

and 0 < a ∈ B(Ĥk) 7→ inf(spectrum(a)) = ‖a−1‖ are continuous (the set of invertible matrices
is a Lie group).
We use spherical coordinates ξ ∈ Rd → (|ξ|, σ) ∈ R+ × Sd−1, where σ := |ξ|−1ξ is in the
Euclidean sphere Sd−1 endowed with its volume form dΩ.
Then λmin(ξαξβuαβ) = |ξ|2 λmin(σασβuαβ) > 0 (remark that σασβuαβ is a strictly positive
matrix). Thus c := inf{λmin(σασβuαβ) |σ ∈ Sd−1} > 0 by compactness of the sphere. The
usual operator-norm of Ĥk applied on the above integral Tk,p , satisfies

‖Tk,p‖ ≤
∫

∆k

ds
∫
σ∈Sd−1

dΩg(σ)
∫ ∞

0
dr ‖rd−1r2p σµ1 · · ·σµ2p e

−r2c1
Ĥk‖

≤
∫

∆k

ds
∫
σ∈Sd−1

dΩg(σ)
∫ ∞

0
dr rd−1+2p e−r

2c = vol(∆k) vol(Sd−1
g ) Γ(d/2+p)

2 c−d/2−p .

For the ξ-integration of (2.12), we use again spherical coordinates, but now ξ = r σ with
r = (gµνξµξν)1/2, σ = r−1ξ ∈ Sd−1

g (this sphere depends on x ∈M through g(x)) and define

u[σ] := uµνσµσν

which is a positive definite matrix for any σ ∈ Sd−1
g . Thus we get

Tk,p = 1
(2π)d

∫
∆k

ds
∫
Sd−1
g

dΩg(σ)σµ1 · · ·σµ2p

∫ ∞
0

dr rd−1+2p e−r
2Ck(s,u[σ]) (2.15)

= Γ(d/2+p)
2(2π)d

∫
Sd−1
g

dΩg(σ)σµ1 · · ·σµ2p

∫
∆k

ds Ck(s, u[σ])−(d/2+p).

Thus, we have to compute the s-integration
∫

∆k
dsCk(s, u[σ])−α for α ∈ 1

2N
∗. We do that via

functional calculus, using Lemma 2.3 iii), by considering the following integrals

Iα,k(r0, r1, . . . , rk) :=
∫

∆k

ds [(1− s1)r0 + (s1 − s2)r1 + · · ·+ skrk]−α

=
∫

∆k

ds [r0 + s1(r1 − r0) + · · ·+ sk(rk − rk−1)]−α (2.16)

Iα,0(r0) := r−α0 , for α 6= 0, (2.17)
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where 0 6= ri ∈ R+ corresponds, in the functional calculus, to positive operator Ri(u[σ]).
Such integrals converge for any α ∈ R and any k ∈ N∗, even if it is applied above only to
α = d/2 + k− r ∈ 1

2N. Nevertheless for technical reasons explained below, it is best to define
Iα,k for an arbitrary α ∈ R.
In short, the operator Tk,p is nothing else than the operator in B(Ĥk)

Tk,p = Γ(d/2+p)
2(2π)d

∫
Sd−1
g

dΩg(σ)σµ1 · · ·σµ2p Id/2+p,k
(
R0(u[σ]), R1(u[σ]), . . . , Rk(u[σ])

)
. (2.18)

Remark that Tk,p depends on x via u[σ] and the metric g.

Remark 2.5 We pause for a while to make a connection with the previous work [9]. There,
the main hypothesis on the matrix uµνξµξν is that all its eigenvalues are positive multiples of
gµνξµξν for any ξ 6= 0. Under this hypothesis, we can decompose spectrally u[σ] = ∑

i λiπi[σ]
where the eigenprojections πi depends on σ but the associated eigenvalues λi do not. Then,
operator functional calculus gives

Id/2+p,k
(
R0(u[σ]), . . . , Rk(u[σ])

)
=

∑
i0,...,ik

Id/2+p,k(λi0 , . . . , λik)R0(πi0 [σ]) · · ·Rk(πik [σ]) (2.19)

and

Tk,p = Γ(d/2+p)
2(2π)d

∑
i1,...,ik

Id/2+p,k(λi0 , . . . , λik)
∫
Sd−1
g

dΩg(σ)σµ1 · · ·σµ2p R0(πi0 [σ]) · · ·Rk(πik [σ])

where all πi0 [σ], . . . , πik [σ] commute as operators in B(Ĥk). However, we do not try to pursue
in that direction since it is not very explicit due to the difficult last integral on the sphere;
also we remind that we already gave up in the introduction the use of the eigenprojections
for the same reason. Instead, we give for instance a complete computation of a1 in Section 4
directly in terms of matrices uµν , vµ, w, avoiding this spectral splitting in the particular case
where uµν = gµνu for a positive matrix u. �

In conclusion, as claimed in the introduction, the above approach really reduces the
computation of all ar(x) for an arbitrary integer r to the control of operators Tk,p which
encode all difficulties since, once known, their actions on an arbitrary variable B1⊗ · · · ⊗Bk

with Bi ∈ Mn are purely mechanical. For instance in any dimension of M , the calculus of
a1(x) needs only to know, T1,0, T2,1, T3,2, T4,3. More generally, we have the following

Lemma 2.6 For any dimension d of the manifold M and x ∈ M , given r ∈ N, the compu-
tation of ar(P ) needs exactly to know each of the 3r + 1 operators Tk,k−r where r ≤ k ≤ 4r
or equivalently to know Id/2,r, Id/2+1,r+1, . . . , Id/2+3r,4r.

Proof As seen in (2.3), using the linearity of fk in each argument, we may assume that in
fk[B1⊗· · ·⊗Bk] each argument Bi is equal to K or P , so generates t1/2 or t in the asymptotic
expansion. Let nK and nP the number of K and P for such fk involved in ar(P ). Since ar(P )
is the coefficient of tr, we have 1

2nK + nP = r and k ≥ r. In particular, nK much be even.
When Bi = K = −iξµ[vµ(x) + 2uµν(x) ∂ν ], again by linearity, we may assume that the

argument in f(k, p) := fk(ξ)[B1(ξ)⊗ · · · ⊗Bk(ξ)] is a polynomial of order 2p since odd order
are cancelled out after the ξ-integration. In such f(k, p), the number of ξ (in the argument)
is equal to nK , so that p = 1

2nK , and the number of derivations ∂ is nK + 2nP .
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We count now all f(k, p) involved in the computation of ar(P ). We initiate the process with
(k, p) = (nK + nP ,

1
2nK), so k− p = r and after the successive propagation of ∂ as in Lemma

2.1, we end up with (k′, p′) where k′ − p′ = r: in (2.7), k → k + 1 while p→ p+ 1 since ∂H
appears as a new argument. So (k′, p′) = (k′, k′ − r) and the maximum of k′ is 2nK + 3nP .
Here, nP = 0, . . . , r and nK = 0, . . . , 2r, so that the maximum is for k′ = 4r.
All f(k, k − r) with r ≤ k ≤ 4r will be necessary to compute ar(P ): Let k be such that
r ≤ k ≤ 3r. Then a term f(k, k − r) will be obtained by the use of Lemma 2.1 applied
on fr[uµ1ν1∂µ1∂ν1 ⊗ · · · ⊗ uµrνr∂µr∂νr ] with an action of k − r derivatives on the esH and the
reminder on the Bi. The same argument, applied to f2r[ξµ1u

µ1ν1∂ν1 ⊗ · · · ⊗ ξµ2ru
µ2rν2r∂ν2r ],

also generates a term f(k, k − r) when 2r ≤ k ≤ 4r.
Finally, remark that we can swap the ξ-dependence of f(k, p) into definition (2.12) of Tk,p to
end up with integrals which are advantageously independent of arguments Bi.

The case r = 0 is peculiar: since k = 0 automatically, we have only to compute T0,0 in
(2.13) which gives a0(x) by (1.10).
The link between the T ’s and the I is given in (2.18).
The preceding reasoning is independent of the dimension d.

Of course, in an explicit computation of ar(x), each of these 3r + 1 operators Tk,k−r can
be used several times since applied on different arguments B1⊗· · ·⊗Bk. The integral Id/2+p,k
giving Tk, p in (2.18) will be explicitly computed in Section 3.

We now list the terms of a1(x). Using the shortcuts
v̄ := ξµv

µ, ūν := ξµu
µν ,

starting from (2.5) and applying Lemma 2.1, we get
− f1[P ] = −f2[uµν ⊗ ∂µ∂νH] + 2f3[uµν ⊗ ∂µH ⊗ ∂νH]− f2[vµ ⊗ ∂µH] + f1[w], (2.20)
f2[K ⊗K] = −f2[v̄ ⊗ v̄] + 2f3[v̄ ⊗ ūν ⊗ ∂νH]− 2f2[ūµ ⊗ ∂µv̄] + 2f3[ūµ ⊗ ∂µH ⊗ v̄]

+ 2f3[ūµ ⊗ v̄ ⊗ ∂µH] + 4f3[ūµ ⊗ ∂µūν ⊗ ∂νH] + 4f3[ūµ ⊗ ūν ⊗ ∂µ∂νH]
− 4f4[ūµ ⊗ ∂µH ⊗ ūν ⊗ ∂νH]− 4f4[ūµ ⊗ ūν ⊗ ∂µH ⊗ ∂νH]
− 4f4[ūµ ⊗ ūν ⊗ ∂νH ⊗ ∂νH]. (2.21)

This represents 14 terms to compute for getting a1(x).

Summary of the method: We pause here to summarize the chosen method. To compute
ar(x), we first expand K and P in (2.3) in terms of matrix valued differential operators which
are arguments of MN -valued operators fk(ξ), and then we remove all derivative operators
from the arguments using the generalized Leibniz rule (2.7). This generates a sum of terms
like (2.8). Then, the method splits along two independent computational axes: the first
one is to collect all the arguments Bµ1...µ`

k produced by (2.7); the second one is to compute
the operators obtained by integration of fk(ξ) with respect to ξ, which, thanks to (2.10)
and (2.14), requires to compute some operators Tk,p. The latter operators are written in
(2.18) using spherical coordinates for that ξ-integral, in terms of universal integrals Id/2+p,k
defining operators depending only on uµν and the metric g. In the generic situation, the
links between Tk,p, Id/2+p,k, and fk are given in (2.18) and (2.14), but another link between
fk and Id/2+p,k will be given in (4.4) in a particular case where the integrals (2.18) can be
fully computed. The last step of the method is to collect the (matrix) traces of evaluations of
operators (second axe) on the arguments (first axe): ar(x) is just a sum of such contributions.
Moreover, Lemma 2.6 determines the number of integrals Id/2+p,k to compute to get ar(x).
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3. Integral computations of Iα,k

We begin with few interesting remarks on Iα,k defined in (2.16) and (2.17):

Proposition 3.1 Properties of functions Iα,k:
i) Recursive formula valid for 1 6= α ∈ R and k ∈ N∗:

Iα,k(r0, . . . , rk) = 1
(α−1)(rk−1 − rk)−1[Iα−1,k−1(r0, . . . , rk−2, rk)− Iα−1,k−1(r0, . . . , rk−1)]. (3.1)

(The abandoned case I1,k is computed in Proposition 3.3.)
ii) Symmetry with respect to last two variables:

Iα,k(r0, . . . , rk−1, rk) = Iα,k(r0, . . . , rk, rk−1).

iii) Continuities:
The functions Iα,k : (R∗+)k+1 → R∗+ are continuous for all α ∈ R.
For any (r0, . . . , rk−1, rk) ∈ (R∗+)k+1, the map α ∈ R+ 7→ Iα,k(r0, . . . , rk−1, rk) is continuous.

iv) Special values: for any α ∈ R and k ∈ N,

Iα,k(r0, · · · , r0︸ ︷︷ ︸
k+1

) = 1
k! r
−α
0 . (3.2)

Proof i) In Iα,k(r0, . . . , rk) =
∫ 1

0 ds1
∫ s1
0 ds2 · · ·

∫ sk−1
0 dsk [r0+s1(r1−r0)+· · ·+sk(rk−rk−1)]−α,

the last integral is equal to

1
(α−1)(rk−1 − rk)−1 [(r0 + s1(r1 − r0) + · · ·+ sk−1(rk−1 − rk−2) + sk−1(rk − rk−1))−(α−1)

− (r0 + s1(r1 − r0) + · · ·+ sk−1(rk−1 − rk−2))−(α−1)]

which gives the claimed relation. One checks directly from the definition (2.16) of Iα+1,1(r0, r1)
that (3.1) is satisfied for the given Iα,0.

ii) Iα,1(r0, r1) =
∫ 1
0 ds r0 + s(r1 − r0)]−α =

∫ 1
0 ds

′ [r1 + s′(r0 − r1)]−α = Iα,1(r1, r0) after the
change of variable s → s′ = 1 − s. The symmetry follows now using (3.1) by a recurrence
process.

iii) The map g(s, r̄) := [(1 − s1)r0 + (s1 − s2)r1 + · · · + skrk]−α > 0 is continuous at the
point r̄ ∈ (R∗+)k+1 and uniformly bounded in a small ball B around r̄ since then we have
g(s, r̄) ≤ max(r−|α|min , r

|α|
max) where rmin or max := min or max{ri | r̄ ∈ B} > 0. Thus, since the

integration domain ∆k is compact, by Lebesgue’s dominated convergence theorem, we get
the continuity of Iα,k.
It remains to prove the continuity of α 7→ Iα,k(r0, . . . , rk−1, rk): If rmin := min ri > 0, then
(1−s1)r0 +(s1−s2)r1 +· · ·+skrk ≥ rmin, so that ((1−s1)r0 +(s1−s2)r1 +· · ·+skrk)−α ≤ r−αmin
and choosing a = min(1/2, rmin), r−αmin ≤ a−α ≤ a−β1 for α ∈ (β0, β1), we can apply again
Lebesgue’s dominated convergence theorem.

(iv) Using the very definition (2.16),

Iα,k(r0, . . . , r0) =
∫

∆k

ds r−α0 = vol(∆k)r−α0 = 1
k!r
−α
0 .
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From Lemma 2.6 and (2.18), the computation of ar(P ), for r ≥ 1 (since a0 is known
already by (4.5)) in spatial dimension d ≥ 1, requires all Id/2+k−r,k for r ≤ k ≤ 4r. The
sequence Id/2,r, Id/2+1,r+1, . . . , Id/2+3r,4r belongs to the same recursive relation (3.1), except if
there is a s ∈ N such that d/2 + s = 1, which can only happen with d = 2 and s = 0 (see
Case 1 below). The computation of this sequence requires then to compute Id/2,r as the root
of (3.1).

The function Id/2,r can itself be computed using (3.1) when this relation is relevant.
Case 1: d is even and d/2 ≤ r, recursive sequence (3.1) fails at I1,r−d/2+1:

I1,r−d/2+1 → I2,r−d/2+2 → · · · → Id/2,r → Id/2+1,r+1 → · · · → Id/2+3r,4r︸ ︷︷ ︸
used to compute ar(x)

. (3.3)

Case 2: d is even and r < d/2, relation (3.1) never fails and

Id/2−r,0 → Id/2−r+1,1 → Id/2−r+2,2 → · · · → Id/2,r → Id/2+1,r+1 → · · · → Id/2+3r,4r︸ ︷︷ ︸
used to compute ar(x)

. (3.4)

Case 3: d is odd, relation (3.1) never fails and

Id/2−r,0 → Id/2−r+1,1 → Id/2−r+2,2 → · · · → Id/2,r → Id/2+1,r+1 → · · · → Id/2+3r,4r︸ ︷︷ ︸
used to compute ar(x)

. (3.5)

In the latter case, the root is Iα,0 with α = d/2−r half-integer, positive or negative and both
situation have to be considered separately.

The recursive relation (3.1), which for Iα,k follows from the integration on the k-simplex
∆k, has a generic solution:

Proposition 3.2 Given α0 ∈ R, k0 ∈ N and a function F : R∗+ → R∗+, let the function
Jα0+k0,k0 : (R∗+)k+1 → R∗+ be defined by

Jα0+k0,k0(r0, . . . , rk) := cα0+k0,k0

k0∑
i=0

[ k0∏
j=0
j 6=i

(ri − rj)−1
]
F (ri).

i) Ascending chain: Then, all functions Jα0+k,k obtained by applying the recurrence for-
mula (3.1) for any k ∈ N, k ≥ k0 have the same form:

Jα0+k,k(r0, . . . , rk) := cα0+k,k

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
F (ri) (3.6)

with
cα0+k,k = (−1)k−k0

(α0+k0)···(α0+k−1) cα0+k0,k0 for k > k0 . (3.7)

ii) Descending chain: when α0 ∈ R\{−N}, the functions Jα0+k,k defined by (3.6) for
k ∈ N∗ starting with k0 = 0, the root F (r0) = Jα0,0(r0) and

cα0+k,k = (−1)k
α0(α0+1)···(α0+k−1) (3.8)

satisfy (3.1).
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Proof i) It is sufficient to show that

X := 1
α−1(r`−1 − r`)−1[Jα−1,`−1(r0, . . . , r`−2, r`)− Jα−1,`−1(r0, . . . , r`−1)].

has precisely the form (3.6) for ` = k0 + 1 and α = α0 + k0 + 1. We have

X = cα−1,`−1
α−1 (r`−1 − r`)−1

[ `−2∑
i=0

( `−2∏
j=0
j 6=i

(ri − rj)−1
)
(ri − r`)−1 F (ri) +

`−2∏
j=0

(r` − ri)−1 F (r`)

−
`−2∑
i=0

( `−2∏
j=0
j 6=i

(ri − rj)−1
)
(ri − r`−1)−1 F (ri)−

`−2∏
j=0

(r`−1 − ri)−1 F (r`−1)
]
. (3.9)

We can combine the two sums on i = 0, . . . , `− 2 as:
`−2∑
j=0

( `−2∏
j=0
j 6=i

(ri− rj)−1
)
[(ri− r`)−1− (ri− r`−1)−1]F (ri) = (r`− r`−1)

`−2∑
j=0

( ∏̀
j=0
j 6=i

(ri− rj)−1
)
F (ri).

Including (r`−1 − r`)−1, the others terms in (3.9) correspond to [∏`
j=0
j 6=i

(ri − rj)−1]F (ri) for

i = `− 1 and i = ` (up to a sign), so that

X = − cα−1,`−1
α−1

∑̀
j=0

( ∏̀
j=0
j 6=i

(ri − rj)−1
)
F (ri)

which yields cα0+k0+1,k0+1 = − 1
α0+k0

cα0+k0,k0 and so the claim (3.7).
ii) It is the same argument with k0 = 0 and the hypothesis α0 /∈ −N guarantees the

existence of (3.8) and moreover cα0,0 = 1.

Proposition 3.2 exhibits the general solution of Cases 2 and 3 in (3.4) and (3.5) (with
α0 = d/2−r, for d even and α0 > 0, or for d odd), with, for both, F (r0) = Id/2−r,0(r0) = r−α0

0 ,
so that

Id/2−r+k,k(r0, . . . , rk) = (−1)k
(d/2−r)(d/2−r+1)···(d/2−r+k−1)

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r
−(d/2−r)
i . (3.10)

To control the reminder Case 1 of chain (3.3) where α0 ∈ −N (so for d even and α0 =
d/2 − r ≤ 0), we need to compute the functions Ik−α0,k for α0 ∈ {0, 1, · · · , k − 1}. This is
done below and shows surprisingly enough that the generic solution of Proposition 3.2 holds
true also for a different function F (r0). Actually, this is simple consequence of the fact that,
despite its presentation in (3.10), the RHS has no poles as function of r.

Corollary 3.3 Case 1: d even and d/2 ≤ r (so α0 = d/2− r ≤ 0).
For any k ∈ N∗, and ` = r − d/2 ∈ {0, 1, · · · , k − 1}

Ik−`,k(r0, . . . , rk) = (−1)k−`−1

(k−`−1)! `!

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r`i log ri. (3.11)
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Proof Let d/2 = m ∈ N∗. Then using the continuity of Proposition 3.1 with (3.10)

Ik−`,k(r0, . . . , rk) = lim
r→m+`

Im−r+k,k(r0, . . . , rn+k)

= lim
r→m+`

(−1)k
(m−r)···(m−r+k−1)

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r
−(m−r)
i

= [ lim
r→m+`

(−1)k−1

(m−r)···(m−r+`−1)
1

(m−r+`+1)···(m−r+k−1) ]

lim
r→m+`

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r`i

1
r−(m+`) r

r−(m+`)
i

= (−1)k−`−1

(k−`−1)! `!

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r`i log ri

where we used (A.1) for the second limit in last equality.

The next propositions compute explicitly Case 3 and then Case 2, and the result is not
written as in (3.10) where denominators in ri− rj appear. This allows to deduce algorithmi-
cally (i.e. without any integration) the sequence Id/2,r, Id/2+1,r+1, . . . , Id/2+3r,4r.

Proposition 3.4 Case 3: d is odd.
If d/2− r = `+ 1/2 with ` ∈ N, the root and its follower are

I`+1/2,0(r0) = r
−`−1/2
0 ,

I`+3/2,1(r0, r1) = 2
2`+1(√r0

√
r1 )−2`−1(√r0 +√r1 )−1 ∑

0≤l1≤2`

√
r0

l1 √r1
2`−l1 ,

while if d/2− r = −`− 1/2 with ` ∈ N, the root and its follower are

I−`−1/2,0(r0) = r
`+1/2
0 ,

I−`+1/2,1(r0, r1) = 2
2`+1(√r0 +√r1 )−1 ∑

0≤l1≤2`

√
r0

l1 √r1
2`−l1 .

Proof Using (3.1) and (2.17), we get when ` ≥ 0

I`+3/2,1(r0, r1) = 1
`+1/2(r0 − r1)−1[I`+1/2,0(r1)− I`+1/2,0(r0)]

= 2
2`+1(√r0 −

√
r1 )−1(√r0 +√r1 )−1[r−`−1/2

1 − r−`−1/2
0 ]

where the term in bracket is

r
−`−1/2
1 − r−`−1/2

0 = (√r0
√
r1 )−2`−1[r2`+1

0 − r2`+1
1 ]

= (√r0
√
r1 )−2`−1(√r0 −

√
r1 )

∑
0≤l1≤2`

√
r0

l1 √r1
2`−l1 ,

which gives the result. Similar proof for the other equality.
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This proposition exhibits only the two first terms of the recurrence chain in Case 3: similar
formulae can be obtained at any level in which no (ri − rj)−1 factors appear. Unfortunately,
they are far more involved.

Proposition 3.5 Case 2: d even and r < d/2.
For k ∈ N∗ and N 3 n = d/2− r + k ≥ k + 1,

In,k(r0, . . . , rk)
= (r0···rk)−1

(n−1)···(n−k)

∑
0≤lk≤lk−1≤···
···≤l1≤n−(k+1)

r
l1−(n−(k+1))
0 rl2−l11 · · · rlk−lk−1

k−1 r−lkk (3.12)

= (r0···rk)−(n−k)

(n−1)···(n−k)

∑
0≤lk≤lk−1≤···
···≤l1≤n−(k+1)

rl10 r
l2+(n−(k+1))−l1
1 · · · rlk+(n−(k+1))−lk−1

k−1 r
(n−(k+1))−lk
k . (3.13)

In (3.13), all exponents in the sum are positive while they are negative in (3.12). In particular

In+k,k(r0, . . . , rk) = (r0···rk)−n
(n+k−1)···(n+1)n

∑
0≤lk≤lk−1≤···
···≤l1≤n−1

rl10 r
l2+(n−1)−l1
1 · · · rlk+(n−1)−lk−1

k−1 r
(n−1)−lk
k .

(3.14)

Proof The first and second equalities follow directly from the third that we prove now.
Equality (3.14) is true for k = 1 (the case k = 0 is just the convention (2.17)) since

In,1(r0, r1) =
∫ 1

0
ds1 (r0 + s1(r1 − r0)−n = 1

n−1(r0 − r1)−1[r−n+1
1 − r−n+1

0 ]

= 1
n−1(r0r1)−n+1

n−2∑
l1=0

rl10 r
n−2−l1
1 .

Assuming (3.14) holds true for l = 0, . . . , k − 1, formula (3.1) gives

In+k,k(r0, . . . , rk)
= 1

n+k−1(rk−1 − rk)−1
[
In+k−1,k−1(r0, . . . , rk−2, rk)− In+k−1,k−1(r0, . . . , rk−2, rk−1)

]
.

The term in bracket is
(r0···rk−2rk)−n

(n+k−2)···n

∑
0≤lk−1≤lk−2≤···
···≤l1≤n−1

rl10 r
l2+(n−1)−l1
1 · · · rlk−1+(n−1)−lk−2

k−2 r
n−1−lk−1
k

− (r0···rk−2rk−1)−n
(n+k−2)···n

∑
0≤lk−1≤lk−2≤···
···≤l1≤n−1

rl10 r
l2+(n−1)−l1
1 · · · rlk−1+(n−1)−lk−2

k−2 r
n−1−lk−1
k−1 .

Thus

In+k,k(r0, . . . , rk+1) = (r0···rk−2)−n
(n+k−1)···n

∑
0≤lk−1≤lk−2≤···
···≤l1≤n−1

rl10 r
l2+(n−1)−l1
1 · · · rlk−1+(n−1)−lk−2

k−2

(rk−1 − rk)−1
[
r−nk r

n−1−lk−1
k − r−nk−1r

(n−1)−lk−1
k−1

]
.
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Since the last line is equal to

(rk−1rk)−1−lk−1
∑

0≤lk≤lk−1

rlkk−1r
lk−1−lk
k = (rk−1rk)−n

∑
0≤lk≤lk−1

r
(n−1)+lk−lk−1
k−1 r

(n−1)−lk
k

we have proved (3.14).

The interest of (3.14) is the fact that in (2.18) we have the following: for B0⊗· · ·⊗Bk ∈ Ĥk,

In+k,k
(
R0(u[σ]), . . . , Rk(u[σ])

)
[B0 ⊗ · · · ⊗Bk]

= 1
(n+k−1)···(n+1)n

∑
0≤lk≤lk−1≤···
···≤l1≤n−1

B0 u[σ]l1−n ⊗B1 u[σ]l2−l1−1 ⊗ · · ·

· · · ⊗Bk−1 u[σ]lk−lk−1−1 ⊗Bk u[σ]−lk−1; (3.15)

or viewed as an operator in B(Hk,MN) (see diagram (2.10)):

m ◦ κ∗ ◦ In+k,k
(
R0(u[σ]), . . . , Rk(u[σ])

)
[B1 ⊗ · · · ⊗Bk]

= 1
(n+k−1)···(n+1)n

∑
0≤lk≤lk−1≤···
···≤l1≤n−1

u[σ]l1−nB1 u[σ]l2−l1−1B2 · · ·Bk−1 u[σ]lk−lk−1−1Bk u[σ]−lk−1.

While, if one wants to use directly (3.10) on B0 ⊗ · · · ⊗Bk, we face the difficulty to evaluate
[Ri(u)−Rj(u)]−1[B0 ⊗ · · · ⊗Bk] in Ĥk.

Another defect of (3.10) shared by (3.11) is that it suggests an improper behavior of inte-
grals In+1,k+n when two variables ri are equal. But the continuity proved in Proposition 3.1
shows that this is just an artifact.

4. An example for uµν = gµνu

Here, we explicitly compute a1(x) assuming P satisfies (1.1) and (4.1).
Given a strictly positive matrix u(x) ∈MN where x ∈ (M, g), we satisfy Hypothesis 1.2 with

uµν(x) := gµν(x)u(x). (4.1)

This implies that

H(x, ξ) = |ξ|2g(x) u(x) where |ξ|2g(x) := gµν(x) ξµξν .

Of course the fact that u[σ] = u is then independent of σ, simplifies considerably (2.18) since
the integral in ξ can be performed. Thus we assume (4.1) from now on and (2.18) becomes

Tk,p = gdG(g)µ1...µ2p Id/2+p,k
(
R0(u), R1(u), . . . , Rk(u)

)
∈ B(Ĥk) (4.2)

with (see [23, Section 1.1])

gd := 1
(2π)d

∫
Rd
dξ e−|ξ|

2
g(x) =

√
|g|

2d πd/2 ,

G(g)µ1...µ2p := 1
(2π)d gd

∫
dξ ξµ1 · · · ξµ2p e

−gαβξαξβ

= 1
22p p!

( ∑
ρ∈S2p

gµρ(1)µρ(2) · · · gµρ(2p−1)µρ(2p)

)
= (2p)!

22p p! g(µ1µ2...µ2p) (4.3)
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where |g| := det(gµν), S2p is the symmetric group of permutations on 2p elements and the
parenthesis in the index of g is the complete symmetrization over all indices.

Recall from Lemma 2.3 that if u has a spectral decomposition

u =
N−1∑
i=0

riEi ,

each Rj(u) has the same spectrum as u.
Using the shortcuts

Id/2+p,k := Id/2+p,k
(
R0(u), . . . , Rk(u)

)
,

the formula (2.8) becomes simply

1
(2π)d

∫
dξ ξµ1 · · · ξµ2p fk(ξ)[B

µ1...µ2p
k ] = gd (m ◦ κ∗ ◦ Id/2+p,k)[G(g)µ1...µ2p B

µ1...µ2p
k ]

= gd (m ◦ Id/2+p,k)[1⊗G(g)µ1...µ2p B
µ1...µ2p
k ]. (4.4)

In particular, it is possible to compute the dimension-free contractions G(g)µ1...µ2p B
µ1...µ2p
k

before evaluating the result in the Id/2+p,k’s.
For a0(x), we get

a0(x) = tr 1
(2π)d

∫
dξ e−u(x)|ξ|2g(x) = gd(x) tr[u(x)−d/2]. (4.5)

In the sequel, we use frequently the following

Lemma 4.1 For any n1, n2, n3 ∈ N, A1, A2 ∈MN , α ∈ R+, and k = n1 +n2 +n3 + 2, define

X(A1, A2) := tr(m ◦ Iα,k[1⊗ u⊗ · · · ⊗ u︸ ︷︷ ︸
n1

⊗A1 u⊗ · · · ⊗ u︸ ︷︷ ︸
n2

⊗A2 ⊗ u⊗ · · · ⊗ u︸ ︷︷ ︸
n3

]).

we have

X(A1, A2) =
∑
r0,r1

rn1+n3
0 rn2

1 Iα,k(r0, · · · , r0︸ ︷︷ ︸
n1+1

, r1, · · · , r1︸ ︷︷ ︸
n2+1

, r0, · · · , r0︸ ︷︷ ︸
n3+1

) tr (E0A1E1A2) (4.6)

where Ei is the eigenprojection associated to eigenvalues ri of u.
In particular,

if [A1, u] = 0, X(A1, A2) = 1
k! tr(uk−α−2A1A2). (4.7)

Proof The number X(A1, A2) is equal to∑
ri

Iα,k(r0, . . . , rk) tr
(
E0uE1u · · ·En1︸ ︷︷ ︸

n1+1

A1En1+1uE1u · · ·En1+n2+1︸ ︷︷ ︸
n2+1

A2

En1+n2+2u · · ·uEn1+n2+n3+2︸ ︷︷ ︸
n3+1

)

=
∑
ri

Iα,k(r0, . . . , rk) tr
(
En1+n2+2u · · ·uEn1+n2+n3+2E0uE1u · · ·En1A1

En1+1uE1u · · ·En1+n2+1A2
)

=
∑
ri

rn1+n3
0 rn2

1 Iα,k(r0, · · · , r0︸ ︷︷ ︸
n1+1

, r1, · · · , r1︸ ︷︷ ︸
n2+1

, r0, · · · , r0︸ ︷︷ ︸
n3+1

) tr(un1+n3E0A1u
n2E1A2)

18



yielding (4.6).
The particular case follows from tr(E0A1E1A2) = δ0,1 tr(E0A1A2) and

Iα,k(r0, · · · , r0︸ ︷︷ ︸
k+1

) = 1
k! r
−α
0 . (4.8)

We also quote for further references the elementary

Corollary 4.2 For any symmetric tensor Sab = Sba, any Aa, Ab ∈ MN and any function
g : (r0, r1) ∈ (R∗+)2 → R,∑

ri

g(r0, r1)Sab tr(πr0Aaπr1Ab) =
∑
ri

1
2 [g(r0, r1) + g(r1, r0)]Sab tr(πr0Aaπr1Ab). (4.9)

We now divide the computation of a1(x) into several steps.

4.1. Collecting all the arguments
As a first step, we begin to collect all terms Bµ1...µ2p

k of (4.4) due to the different variables
appearing in (2.20) and (2.21), including their signs.

Variable in f1: w.
Variables in f2 without the common factor ξµ1ξµ2 and summation over µ1, µ2:

−uµν ⊗ ∂µ∂νH → −gµν(∂µ∂νgµ1µ2)u⊗ u− 2gµν(∂µgµ1µ2)u⊗ ∂νu− gµνgµ1µ2 u⊗ ∂µ∂νu
−vµ ⊗ ∂µH → −(∂µgµ1µ2) vµ ⊗ u− gµ1µ2 vµ ⊗ ∂µu
−v̄ ⊗ v̄ → −vµ1 ⊗ vµ2

−2ūµ ⊗ ∂µv̄ → −2gµµ1 u⊗ ∂µvµ2 .

Variables in f3 without the commun factor Π4
i=1ξµi and summation over the µi:

2uµν ⊗ ∂µH ⊗ ∂νH → +2gµν(∂µgµ1µ2)(∂νgµ3µ4)u⊗ u⊗ u
+2gµν(∂µgµ1µ2)gµ3µ4 u⊗ u⊗ ∂νu
+2gµνgµ1µ2(∂νgµ3µ4)u⊗ ∂µu⊗ u
+2gµνgµ1µ2gµ3µ4 u⊗ ∂µu⊗ ∂νu

2v̄ ⊗ ūµ ⊗ ∂µH → +2gµµ2(∂µgµ3µ4) vµ1 ⊗ u⊗ u+ 2gµµ2gµ3µ4 vµ1 ⊗ u⊗ ∂µu

2ūµ ⊗ ∂µH ⊗ v̄ → +2gµµ1(∂µgµ2µ3)u⊗ u⊗ vµ4 + 2gµµ1gµ2µ3 u⊗ ∂µu⊗ vµ4

2ūµ ⊗ v̄ ⊗ ∂µH → +2gµµ1(∂µgµ3µ4)u⊗ vµ2 ⊗ u+ 2gµµ1gµ3µ4 u⊗ vµ2 ⊗ ∂µu

4ūµ ⊗ ∂µūν ⊗ ∂νH → +4gµµ1(∂µgνµ2)(∂νgµ3µ4)u⊗ u⊗ u
+4gµµ1(∂µgνµ2)gµ3µ4 u⊗ u⊗ ∂νu
+4gµµ1gνµ2(∂νgµ3µ4)u⊗ ∂µu⊗ u
+4gµµ1gνµ2gµ3µ4 u⊗ ∂µu⊗ ∂νu

4ūµ ⊗ ūν ⊗ ∂µ∂νH → +4gµµ1gνµ2(∂µ∂νgµ3µ4)u⊗ u⊗ u
+4gµµ1gνµ2(∂µgµ3µ4)u⊗ u⊗ ∂νu
+4gµµ1gνµ2(∂νgµ3µ4)u⊗ u⊗ ∂µu
+4gµµ1gνµ2gµ3µ4 u⊗ u⊗ ∂µ∂νu
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Variables in f4 without the commun factor Π6
i=1ξµi and summation over the µi:

−4ūµ ⊗ ∂µH ⊗ ūν ⊗ ∂νH → −4gµµ1(∂µgµ2µ3)gνµ4(∂νgµ5µ6)u⊗ u⊗ u⊗ u
−4gµµ1(∂µgµ2µ3)gνµ4gµ5µ6 u⊗ u⊗ u⊗ ∂νu
−4gµµ1gµ2µ3gνµ4(∂νgµ5µ6)u⊗ ∂µu⊗ u⊗ u
−4gµµ1gµ2µ3gνµ4gµ5µ6 u⊗ ∂µu⊗ u⊗ ∂νu

−4ūµ ⊗ ūν ⊗ ∂µH ⊗ ∂νH → −4gµµ1gνµ2(∂µgµ3µ4)(∂νgµ5µ6)u⊗ u⊗ u⊗ u
−4gµµ1gνµ2(∂µgµ3µ4)gµ5µ6 u⊗ u⊗ u⊗ ∂νu
−4gµµ1gνµ2gµ3µ4(∂νgµ5µ6)u⊗ u⊗ ∂µu⊗ u
−4gµµ1gνµ2gµ3µ4gµ5µ6 u⊗ u⊗ ∂µu⊗ ∂νu

−4ūµ ⊗ ūν ⊗ ∂νH ⊗ ∂µH → −4gµµ1gνµ2(∂νgµ3µ4)(∂µgµ5µ6)u⊗ u⊗ u⊗ u
−4gµµ1gνµ2(∂νgµ3µ4)gµ5µ6 u⊗ u⊗ u⊗ ∂µu
−4gµµ1gνµ2gµ3µ4(∂µgµ5µ6)u⊗ u⊗ ∂νu⊗ u
−4gµµ1gνµ2gµ3µ4gµ5µ6 u⊗ u⊗ ∂νu⊗ ∂µu.

A second and tedious step is now to do in (4.4) the metric contractions G(g)µ1...µ2p B
µ1...µ2p
k

for previous terms where the G(g)µ1...µ2p are given by:

G(g)µ1µ2 = 1
2 gµ1µ2 , (4.10)

G(g)µ1µ2µ3µ4 = 1
4 (gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3) , (4.11)

G(g)µ1µ2µ3µ4µ5µ6 = 1
8

[
+ gµ1µ2gµ3µ4gµ5µ6 + gµ1µ2gµ3µ5gµ4µ6 + gµ1µ2gµ3µ6gµ4µ5

+ gµ1µ3gµ2µ4gµ5µ6 + gµ1µ3gµ2µ5gµ4µ6 + gµ1µ3gµ2µ6gµ4µ5

+ gµ1µ4gµ2µ3gµ5µ6 + gµ1µ4gµ2µ5gµ3µ6 + gµ1µ4gµ2µ6gµ3µ5

+ gµ1µ5gµ2µ3gµ4µ6 + gµ1µ5gµ2µ4gµ3µ6 + gµ1µ5gµ2µ6gµ3µ4

+ gµ1µ6gµ2µ3gµ4µ5 + gµ1µ6gµ2µ4gµ3µ5 + gµ1µ6gµ2µ5gµ3µ4

]
. (4.12)

Keeping the same order already obtained in the first step, we get after the contactions:
Contribution of f1 variable: w (no contraction since p = 0).
Contribution of f2 variables:

− 1
2g

µνgρσ(∂µ∂νgρσ)u⊗ u− gµνgρσ(∂νgρσ)u⊗ ∂µu− d
2g

µν u⊗ ∂µ∂νu
− 1

2gρσ(∂µgρσ) vµ ⊗ u− d
2 v

µ ⊗ ∂µu− 1
2gµν v

µ ⊗ vν − u⊗ ∂µvµ.
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Contribution of f3 variables:[
1
2g

µνgρσgαβ(∂µgρσ)(∂νgαβ) + gµνgρσgαβ(∂µgρα)(∂νgσβ)
]
u⊗ u⊗ u

+ d+2
2 gµνgρσ(∂νgρσ)u⊗ u⊗ ∂µu+ d+2

2 gµνgρσ(∂νgρσ)u⊗ ∂µu⊗ u+ d(d+2)
2 gµν u⊗ ∂µu⊗ ∂νu

+ 1
2gρσ(∂µgρσ) vµ ⊗ u⊗ u+ gµν(∂ρgρν) vµ ⊗ u⊗ u+ d+2

2 vµ ⊗ u⊗ ∂µu
+ 1

2gρσ(∂µgρσ)u⊗ u⊗ vµ + gµν(∂ρgρν)u⊗ u⊗ vµ + d+2
2 u⊗ ∂µu⊗ vµ

+ 1
2gρσ(∂µgρσ)u⊗ vµ ⊗ u+ gµν(∂ρgρν)u⊗ vµ ⊗ u+ d+2

2 u⊗ vµ ⊗ ∂µu
+
[
gρσ(∂µgµν)(∂νgρσ) + 2gρσ(∂µgνρ)(∂νgµσ)

]
u⊗ u⊗ u+ (d+ 2)(∂νgµν)u⊗ u⊗ ∂µu

+ [gµνgρσ(∂νgρσ) + 2(∂νgµν)]u⊗ ∂µu⊗ u+ (d+ 2)gµν u⊗ ∂µu⊗ ∂νu
+ [gµνgρσ(∂µ∂νgρσ) + 2(∂µ∂νgµν)]u⊗ u⊗ u+ [gµνgρσ(∂νgρσ) + 2(∂νgµν)]u⊗ u⊗ ∂µu
+ [gµνgρσ(∂νgρσ) + 2(∂νgµν)]u⊗ u⊗ ∂µu+ (d+ 2)gµν u⊗ u⊗ ∂µ∂νu.

which, once collected, gives[
gµνgρσ(∂µ∂νgρσ) + 2(∂µ∂νgµν) + gρσ(∂µgµν)(∂νgρσ) + 2gρσ(∂µgνρ)(∂νgµσ)

1
2g

µνgρσgαβ(∂µgρσ)(∂νgαβ) + gµνgρσgαβ(∂µgρα)(∂νgσβ)
]
u⊗ u⊗ u

+ (d+ 6)
[

1
2g

µνgρσ(∂νgρσ) + (∂νgµν)
]
u⊗ u⊗ ∂µu

+
[
d+4

2 gµνgρσ(∂νgρσ) + 2(∂νgµν)
]
u⊗ ∂µu⊗ u

+ (d+2)2

2 gµν u⊗ ∂µu⊗ ∂νu+ (d+ 2)gµν u⊗ u⊗ ∂µ∂νu
+
[

1
2gρσ(∂µgρσ) + gµν(∂ρgρν)

]
(vµ ⊗ u⊗ u+ u⊗ vµ ⊗ u+ u⊗ u⊗ vµ)

+ d+2
2 (vµ ⊗ u⊗ ∂µu+ u⊗ ∂µu⊗ vµ + u⊗ vµ ⊗ ∂µu)

Contribution of f4 variables: We use the following symmetry: in previous three terms of
f4, one goes from the first to the second right terms by the change (µ2, µ3, µ4)→ (µ3, µ4, µ2)
and from the second to the third terms via (µ, ν)→ (ν, µ) and (µ1, µ2)→ (µ2, µ1). So after
the contraction of the first term and using that symmetry (which explains the factors 3 and
2), we get

3
[
− 1

2g
µνgρσgαβ(∂µgρσ)(∂νgαβ)− gµνgρσgαβ(∂µgρα)(∂νgσβ)− 2gρσ(∂µgµν)(∂νgρσ)

− 2gρσ(∂µgµρ)(∂νgνσ)− 2gρσ(∂µgνρ)(∂νgµσ)
]
u⊗ u⊗ u⊗ u

− (d+ 4)
[
(∂µgµν) + 1

2g
µνgρσ(∂µgρσ)

](
3u⊗ u⊗ u⊗ ∂νu

+ 2u⊗ u⊗ ∂νu⊗ u+ u⊗ ∂νu⊗ u⊗ u
)

− 1
2(d+ 4)(d+ 2)gµν

(
2u⊗ u⊗ ∂µu⊗ ∂νu+ u⊗ ∂µu⊗ u⊗ ∂νu

)
.

It worth to mention that all results of this section 4.1 are valid in arbitrary dimension d of
the manifold.

4.2. Application of operators Id/2+p,k

We can now compute in (4.4) the application of Id/2+p,k on each previousG(g)µ1...µ2p B
µ1...µ2p
k .

We restrict to even dimension d = 2m since we will prove in Section 5.2 that it is impossible
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to get explicit formulae when d is odd (explicit in the sense that we do want to avoid ending
with formulae like (1.5)).

Lemma 2.6 tells us that we have only to apply the four operators given by (3.10) for
k = 1, 2, 3, 4:

Im+k−1,k(r0, . . . , rk) = (−1)k
(m−1)(m)···(m+k−2)

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r
−(m−1)
i , when m 6= 1,

Ik,k(r0, . . . , rk) = (−1)k+1

(k−1)!

k∑
i=0

[ k∏
j=0
j 6=i

(ri − rj)−1
]
r−1
i log ri , when m = 1

= lim
m→1

Im+k−1,k(r0, . . . , rk) (see Proposition 3.1).

They are applied on the above fk variables which have the form A1 ⊗ · · · ⊗ Ak where
each Ai is equal to u, vµ, w or their (at most second order) derivatives. Thus we can apply
Lemma 4.1 since, at most, only two Ai (relabeled indistinctly B1, B2) are different from u.
This method generates only four cases modulo B1 ↔ B2:
Case 0: only one variable, namely w.
Case 1: B1 = B2 = u.
Case 2: (B1 = ∂µu,B2 = u), (B1 = ∂µ∂νu,B2 = u), (B1 = vµ, B2 = u), (B1 = ∂µv

µ, B2 = u).
Case 3: (B1 = vµ, B2 = vν), (B1 = vµ, B2 = ∂µu), (B1 = ∂µu,B2 = ∂νu).

We use the shortcut

Jm+k−1,k[A1 ⊗ · · · ⊗ Ak] := tr(m ◦ Im+k−1,k[1⊗ A1 ⊗ A2 ⊗ · · · ⊗ Ak]).

We first give two examples of such computations of J . The first one corresponds to Case 0
and is given by the variable w in f1. Its contribution to a1 is:

Jm,1[w] = tr(m ◦ Im,1(R0(u), R1(u))[1⊗ w]) =
∑
r0,r1

Im,1(r0, r1) tr(E0wE1)

=
∑
r0

Im,1(r0, r0) tr(E0w) = tr(u−mw)

since Im,1(r0, r0) = r−m0 by (3.2).
Our second example comes from Case 3 and is given by the variable −1

2gµν v
µ⊗ vν in f2: we

have

Jm+1,2[vµ ⊗ vν ] = tr(m ◦ Im+1,2(R0(u), R1(u), R2(u))[1⊗ vµ ⊗ vν ])
=

∑
r0,r1,r2

Im+1,2(r0, r1, r2) tr(E0v
µE1v

νE2) =
∑
r0,r1

Im+1,2(r0, r1, r0) tr(E0v
µE1v

ν).

Thus, using Corollary 4.2 and (A.3), its contribution to a1 is

−1
2gµνJm+1,2[vµ ⊗ vν ] = −gµν

2

∑
r0,r1

1
2 [Im+1,2(r0, r1, r0) + Im+1,2(r1, r0, r1)] tr(E0v

µE1v
ν) (4.13)

= −1
2gµν

∑
r0,r1

1
2m

m−1∑
`=0

r−`−1
0 r`−m1 tr(E0v

µE1v
ν)

= − 1
4m gµν

m−1∑
`=0

tr(u−`−1vµu`−mvν).
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We now consider all contributions.
Case 1:
Thanks to (3.2)

Jm+k−1,k[u⊗ · · · ⊗ u︸ ︷︷ ︸
k

] = 1
k! tr(u−m+1)

and we get

− 1
2g

µνgρσ(∂µ∂νgρσ) Jm+1,2[u⊗ u]
+
[
gµνgρσ(∂µ∂νgρσ) + 2(∂µ∂νgµν) + gρσ(∂µgµν)(∂νgρσ) + 2gρσ(∂µgνρ)(∂νgµσ)

1
2g

µνgρσgαβ(∂µgρσ)(∂νgαβ) + gµνgρσgαβ(∂µgρα)(∂νgσβ)
]
Jm+2,3[u⊗ u⊗ u]

+ 3
[
− 1

2g
µνgρσgαβ(∂µgρσ)(∂νgαβ)− gµνgρσgαβ(∂µgρα)(∂νgσβ)− 2gρσ(∂µgµν)(∂νgρσ)

− 2gρσ(∂µgµρ)(∂νgνσ)− 2gρσ(∂µgνρ)(∂νgµσ)
]
Jm+3,4[u⊗ u⊗ u⊗ u]

= α tr(u−m+1)

where

α := 1
3(∂µ∂νgµν)− 1

12g
µνgρσ(∂µ∂νgρσ) + 1

48g
µνgρσgαβ(∂µgρσ)(∂νgαβ)

+ 1
24g

µνgρσgαβ(∂µgρα)(∂νgσβ)− 1
12gρσ(∂µgµν)(∂νgρσ)

+ 1
12gρσ(∂µgνρ)(∂νgµσ)− 1

4gρσ(∂µgµρ)(∂νgνσ). (4.14)

Case 2:
(B1 = ∂µu,B2 = u) generating terms in tr(u−m∂µu) with coefficient

− 1
2g

µνgρσ(∂νgρσ) + (2m+6)
3!

[
1
2g

µνgρσ(∂νgρσ) + (∂νgµν)
]

+ 1
3!

[
2m+4

2 gµνgρσ(∂νgρσ) + 2(∂νgµν)
]

− 6(2m+4)
4!

[
(∂νgµν) + 1

2g
µνgρσ(∂νgρσ)

]
= m−2

6

[
1
2g

µνgρσ(∂νgρσ)− (∂νgµν)
]

(B1 = ∂µ∂νu,B2 = u) generating terms in tr(u−m∂µ∂νu) with coefficient

−2m
2 g

µν 1
2! + (2m+ 2)gµν 1

3! = −m−2
6 gµν

(B1 = vµ, B2 = u) generating terms in tr(u−mvµ) with coefficient

− 1
2

1
2!gρσ(∂µgρσ) + 3

3!

[
1
2gρσ(∂µgρσ) + gµν(∂ρgρν)

]
= 1

2gµν(∂ρg
ρν).

(B1 = ∂µv
µ, B2 = u) generating a term in tr(u−m∂µvµ) with coefficient − 1

2! = −1
2 .

Case 3:
(B1 = vµ, B2 = ∂µu) generating terms in tr[E0v

µE1(∂µu)] with coefficient∑
r0,r1

(
−mIm+1,2(r0, r1, r0)

+ 2m+2
2 [r1 Im+2,3(r0, r1, r1, r0) + r1 Im+2,3(r1, r1, r0, r1) + r0 Im+2,3(r0, r0, r1, r0)]

)
= 1

2m

m−1∑
`=0

(m− 2`) r−`−1
0 r`−m1
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thanks to (A.4). So this contribution is

1
2m

m−1∑
`=0

(m− 2`) tr[u−`−1vµ u`−m(∂µu)]

(B1 = ∂µu,B2 = ∂νu) generating terms in tr[E0(∂µu)E1(∂νu)] with coefficient

2(m+ 1)2gµνr0 Im+2,3(r0, r0, r1, r0)
− 2(m+ 2)(m+ 1)gµν [2r2

0Im+3,4(r0, r0, r0, r1, r0) + r0 r1 Im+3,4(r0, r0, r1, r1, r0)]
= gµν g3(r0, r1)

with the definition of g3 in (A.5). Thanks to (A.6), this contribution is

1
6mg

µν
m−1∑
`=0

(m2 − 2m− 3`(m− 1− `)) tr[u−`−1(∂µu)u`−m(∂νu)].

4.3. Main results
The recollection of all contributions (4.4) for a1(x) from Cases 0–3 is now ready for the

first interesting result:

Theorem 4.3 Assume that P = −(u gµν∂µ∂ν + vν∂ν + w) is a selfadjoint elliptic operator
acting on L2(M,V ) for a 2m-dimensional boundaryless Riemannian compact manifold (M, g)
and a vector bundle V over M where u, vµ, w are local maps on M with values in MN , with
u positive and invertible. Then, its local a1(x) heat-coefficient in (1.3) for x ∈M is

a1 =g2m
(

tr(u−mw) + α tr(u−m+1) + m−2
6

[
1
2g

µνgρσ(∂νgρσ)− (∂νgµν)
]

tr(u−m∂µu)
− m−2

6 gµν tr(u−m∂µ∂νu) + 1
2gµν(∂ρg

ρν) tr(u−mvµ)− 1
2 tr(u−m∂µvµ)

− 1
4m

m−1∑
`=0

gµν tr(u−`−1vµu`−mvν) + 1
2m

m−1∑
`=0

(m− 2`) tr[u−`−1vµ u`−m(∂µu)]

+
m−1∑
`=0

[
m−2

6 −
`(m−`−1)

2m

]
gµν tr[u−`−1(∂µu)u`−m(∂νu)]

)
(4.15)

where α is given in (4.14).

Since the operator P is not written in terms of objects which have simple (homogeneous)
transformations by change of coordinates and gauge transformation, this result does not make
apparent any explicit Riemannian or gauge invariant expressions. This is why we have not
used normal coordinates until now. Nevertheless, from Lemma A.5, one can deduce after a
long computation:

Lemma 4.4 Under a gauge transformation, a1(x) given by (4.15) is gauge invariant.

As shown in A.4, with the help of a gauge connection Aµ, one can change the variables
(u, vµ, w) to variables (u, pµ, q) well adapted to changes of coordinates and gauge transfor-
mations (see (A.12) and (A.13)). For uµν = gµνu, (A.14) and (A.15) becomes

vµ =
[
− 1

2g
µνgρσ(∂νgρσ) + ∂νg

µν
]
u+ gµν(∂νu) + gµν(uAν + Aνu) + pµ (4.16)

w =
[
− 1

2g
µνgρσ(∂νgρσ) + ∂νg

µν
]
uAµ + gµν(∂νu)Aµ + gµνu(∂µAν)

+ gµνAµuAν + pµAµ + q. (4.17)
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Relations (4.16) and (4.17) can be injected into (4.15) to get an explicitly diffeomorphism and
gauge invariant expression. In order to present the result of this straightforward computation,
let us introduce the following notations.

Given the Christoffel symbols Γρµν := 1
2g

ρσ(∂µgσν +∂νgσµ−∂σgµν), the Riemann curvature
tensor Rα

βµν := ∂µΓαβν−∂νΓαβµ+ΓαµρΓ
ρ
βν−ΓανρΓ

ρ
βµ, and the Ricci tensor Rµν := Rρ

µρν , the scalar
curvature R := gµνRµν computed in terms of the derivatives of the inverse metric is

R = gµνgρσ(∂µ∂νgρσ)− (∂µ∂νgµν) + gρσ(∂µgµν)(∂νgρσ) + 1
2gρσ(∂µgνρ)(∂νgµσ)

− 1
4g

µνgρσgαβ(∂µgρσ)(∂νgαβ)− 5
4g

µνgρσgαβ(∂µgρα)(∂νgσβ), (4.18)

and one has

gµνΓρµν = 1
2g

ρσgαβ(∂σgαβ)− ∂σgρσ, Γσσρ = −1
2gαβ(∂ρgαβ).

Let ∇µ be the (gauge) covariant derivative on V (and its related bundles):

∇µs := ∂µs+ Aµs for any section s of V.

From (A.13), u, pµ and q are sections of the endomorphism vector bundle End(V ) = V ∗⊗ V
(while vµ and w are not), so that ∇µu = ∂µu+ [Aµ, u] (and the same for pµ and q). We now
define ∇̂µ, which combines ∇µ and the linear connection induced by the metric g:

∇̂µu := ∂µu+ [Aµ, u] = ∇µu, ∇̂µp
ρ := ∂µp

ρ + [Aµ, pρ] + Γρµνpν = ∇µp
ρ + Γρµνpν

∇̂µ∇̂νu := ∂µ∇̂νu+ [Aµ, ∇̂νu]− Γρµν∇̂ρu = ∂µ∇νu+ [Aµ,∇νu]− Γρµν∇ρu ,

so that, if ∆∇̂ := gµν ∇̂µ∇̂ν is the connection Laplacian

∆∇̂ u = gµν∇µ∇νu−
[

1
2g

µνgαβ(∂µgαβ)− ∂µgµν
]
∇νu,

∇̂µp
µ = ∇µp

µ − 1
2gαβ(∂µgαβ)pµ.

Any relation involving u, pµ, q, g and ∇̂µ inherits the homogeneous transformations by changes
of coordinates and gauge transformations of these objects.

Let us state now the result of the computation of a1(x) in terms of (u, pµ, q):

Theorem 4.5 Assume that P = −(|g|−1/2∇µ|g|1/2gµνu∇ν + pµ∇µ + q) is a selfadjoint el-
liptic operator acting on L2(M,V ) for a 2m-dimensional boundaryless Riemannian compact
manifold (M, g) and a vector bundle V over M where u, pµ, q are sections of endomorphisms
on V with u positive and invertible. Then, its local a1(x) heat-coefficient in (1.3) for x ∈M
is

a1 =g2m
(

1
6R tr[u1−m] + tr[u−mq]− m+1

6 tr[u−m∆∇̂u]− 1
2 tr[u−m∇̂µp

µ]

+
m−1∑
`=0

[
2m2−4m+3

12m − `(m−`−1)
2m

]
gµν tr[u−`−1(∇̂µu)u`−m(∇̂νu)]

+ 1
2m

m−1∑
`=0

(m− 2`− 1) tr[u−`−1pµu`−m(∇̂µu)]− 1
4m

m−1∑
`=0

gµν tr[u−`−1pµu`−mpν ]
)

(4.19)

where g2m =
√
|g|

4m πm
.
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Proof This can be checked by an expansion of the RHS of (4.19). A more subtle method
goes using normal coordinates in (4.15), (4.16), (4.17), knowing that a1(x) is a scalar and
(u, pµ, q) are well adapted to change of coordinates. The coefficients in the sum of the second
line of this expression have been symmetrized `↔ (m− `− 1) using the trace property and
the change of variable ` 7→ m− `− 1.

Corollary 4.6 The previous formula can be written in a more compact way as

a1 =g2m
(

1
6R tr[u1−m] + tr[u−mq]− m+1

6 tr[u−m∆∇̂u]− 1
2 tr[u−m∇̂µp

µ]

+ 1
4m

m−1∑
`=0

gµν tr[u−`−1[(2`− 1)∇̂µu− pµ]u`−m[(2`− 1)∇̂νu+ pν ]]

+ 1
2m

m−1∑
`=0

gµν tr[u(∇̂µu
−`−1)u(∇̂νu

`−m)]

− m2−2m+3
3m

m−1∑
`=0

gµν tr[u−`−1(∇̂µu)u`−m(∇̂νu)]
)

(4.20)

where pµ = gµνp
ν.

Proof This relation can be obtained by expanding the second and third lines of (4.20) using
the combinatorial equality

m−1∑
`=0

gµν tr[u(∂µu−`−1)u(∂νu`−m)] =
m−1∑
`=0

[
m+ `(m− `− 1)

]
gµν tr[u−`−1(∂µu)u`−m(∂νu)]

that is a tedious computation.

The above formula (4.20) is not the unique way to write (4.19). Some variations are possible
using for instance the relations

gµν tr[u(∂µ∂νu−m)] = −mgµν tr[u−m(∂µ∂νu)] + (m+ 1)
m−1∑
`=0

gµν tr[u−`−1(∂µu)u`−m(∂νu)],

m−1∑
`=0

gµν tr[u(∂µu−`)(∂νu`−m)] =
m−1∑
`=0

[
m−1

2 + `(m− `− 1)
]
gµν tr[u−`−1(∂µu)u`−m(∂νu)],

gµν tr[∂µ(u−m∂νu)] = gµν tr[u−m(∂µ∂νu)]−
m−1∑
`=0

gµν tr[u−`−1(∂µu)u`−m(∂νu)],

which make all appear the expression gµν tr[u−`−1(∂µu)u`−m(∂νu)] in (4.19).

Corollary 4.7 When M has dimension 4, the last two terms of (4.20) compensate and the
formula simplifies as

a1 = |g|
1/2

16π2

(
1
6R tr[u−1] + tr[u−2q]− 1

2g
µν tr[u−2∇̂µ∇̂νu]− 1

2 tr[u−2∇̂µp
µ]

+ 1
4g

µν tr[u−2(∇̂µu− pµ)u−1(∇̂νu+ pν)]
)
. (4.21)
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Remark 4.8 For the computation of ar(x) with r ≥ 2, directly in terms of variables
(u, pµ, q), the strategy is to use normal coordinates from the very beginning, which sim-
plifies the computation of terms Bµ1...µ2p

k of (4.4). Then an equivalent result to Theorem 4.3
would be obtained, but only valid in normal coordinates. Thus, by the change of variables
(4.16), (4.17), a final result as Theorem 4.5 could be calculated. �

Remark 4.9 In the present method, the factor 1
6R is explicitly and straightforwardly com-

puted from the metric entering uµν = gµνu, as in [3] for instance. Many methods introduce
R using diffeomorphism invariance and compute the coefficient 1

6 using some “conformal
perturbation” of P (see [24, Section 3.3]). �

4.4. Case of scalar symbol: u(x) = f(x)1N
Let us consider now the specific case u(x) = f(x)1N , where f is a nowhere vanishing

positive function. Then (4.16) simplifies to

vµ = [−1
2g

µνgρσ(∂νgρσ) + ∂νg
µν ]f 1N + gµν(∂νf)1N + 2f gµνAν + pµ

and we can always find Aµ such that pµ = 0:

Aµ = 1
2

(
gµνf

−1vν + [1
2gρσ(∂µgρσ)− gµν(∂ρgρν)− f−1(∂µf)]1N

)
.

One can check, using (A.8), that Aµ satisfies the correct gauge transformations. This means
that P can be written as

P = −(|g|−1/2∇µ|g|1/2gµνf∇ν + q)

where the only matrix-dependencies are in q and Aµ.
Since u is in the center, ∇µu = (∂µf)1N and (4.19) simplifies as

a1 = g2mf
−m[N6 f R + tr[q]− m+1

6 Ngµν(∂µ∂νf) + m+1
6 NgµνΓρµν(∂ρf)

+ m2−m+1
12 Ngµνf−1(∂µf)(∂νf)]

in which Aµ does not appears. Now, if f is constant, we get the well-known result (see [24,
Section 3.3]):

a1 = g2mf
−m
(
N
6 R + tr[q]

)
.

5. About the method

5.1. Existence
For the operator P given in (1.1), the method used here assumes only the existence of

asymptotics (1.3). This is the case when P is elliptic and selfadjoint.
Selfadjointness of P on L2(M,V ) is not really a restriction since we remark that given an
arbitrary family of uµν satisfying (1.2), skewadjoint matrices ṽµ and a selfadjoint matrix w̃,
we get a formal selfadjoint elliptic operator P defined by (1.1) where

vµ = ṽµ + (∂ν log|g|1/2)uµν + ∂νu
µν ,

w = w̃ + 1
2 [−∂µṽµ + (∂µ log|g|1/2) ṽµ].

A crucial step in our method is to be able to compute the integral (2.18) for a general
uµν . The case uµν = gµνu considered in Section 4 makes that integral manageable.
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5.2. On explicit formulae for uµν = gµνu

For uµν = gµνu, the proposed method is a direct computational machinery. Since the
method can be computerized, this could help to get ar in Case 2 (d even and r < d/2).
Recall the steps: 1) to expand the arguments of the initial fk’s, 2) to contract with the
tensor G(g), 3) to apply to the corresponding operators Iα,k, 4) to collect all similar terms.
Further eventual steps: 5) to change variables to (u, pµ, q), 6) to identify (usual) Riemannian
tensors and covariant derivatives (in terms of Aµ and Christoffel symbols).

Is it possible to get explicit formulae for ar from the original ingredients (u, vµ, w) of
P? An explicit formula should look like (4.15) or (4.19). This excludes the use of spectral
decomposition of u as in (1.5) which could not be recombined as∑

finite sum
tr[h(0)(u)B1h(1)(u)B2 · · ·Bkh(k)(u)]

where the hi are continuous functions and the Bi are equal to u, vµ, w or their derivatives.
The obstruction to get such formula could only come from the operators Iα,k and not from
the arguments Bi. Thus the matter is to understand the u-dependence of Iα,k.

Let us consider Iα,k as a map u 7→ Iα,k(u). An operator map u 7→ A(u) ∈ B(Ĥk) is called
u-factorizable (w.r.t. the tensor product) if it can be written as

A(u) =
∑

finite sum
R0(h(0)(u))R1(h(1)(u)) · · · Rk(h(k)(u))

where the h(i) are continuous functions on R∗+.

Lemma 5.1 Let u 7→ A(u) = F (R0(u), . . . , Rk(u)) the operator map defined by a continuous
function F : (R∗+)k+1 → R∗+. Then A is u-factorizable iff F is decomposed as

F (r0, . . . , rk) =
∑

finite sum
h(0)(r0)h(1)(r1) · · ·h(k)(rk) (5.1)

for continuous functions h(i).

Proof Let λi be the eigenvalues of u and πi the associated eigenprojections. If F is decom-
posed, then by functional calculus, one gets

A(u) =
∑

i0,...,ik

F (λi0 , . . . , λik)R0(πi0) · · ·Rk(πik)

=
∑

i0,...,ik

∑
finite sum

h(0)(λi0) · · ·h(k)(λik)R0(πi0) · · ·Rk(πik)

=
∑

finite sum
R0(h(0)(u)) · · · Rk(h(k)(u)).

If A is u-factorizable, then this computation can be seen in the other way around to show
that F is decomposed.

The general solutions (3.10) and (3.11) for the operators Iα,k are not manifestly u-factori-
zable because of the factors (ri− rj)−1. For Case 2, Proposition 3.5 shows that Iα,k is indeed
a u-factorizable operator (see also (3.15)).

The explicit expressions of the operators Iα,k ∈ B(Ĥk) don’t give a definitive answer
about the final formula: for instance, when applied to an argument containing some u’s, the
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expression can simplify a lot (see for example Case 1 of Section 4.2). Moreover, the trace and
the multiplication introduce some degrees of freedom in the writing of the final expression.
This leads us to consider two operators A and A′ as equivalent when

tr ◦m ◦ κ∗ ◦ A[B1 ⊗ · · · ⊗Bk] = tr ◦m ◦ κ∗ ◦ A′[B1 ⊗ · · · ⊗Bk]

for any B1 ⊗ · · · ⊗ Bk ∈ Hk. The equivalence is reminiscent of the lift from B(Hk,MN) to
B(Ĥk) (see Remark 2.2) combined with the trace.

Lemma 5.2 With

Ĩα,k(r0, . . . , rk−1) := Iα,k(r0, . . . , rk−1, r0) (= lim
rk→r0

Iα,k(r0, . . . , rk−1, rk)),

the operator Ĩα,k := Ĩα,k(R0(u), . . . , Rk−1(u)) = Iα,k(R0(u), . . . , Rk−1(u), R0(u)) ∈ B(Ĥk) is
equivalent with the original Iα,k.

Proof For any B1 ⊗ · · · ⊗Bk ∈ Hk, using previous notations, one has

tr(◦m ◦ κ∗ ◦ Iα,k[B1 ⊗ · · · ⊗Bk]) =
∑

i0,...,ik

Iα,k(λi0 , . . . , λik) tr
(
πi0B1πi1 · · ·Bkπik

)
=

∑
i0,...,ik

Iα,k(λi0 , . . . , λik) tr
(
πikπi0B1πi1 · · ·Bk

)
=

∑
i0,...,ik

Iα,k(λi0 , . . . , λik) δi0,ik tr
(
πi0B1πi1 · · ·Bk

)
=

∑
i0,...,ik−1

Ĩα,k(λi0 , . . . , λik−1) tr
(
πi0B1πi1 · · ·Bk

)
= tr ◦m ◦ κ∗ ◦ Ĩα,k[B1 ⊗ · · · ⊗Bk].

The equivalence between Ĩα,k and Iα,k seems to be the only generic one we can consider.
We have doubts on the fact that the operators Iα,k can be always equivalent to some

u-factorizable operators. For instance,

Proposition 5.3 The contribution to a1 of (4.13) generates always a non-explicit formula
when the dimension d is odd, unless u and vµ have commutation relations.

In fact,

hd(r1/2
0 , r

1/2
1 ) := 1

2 [Id/2+1,2(r0, r1, r0) + Id/2+1,2(r1, r0, r1)] = 1
d
(r1 r0)−d/2 r

d/2
0 −rd/2

1
r0−r1

and we prove below that the map hd(x, y) for (x, y) ∈ (R∗+)2 is explicit only when d is even:

Lemma 5.4 The function hd(x, y) = ∑
finite h(1)(x)h(2)(y) with continuous functions h(i) if

and only if d is even.

Proof It is equivalent to show that function d (xy)d hd(x, y) has or not such decomposition.
Assume that d = 2m. Then we have the decomposition

d (xy)d hd(x, y) = x2m−y2m

x2−y2 =
m−1∑
`=0

x2m−2`−2 y2`.
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Assume now d = 2m+ 1. Then,

d (xy)d hd(x, y) = x2m+1−y2m+1

x2−y2 = y2m 1
x+y +

m−1∑
`=0

x2m−1−2`y2` ,

(for m = 0 there is no sum). This expression is not decomposable since the map (x+ y)−1 is
not decomposable:
Suppose we have such decomposition (x + y)−1 = ∑N

`=1 h1,`(x)h2,`(y) for N ∈ N∗. Let
(xi, yi)1≤i≤N be N points in (R∗+)2 and consider the N ×N -matrix ci,j := (xi + yj)−1. Then

det(c) =
[ N∏
i,j=1

(xi + yj)
]−1 ∏

1≤i<j≤N
(xi − xj)(yi − yj).

This expression shows that we can choose a family (xi, yi)1≤i≤N such that det(c) 6= 0. With
such a family, define the two matrices ai,` := h1,`(xi) and bi,` := h2,`(yi). Then

ci,j = (xi + yj)−1 =
N∑
`=1

h1,`(x)h2,`(yj) =
N∑
`=1

ai,` bj,`

so that, in matrix notation, c = a · tb, which implies that det(a) 6= 0 and det(b) 6= 0.
From (x + yj)−1 = ∑N

`=1 h1,`(x) bj,` , we deduce h1,`(x) = ∑
j b
−1
j,` (x + yj)−1 and, similarly,

h2,`(y) = ∑
i a
−1
i,` (xi + y)−1. This gives

(x+ y)−1 =
∑
i,j,`

a−1
i,` b
−1
j,` (x+ yj)−1(xi + y)−1.

This expression must hold true on (R∗+)2 and when x, y → 0+, the LHS goes to +∞ while
the RHS remains bounded. This is a contradiction.

5.3. Explicit formulae of ar for scalar symbols (u(x) = f(x)1N)
When u is central, the operator defined by Iα,k(r0, . . . , rk) is equivalent to the operator

defined by

Ĩα,k(r0) := lim
rj→r0

Iα,k(r0, . . . , rk) = 1
k! r
−α
0 .

Thus (4.4) reduces to

1
(2π)d

∫
dξ ξµ1 · · · ξµ2p fk(ξ)[B

µ1...µ2p
k ] = gdm[u−d/2−p ⊗G(g)µ1...µ2p B

µ1...µ2p
k ]

= gdG(g)µ1...µ2p u
−d/2−pm[Bµ1...µ2p

k ]

so the tedious part of the computation of ar is to list all arguments Bµ1...µ2p
k and to contract

them with G(g)µ1...µ2p . This can be done with the help of a computer in any dimension for
an arbitrary r. All formulae are obviously explicit. An eventual other step is to translate the
results in terms of diffeomorphic and gauge invariants.
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5.4. Application to quantum field theory
Second-order differential operators which are on-minimal have a great importance in

physics and have justified their related heat-trace coefficients computation (to quote but
a few see almost all references given here). For instance in the interesting work [18, 19], the
operators P given in (1.1) are investigated under the restriction

uµν = gµν 1 + ζ Xµν ,

where ζ is a parameter (describing for ζ = 0 the minimal theory), under the constraints for
the normalized symbol X̂(σ) := Xµνσµσν with |σ|2g = gµνσµσν = 1 given by

X̂(σ) 2 = X̂(σ), for any σ ∈ S1
g , (5.2)

∇ρX
µν = 0. (5.3)

Here, ∇ρ is a covariant derivative involving gauge and Christoffel connections. In covariant
form, the operators are

P = −(gµν ∇µ∇ν + ζ Xµν ∇µ∇ν + Y ).

Despite the restrictions (5.2)-(5.3) meaning that the operator X̂ is a projector and the tensor-
endomorphism u is parallel, this covers the case of operators describing a quantized spin-1
vector fields like

P µ
ν = −(δµν ∇2 + ζ∇µ∇ν + Y µ

ν),

or a Yang–Mills fields like

P µ
ν = −(δµν D2 − ζ DµDν +Rµ

ν − 2F µ
ν)

where Dµ := ∇ν + Aµ and Aµ, Fµν are respectively the gauge and strength fields,
or a perturbative gravity (see [18] for details).

Remark first that

H(x, ξ) = uµνξµξν = |ξ|2g [1 + ζ X̂ (ξ/|ξ|g)], so that
e−H(x,ξ) = [e−(1+ζ)|ξ|2g − e−|ξ|2g ] X̂ + e−|ξ|

2
g 1V .

Thus (1.10) becomes

a0(x) = 1
(2π)d

∫
dξ [e−(1+ζ)|ξ|2g − e−|ξ|2g ] tr X̂ + 1

(2π)d

∫
e−|ξ|

2
g tr 1V

= [
∫
σ∈S1

g

dΩ(σ) tr X̂(σ)] [ 1
(2π)d

∫ ∞
0

dr rd−1 (e−(1+ζ)r2 − e−r2)] + gdN

= Γ(d/2)
2(2π)d [(1 + ζ)−d/2 − 1] [

∫
σ∈S1

g

dΩ(σ) tr X̂(σ)] + gdN.

One has gd := 1
(2π)d

∫
Rd dξ e

−|ξ|2g(x) = |g|1/2

2d πd/2 and
∫
σ∈S1

g

dΩ(σ) tr X̂(σ) = tr(Xµν)
∫
σ∈S1

g

dΩ(σ)σµσν .
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Using (4.3), we can get ∫
σ∈S1

g

dΩ(σ)σµ1 · · · σµ2p = 2 (2π)d gd
Γ(d/2+p) G(g)µ1...µ2p ,

so that we recover [18, (2.34)]:

a0(x) = gd
[
N + d−1 gµν tr(Xµν)

(
(1 + ζ)−d/2 − 1

)]
.

Now, let us consider the more general case

uµν = gµνu+ ζ Xµν (5.4)

where u is a strictly positive matrix u(x) ∈ MN as in Section 4, Xµν as before and assume
[u(x), Xµν(x)] = 0 for any x ∈ (M, g) and µ, ν. Previous situation was u = 1V , the unit
matrix in MN . Once Lemma 2.1 has been applied, the difficulty to compute ar(x) is to
evaluate the operators Tk,p defined by (2.15). Here we have u[σ] = u+ ζ X̂(σ), where the two
terms commute. With the notation

X̂i := Ri[X̂(σ)],

we have

Ck(s, u[σ]) = (1− s1)R0[u+ ζ X̂(σ)] + (s1 − s2)R1[u+ ζ X̂(σ)] + . . .

· · ·+ (sk−1 − sk)Rk−1[u+ ζ X̂(σ)] + skRk[u+ ζ X̂(σ)]
= Ck(s, u) + ζ

[
(1− s1)X̂0 + (s1 − s2)X̂1 + · · ·+ (sk−1 − sk)X̂k−1 + skX̂k

]
so that, using the fact that each X̂i is a projection with eigenvalues εi = 0, 1:

e−r
2Ck(s,u[σ]) = e−r

2Ck(s,u) ∑
(εi)∈{0,1}k+1

e−ζr
2[(1−s1)ε0+(s1−s2)ε1+···+(sk−1−sk)εk−1+skεk]×

× X̂ε0
0 (1− X̂0)1−ε0 · · · X̂εk

k (1− X̂k)1−εk .

Notice that X̂εi
i (1− X̂i)1−εi = [(1− εi)gµν + (2εi − 1)Ri(Xµν)]σµσν .

With the definition

I
(εi), ζ
α,k (r0, r1, . . . , rk) := Iα,k(r0 + ζε0, r1 + ζε1, . . . , rk + ζεk),

the operators Tk,p of (2.18) become

Tk,p =Γ(d/2+p)
2(2π)d

∫
Sd−1
g

dΩg(σ)σµ1 · · ·σµ2pσα0σβ0 · · ·σαkσβk×∑
(εi)∈{0,1}k+1

I
(εi), ζ
d/2+p,k

(
R0(u), R1(u), . . . , Rk(u)

)
×

× [(1− ε0)gα0β0 + (2ε0 − 1)R0(Xα0β0)] · · · [(1− εk)gαkβk + (2εk − 1)Rk(Xαkβk)]. (5.5)

The computations of these operators are attainable using the method given in Section 4, but
with some more complicated combinatorial expressions requiring a computer. We will still get
explicit formulae for a1(x) in any even dimension as in Theorem 4.5. The main combinatorial
computation is to make the contractions between G(g)µ1...µ2pα0β0...αkβk from the first line of
(5.5) with the operators of the last line applied on variables Bµ1...µ2p

k .
When u = 1V in (5.4), the operators in the second line of (5.5) are just the multiplication
by the numbers Id/2+p,k(1 + ζε0, 1 + ζε1, . . . , 1 + ζεk). Thus one gets explicit formulae for all
coefficients ar(x) in any dimension.
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6. Conclusion

On the search of heat-trace coefficients for Laplace type operators P with non-scalar
symbol, we develop, using functional calculus, a method where we compute some operators
Tk,p acting on some (finite dimensional) Hilbert space and the arguments on which there are
applied. This splitting allows to get general formulae for these operators and so, after a pure
computational machinery will yield all coefficients ar since there is no obstructions other than
the length of calculations. The method is exemplified when the principal symbol of P has the
form gµνu where u is a positive invertible matrix. It gives a1 in any even dimension which is
written both in terms of ingredients of P (analytic approach) or of diffeomorphic and gauge
invariants (geometric approach). As just said, the method is yet ready for a computation
of ar with r ≥ 2 for calculators patient enough, as well for the case gµνu + ζ Xµν as in
Section 5.4. Finally, the method answers a natural question about explicit expressions for all
coefficients ar: we proved that u-factorizability is always violated when the dimension is odd
and it is preserved in even dimension d when d/2 − r > 0. We conjecture this always holds
true in all even dimension.

A. Appendix

A.1. Some algebraic results
Let A be a unital associative algebra over C, with unit 1.

Denote by (C∗(A,A) = ⊕k≥0C
k(A,A), δ) the Hochschild complex where Ck(A,A) is the

space of linear maps ω : A⊗k → A and

(δω)[b0 ⊗ · · · ⊗ bk] = b0ω[b1 ⊗ · · · ⊗ bk] +
k∑
i=0

(−1)iω[b0 ⊗ · · · ⊗ bi−1 ⊗ bi+1 ⊗ · · · ⊗ bk]

+ (−1)k+1ω[b0 ⊗ · · · ⊗ bk−1]bk

for any ω ∈ Ck(A,A) and b0 ⊗ · · · ⊗ bk ∈ A⊗
k .

Define the differential complex (T∗A = ⊕k≥0A
⊗k+1

, d) with

d(a0 ⊗ · · · ⊗ ak) = 1⊗ a0 ⊗ · · · ⊗ ak +
k∑
i=0

(−1)ia0 ⊗ · · · ⊗ ai−1 ⊗ 1⊗ ai+1 ⊗ · · · ⊗ ak

+ (−1)k+1a0 ⊗ · · · ⊗ ak ⊗ 1

for any a0 ⊗ · · · ⊗ ak ∈ A⊗
k+1 . Both C∗(A,A) and T∗A are graded differential algebras, the

first one for the product

(ω ω′)[b1 ⊗ · · · ⊗ bk+k′ ] = ω[b1 ⊗ · · · ⊗ bk]ω′[bk+1 ⊗ · · · ⊗ bk+k′ ]

and the second one for

(a0 ⊗ · · · ⊗ ak)(a′0 ⊗ · · · ⊗ a′k′) = a0 ⊗ · · · ⊗ aka′0 ⊗ · · · ⊗ a′k′ ∈ A⊗
k+k′+1 = Tk+k′A.

The following result was proved in [25]:
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Proposition A.1 The map ι : T∗A→ C∗(A,A) defined by

ι(a0 ⊗ · · · ⊗ ak)[b1 ⊗ · · · ⊗ bk] := a0b1a1b2 · · · bkak

is a morphism of graded differential algebras.
If A is central simple, then ι is injective, and if A = MN (algebra of N × N matrices)

then ι is an isomorphism.

Recall that an associative algebra A is central simple if it is simple and its center is C. Central
simple algebras have the following properties, proved for instance in [26]:

Lemma A.2 If B is a central simple algebra and C is a simple algebra, then B ⊗ C is a
simple algebra. If moreover C is central simple, then B ⊗ C is also central simple.

Proof (of Proposition A.1) A pure combinatorial argument shows that ι is a morphism
of graded differential algebras for the structures given above.

Assume that A is central simple. The space A⊗k+1 is an associative algebra for the product
(a0⊗· · ·⊗ak) · (a′0⊗· · ·⊗a′k) = a0a

′
0⊗· · ·⊗aka′k, which is central simple by Lemma A.2. Let

Jk = Ker ι∩A⊗k+1 . Then, for any α = ∑
i a0,i⊗· · ·⊗ak,i ∈ Jk, any β = b0⊗· · ·⊗ bk ∈ A⊗

k+1 ,
and any c1 ⊗ · · · ⊗ ck ∈ A⊗

k , one has

ι(α · β)[c1 ⊗ · · · ⊗ ck] =
∑
i

a0,ib0c1a1,ib1c2 · · · bk−1ckak,ibk = ι(α)[b0c1 ⊗ · · · ⊗ bk−1ck]bk = 0,

so that α · β ∈ Jk. The same argument on the left shows that Jk is a two-sided ideal of the
algebra A⊗k+1 , which is simple. Since ι is non zero (ι(1⊗· · ·⊗1) 6= 0), one must have Jk = 0:
this proves that ι is injective.

The algebra A = MN is central simple [26], so that ι is injective, and moreover the spaces
Ck(A,A) and A⊗k+1 have the same dimensions: this shows that ι is an isomorphism.

Remark A.3 In [25], the graded differential algebras C∗(A,A) and T∗A are equipped with
a natural Cartan operations of the Lie algebra A (where the bracket is the commutator) and
it is shown that ι intertwines these Cartan operations. �

A.2. Some combinatorial results
Lemma A.4 Given a family a0, . . . , ar of different complex numbers, we have

i)
r∑

n=0
asn

r∏
m=0,m 6=n

(an − am)−1 = 0, for any s ∈ {0, 1, . . . , r − 1}, (A.1)

ii)
r∏

m=0
(z − am)−1 =

r∑
n=0

(z − an)−1
r∏

m=0,m 6=n
(an − am)−1, ∀z ∈ C\{a0, . . . , ar}. (A.2)

Proof i) If α(s) := ∑r
n=0 a

s
n

∏r
m=0,m 6=n(an − am)−1 and

β(s) := α(s)
∏

0≤l<k≤r
(ak − al) =

r∑
n=0

(−1)r−n asn
r∏

0≤l<k≤r
k 6=n, l 6=n

(ak − al)
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then it is sufficient to show that β(s) = 0 for s = 0, . . . , r−1. Recall first that the determinant
of a Vandermonde p× p-matrix is

det



1 1 · · · 1
b1 b2 · · · bp
b2

1 b2
2 · · · b2

p
... ... · · · ...

bp−1
1 bp−1

2 · · · bp−1
p

 =
∏

1≤j<i≤p
(bi − bj).

Thus

det



1 1 · · · 1
a0 a1 · · · ar
a2

0 a2
1 · · · a2

r
... ... · · · ...

ar−1
0 ar−1

1 · · · ar−1
r

as0 as1 · · · asr


= β(s)

after an expansion of the determinant with respect to the last line. But this is zero since the
last line coincides with the line s+ 1 of the matrix when s = 0, . . . , r − 1.

ii) The irreducible fraction expansion of f(z) = 1
(z−a0)(z−a1)···(z−ar) is ∑r

n=0
Res(f)(an)
z−an yield-

ing (A.2).

A.3. Few properties of functions Id/2+k,k

We collect here some special combination of function Id/2+k−r,k.
Let g1(r0, r1) := Id/2+1,2(r0, r1, r0). Then

1
2 [g1(r0, r1) + g1(r1, r0)] = 1

d
(r0r1)−d/2 r

d/2
0 −rd/2

1
r0−r1

= 1
2m

m−1∑
`=0

r−`−1
0 r`−m1 , if d = 2m. (A.3)

Let

g2(r0, r1) :=− d
2Id/2+1,2(r0, r1, r0)

+ d+2
2 [r1 Id/2+2,3(r0, r1, r1, r0) + r1 Id/2+2,3(r1, r1, r0, r1) + r0 Id/2+2,3(r0, r0, r1, r0)].

Then

g2(r0, r1) = 1
2d

(r0r1)−d/2 (d rd/2+1
0 −d r1r

d/2
0 −4r1r

d/2
0 +d r0r

d/2
1 −d rd/2+1

1 +4rd/2+1
1 )

(r0−r1)2

= 1
2m

m−1∑
`=0

(m− 2`) r−`−1
0 r`−m1 , if d = 2m. (A.4)

Let

g3(r0, r1) := (d+2)2

2 r0 Id/2+2,3(r0, r0, r1, r0)
+ (d+ 2)(d+ 4)[−r0

2 Id/2+3,4(r0, r0, r0, r1, r0)− 1
2r0 r1 Id/2+3,4(r0, r0, r1, r1, r0)].

(A.5)
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Then,
1
2 [g3(r0, r1) + g3(r1, r0)]

= 1
12d

(r0r1)−d/2
[
d2(r0−r1)2

(
r
d/2
0 −rd/2

1

)
−2d(r0−r1)

(
r1r

d/2
0 +2rd/2+1

0 +r0r
d/2
1 +2rd/2+1

1

)
+24r0r1

(
r
d/2
0 −rd/2

1

)]
(r0−r1)3

= 1
6m

m−1∑
`=0

(m2 − 2m− 3`(m− 1− `)) r−`−1
0 r`−m1 , if d = 2m. (A.6)

A.4. Diffeomorphism invariance and gauge covariance of P
The operator P in (1.1) is given in terms of uµν , vµ, w, which are not well adapted to

study the changes of coordinates and gauge transformations.
Given a change of coordinates (c.c.) x c.c.−−→ x′, let Jνµ := ∂µx

′µ and |J | := det(Jνµ), so that

∂µ
c.c.−−→ J−1α

µ∂α, gµν
c.c.−−→ J−1ρ

µJ
−1σ

νgρσ, gµν
c.c.−−→ Jµρ J

ν
σg

ρσ, |g| c.c.−−→ |J |−2|g|

where |g| = det(gµν). Denote by γ a gauge transformation, local in the trivialization of V in
which P is written (i.e. γ is a map from the open subset ofM which trivializes V to the gauge
group GLN(C)). A section s of V performs the transformations s c.c.−−→ s (diffeomorphism-
invariant) and s g.t.−−→ γs (where “g.t.” stands for gauge transformation).
The proof of the following lemma is a straightforward computation:

Lemma A.5 The differential operator P is well defined on sections of V if and only if uµν,
vµ and w have the following transformations:

uµν
c.c.−−→ Jµρ J

ν
σu

ρσ, uµν
g.t.−−→ γuµνγ−1, (A.7)

vµ
c.c.−−→ Jµρ v

ρ + (∂σJµρ )uρσ, vµ
g.t.−−→ γvµγ−1 + 2γuµν(∂νγ−1), (A.8)

w
c.c.−−→ w, w

g.t.−−→ γwγ−1 + γvµ(∂µγ−1) + γuµν(∂µ∂νγ−1). (A.9)

As these relations show, neither vµ nor w have simple transformations under changes of
coordinates or gauge transformations.

It is possible to parametrize P using structures adapted to changes of coordinates and
gauge transformations. Let us fix a (gauge) connection Aµ on V and denote by ∇µ := ∂µ+Aµ
its associated covariant derivative on sections of V . For any section s of V , one then has:

Aµ
c.c.−−→ J−1α

µAα, Aµ
g.t.−−→ γAµγ

−1 + γ(∂µγ−1), ∇µs
c.c.−−→ J−1α

µ∇αs, ∇µs
g.t.−−→ γ∇µs.

(A.10)

Lemma A.6 The differential operator

s 7→ Qs := −(|g|−1/2∇µ|g|1/2uµν∇ν + pµ∇µ + q) s (A.11)

is well defined on sections of V if and only if uµν, pµ and q have the following transformations:

uµν
c.c.−−→ Jµρ J

ν
σu

ρσ, pµ
c.c.−−→ Jµρ p

ρ, q
c.c.−−→ q, (A.12)

uµν
g.t.−−→ γuµνγ−1, pµ

g.t.−−→ γpµγ−1, q
g.t.−−→ γqγ−1. (A.13)

It is equal to P when (the uµν are the same in P and Q)

vµ = 1
2(∂ν log|g|)uµν + ∂νu

µν + uµνAν + Aνu
µν + pµ, (A.14)

w = 1
2(∂µ log|g|)uµνAν + (∂µuµν)Aν + uµν(∂µAν) + Aµu

µνAν + pµAµ + q. (A.15)
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Proof Combining (A.10), (A.12) and (A.13), the operator s 7→ −(pµ∇µ+q)s is well behaved
under changes of coordinates and gauge transformations. Let X := |g|−1/2∇µ|g|1/2uµν∇ν (a
matrix valued “Laplace–Beltrami operator”). Then, using (A.10) and (A.12), one gets

X
c.c.−−→|J ||g|−1/2J−1α

µ∇α|J |−1|g|1/2Jµρ JνσuρσJ−1β
ν∇β

= |J ||g|−1/2J−1α
µ∂α|J |

−1|g|1/2Jµρ uρσ∇σ + J−1α
µJ

µ
ρAαu

ρσ∇σ

= |J |J−1α
µJ

µ
ρ (∂α|J |−1)uρσ∇σ + |g|−1/2J−1α

µJ
µ
ρ (∂α|g|1/2)uρσ∇σ

+ J−1α
µ(∂αJµρ )uρσ∇σ + J−1α

µJ
µ
ρ ∂αu

ρσ∇σ + Aρu
ρσ∇σ

= ∇ρu
ρσ∇σ + |g|−1/2(∂ρ|g|1/2)uρσ∇σ

+ |J |(∂ρ|J |−1)uρσ∇σ + J−1α
µ(∂αJµρ )uρσ∇σ

which is equal to X since |J |∂ρ|J |−1 = −|J |−1∂ρ|J | = −∂ρ log|J | = −J−1α
µ(∂ρJµα) (Jacobi’s

formula) and ∂αJ
µ
ρ = ∂α∂ρx

′µ = ∂ρ∂αx
′µ = ∂ρJ

µ
α . Similarly, using (A.10) and (A.13), one

obtains
|g|1/2uµν∇νs

g.t.−−→ γ|g|1/2uµν∇νs (it behaves like a section of V ),

so that Xs g.t.−−→ γXs. This proves that Q = −X − (pµ∇µ + q) is well defined.
The expansion of X gives

X = |g|−1/2∂µ|g|1/2uµν(∂ν + Aν) + Aνu
µν(∂ν + Aν)

= |g|−1/2(∂µ|g|1/2)uµν∂ν + |g|−1/2(∂µ|g|1/2)uµνAν + (∂µuµν)∂ν + (∂µuµν)Aν
+ uµν∂µ∂ν + uµν(∂µAν) + uµνAν∂µ + Aµu

µν∂ν + Aµu
µνAν

= uµν∂µ∂ν + 1
2(∂µ log|g|)uµν∂ν + (∂µuµν)∂ν + uµνAν∂µ + Aµu

µν∂ν

+ 1
2(∂µ log|g|)uµνAν + (∂µuµν)Aν + uµν(∂µAν) + Aµu

µνAν

which, combined with the contributions of −(pµ∇µ + q), gives (A.14) and (A.15).

Contrary to the situation in [1, Section 1.2.1], one cannot take directly p = 0 in (A.11) since
we cannot always solve Aµ in (A.14) to write it in terms of uµν , vµ, w.
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