N. Keshava, F. John, and . Mustard, Spectral unmixing, IEEE Signal Processing Magazine, vol.19, issue.1, pp.44-57, 2002.
DOI : 10.1109/79.974727

J. M. Bioucas-dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du et al., Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.5, issue.2, pp.354-379, 2012.
DOI : 10.1109/JSTARS.2012.2194696

URL : https://hal.archives-ouvertes.fr/hal-00760787

J. Chen, C. Richard, and P. Honeine, Nonlinear Unmixing of Hyperspectral Data Based on a Linear-Mixture/Nonlinear-Fluctuation Model, IEEE Transactions on Signal Processing, vol.61, issue.2, pp.480-492, 2013.
DOI : 10.1109/TSP.2012.2222390

N. Dobigeon, J. Tourneret, C. Richard, J. C. Bermudez, S. Mclaughlin et al., Nonlinear Unmixing of Hyperspectral Images: Models and Algorithms, IEEE Signal Processing Magazine, vol.31, issue.1, pp.82-94, 2014.
DOI : 10.1109/MSP.2013.2279274

URL : https://hal.archives-ouvertes.fr/hal-00915663

N. H. Nguyen, C. Richard, P. Honeine, and C. Theys, Hyperspectral image unmixing using manifold learning methods derivations and comparative tests, IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp.3086-3089, 2012.

D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, Manifold-Learning-Based Feature Extraction for Classification of Hyperspectral Data: A Review of Advances in Manifold Learning, IEEE Signal Processing Magazine, vol.31, issue.1, pp.55-66, 2014.
DOI : 10.1109/MSP.2013.2279894

E. Merkurjev, J. Sunu, and A. L. Bertozzi, Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video, 2014 IEEE International Conference on Image Processing (ICIP), pp.689-693, 2014.
DOI : 10.1109/ICIP.2014.7025138

H. Hu, J. Sunu, and A. L. Bertozzi, Multi-class graph mumfordshah model for plume detection using the mbo scheme, Energy Minimization Methods in Computer Vision and Pattern Recognition, pp.209-222, 2015.

D. Tuia, M. Trolliet, and M. Volpi, Multisensor alignment of image manifolds, 2013 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, pp.1246-1249, 2013.
DOI : 10.1109/IGARSS.2013.6723006

H. L. Yang and M. M. Crawford, Manifold alignment for multitemporal hyperspectral image classification, 2011 IEEE International Geoscience and Remote Sensing Symposium, pp.4332-4335, 2011.
DOI : 10.1109/IGARSS.2011.6050190

L. Ma, M. M. Crawford, and J. Tian, Local manifold learningbased-nearest-neighbor for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.11, pp.4099-4109, 2010.

J. M. Bioucas-dias and J. M. Nascimento, Hyperspectral Subspace Identification, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.8, pp.2435-2445, 2008.
DOI : 10.1109/TGRS.2008.918089

B. Luo, J. Chanussot, S. Doute, and L. Zhang, Empirical automatic estimation of the number of endmembers in hyperspectral images, IEEE Geoscience and Remote Sensing Letters, vol.10, issue.1, pp.24-28, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798401

G. A. Shaw and H. K. Burke, Spectral imaging for remote sensing, Lincoln Laboratory Journal, vol.14, issue.1, pp.3-28, 2003.

J. M. Nascimento and J. M. Dias, Does independent component analysis play a role in unmixing hyperspectral data?, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.1, pp.175-187, 2005.
DOI : 10.1109/TGRS.2004.839806

T. A. Scambos, M. J. Dutkiewicz, J. C. Wilson, and R. A. Bindschadler, Application of image cross-correlation to the measurement of glacier velocity using satellite image data, Remote Sensing of Environment, vol.42, issue.3, pp.177-186, 1992.
DOI : 10.1016/0034-4257(92)90101-O

J. Chen, C. Richard, and P. Honeine, Nonlinear Estimation of Material Abundances in Hyperspectral Images With <inline-formula> <tex-math notation="TeX">$\ell_{1}$</tex-math></inline-formula>-Norm Spatial Regularization, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.5, pp.2654-2665, 2014.
DOI : 10.1109/TGRS.2013.2264392

A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation, 2009.
DOI : 10.1002/9780470747278

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, vol.82, issue.1, pp.35-45, 1960.
DOI : 10.1115/1.3662552

A. Zare and K. Ho, Endmember Variability in Hyperspectral Analysis: Addressing Spectral Variability During Spectral Unmixing, IEEE Signal Processing Magazine, vol.31, issue.1, pp.95-104, 2014.
DOI : 10.1109/MSP.2013.2279177

D. A. Roberts, M. Gardner, R. Church, S. Ustin, G. Scheer et al., Mapping chaparral in the Santa Monica mountains using A new Bayesian unmixing algorithm for hyperspectral images mitigating endmember variability, 2015 IEEE International Conference on Acoustics , Speech and Signal Processing (ICASSP), pp.2469-2473, 2015.

Y. Song, D. Brie, E. Djermoune, and S. Henrot, Minimum distance criterion for non-negative hyperspectral image deconvolution, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.
DOI : 10.1109/ICASSP.2016.7472490

M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Computational Statistics & Data Analysis, vol.52, issue.1, pp.155-173, 2007.
DOI : 10.1016/j.csda.2006.11.006

A. Cichocki and R. Zdunek, Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorization, Advances in Neural Networks?ISNN 2007, pp.793-802, 2007.
DOI : 10.1007/978-3-540-72395-0_97

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers, Machine Learning, pp.1-122, 2011.
DOI : 10.1561/2200000016

J. M. Nascimento and J. M. Dias, Vertex component analysis: a fast algorithm to unmix hyperspectral data, IEEE Transactions on Geoscience and Remote Sensing, vol.43, issue.4, pp.898-910, 2005.
DOI : 10.1109/TGRS.2005.844293

J. Li and J. M. Bioucas-dias, Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data, IGARSS 2008, 2008 IEEE International Geoscience and Remote Sensing Symposium, p.250, 2008.
DOI : 10.1109/IGARSS.2008.4779330

D. C. Heinz and C. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.3, pp.529-545, 2001.
DOI : 10.1109/36.911111

S. Moussaoui, D. Brie, and J. Idier, Non-negative Source Separation: Range of Admissible Solutions and Conditions for the Uniqueness of the Solution, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., p.289, 2005.
DOI : 10.1109/ICASSP.2005.1416297

J. M. Bioucas-dias and M. A. Figueiredo, Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp.1-4, 2010.
DOI : 10.1109/WHISPERS.2010.5594963

J. B. Broadwater, D. Limsui, and A. K. Carr, A primer for chemical plume detection using LWIR sensors, Tech. Rep, 2011.

Y. Altmann, N. Dobigeon, and J. Tourneret, Nonlinearity Detection in Hyperspectral Images Using a Polynomial Post-Nonlinear Mixing Model, IEEE Transactions on Image Processing, vol.22, issue.4, pp.1267-1276, 2013.
DOI : 10.1109/TIP.2012.2210235

URL : https://hal.archives-ouvertes.fr/hal-00786063

G. Tochon, J. Chanussot, J. Gilles, M. Dalla-mura, J. Chang et al., Gas plume detection and tracking in hyperspectral video sequences using binary partition trees, IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, p.2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01052719