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Abstract

Among the numerous techniques of non destructive evaluation, elastic guided waves are of particular interest
to evaluate defects inside industrial and civil elongated structures owing to their ability to propagate over long
distances. However for guiding structures buried in large solid media, waves can be strongly attenuated along the
guide axis due to the energy radiation into the surrounding medium, usually considered as unbounded. Hence,
searching the less attenuated modes become necessary in order to maximize the inspection distance. In the
numerical modeling of embedded waveguides, the mdiicdity is to account for the unbounded section. This

paper presents a numerical approach combining a semi-analytical finite element method and a perfectly matched
layer (PML) technique to compute the so-called trapped and leaky modes in three-dimensional embedded elastic
waveguides of arbitrary cross-section. Two kinds of PML, namely the Cartesian PML and the radial PML,
are considered. In order to understand the various spectral objects obtained by the method, the PML parameters
effects upon the eigenvalue spectrum are highlighted through analytical studies and numerical experiments. Then,
dispersion curves are computed for test cases taken from the literature in order to validate the approach.

Keywords:

1. Introduction

Among the numerous techniques of non destructive evaluation (NDE), elastic guided waves are of particular
interest to evaluate defects inside industrial and civil elongated structures due to their ability to propagate over
long distances. Two categories of waveguides can be distinguished: closed waveguides (guides in vacuum) and
open waveguides (embedded waveguides).

In closed waveguides, waves can propagate along the guide axis without attenuation. However in practice,
guides are often embedded in large solid media that can be considered as unbounded. In this case, waveguides are
called open because of the energy radiation into the surrounding medium. Three kinds of wave modes can occur in
open waveguides: radiation modes, trapped modes and leaky ones. Their characteristics are briefly recalled in the
following paragraphs. These modes are obtained by assuming a dependence of wave fi&idd jmderek is
the axial wavenumbed is the angular frequency ads the coordinate along the waveguide axis. The following
dispersion relations hold&? + k,z/s = wz/c,Z/s, wherec; andcs are the longitudinal and shear wave spe&dand
ks denote the longitudinal and shear transverse wavenumbers of the unbounded medium respectively.

Radiation modes are standing waves in the transverse directions and can be either oscillating or evanescent in
the longitudinal directioni.e. ks € R andk is real or pure imaginary. They constitute a continuous spectrum [1,

2], resulting from the unbounded nature of the problem. Resonating mainly in the surrounding medium, radiation
modes are of little interest for the NDE of elongated structures.

Conversely, trapped modes are of particular interest. These modes exponentially decay in the transverse di-
rections ks € iR) and propagate along the axis without attenuatioa R) in non-dissipative waveguides. Their
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energy is confined into the core of waveguides without enégglyage into the surrounding medium allowing
long inspection distances. Nevertheless, trapped modastdmways occur. For scalar open waveguides (char-
acterized by a scalar field such as the acoustic pressure 8iHhwvave displacement), trapped modes exist only if
the bulk velocity in the core is lower than in the surroundimgdium [3]. In the elastic case, both compressional
and shear bulk waves occur and, unless Stoneley waves@nedlbn the interface between materials, no trapped
modes are present when the shear velocity is faster in tlee/405]. Unfortunately, such a configuration is often
encountered in civil structures because the guiding sirastare usually embedded in soft solid media such as
concrete, cement or grout for instance.

As opposed to trapped modes, leaky modes always exist in wpeaguides. Their energy leakage into
the surrounding medium yields attenuation along the guide &k € C/R, Im(k) being positive for positive-
going modes and negative for negative-going ones), whichst@ngly limit their propagation distance. An
unusual behavior of leaky modes is that, while decaying@ltve axis, their amplitudes increase in the trans-
verse directions. This feature is well-known in electrometism [3, 6] and has sometimes been mentioned in
elastodynamics [7, 8, 9, 10, 11].

From a mathematical point of view, leaky modes are not spkalijects because they belong to the forbidden
Riemann sheet [3, 12]. They constitute a discrete set wisiciot part of the complete set constituted by the
continuum of radiation modes and the discrete set of trappades [1, 2]. The mathematical characterization of
leaky modes requires a complicated analytical continudfi8] which is out of scope here. From a physical point
of view, leaky modes can constitute a good approximatiormefdontinuum of radiation modes in the excited
field over a restricted area, near the core region [6]. Thnahg imaginary part of their axial wavenumbers,
leaky modes allow to directly evaluate the ability of waveptopagate far away along the axis. With radiation
modes, such an information is hidden into the continuum.r&floee, an accurate determination of leaky modes
is essential for the NDE of embedded waveguides in order tbnfindes and frequencies of lowest attenuation.

In the literature, many researches have been conducted badelad waveguides based on analytical ap-
proaches [14, 15]. Analytical models are mainly based amsfex matrix or global matrix methods [14, 15] and
allow to plot the dispersion curves of solid embedded waidggs Methods based on Debye series have also
been proposed in Ref. [16]. Yet, these techniques are lihiiesimple geometries such as plates and cylin-
ders[17, 18, 19].

The modeling of more complex geometries usually relies americal approaches. A powerful technique
is the so-called Semi-Analytical Finite Element (SAFE) huet [20, 21, 22, 23], which restricts the FE dis-
cretization on transverse directions only. The SAFE metiasibeen mainly used for the simulation of closed
waveguides. The numerical modeling of open waveguideswariecs two dificulties: the cross-section is un-
bounded and the amplitude of leaky modes transverselyasese In order to overcome theséidulties, the
SAFE method must be associated with other techniques.

A simple numerical procedure is the absorbing layer (AL)moetproposed in Refs. [24, 25], which consists
in creating artificial viscoelastic layers in the surrourgdinedium for absorbing waves. Instead of using artificial
layers, Mazzotti et al. have recently combined the boundment method (BEM) with the SAFE method to
model three-dimensional elastic waveguides embedded atich [86] or in a fluid [27]. The BEM expresses
the solution in the exterior domain by integral formula oa ttore boundary. Analogously to the SAFE-BEM
method, Hayashi et al. [28] have proposed a formulation pamoplate waveguides. An alternative technique is
the perfectly matched layer (PML) method, which consist@rialytically extending real coordinates of physical
equations into the complex ones. The SAFE-PML method haa@jrbeen applied to scalar wave problems [29,
30, 31]. More recently, the authors have presented this adetthh model open solid plate waveguides [32, 33]
(one-dimensional modal problems).

Among these three techniques, the SAFE-AL method is theleghio implement as it does not require spe-
cific programming in existing codes. However, the AL artdioriscoelasticity must be slowly growing in order
to minimize reflection so that large layers can be requiregractice, hence increasing the computational cost.
Compared to AL, the PML thickness is expected to be signifigaaduced. Theoretically, the PML can strongly
attenuate waves without artificial reflection thanks to thalgical extension of coordinates (perfectly matched
property). Contrary to SAFE-AL and SAFE-PML methods, theFEABEM method avoids the discretization
of the unbounded medium, which significantly reduces thepmdational domain. Yet, the SAFE-BEM eigen-
problem is highly non linear and fiiicult to solve. To avoid the eigenproblem non-linearity WBAFE-BEM
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Figure 1: (a) Arbitrary cross-section of an open waveguidgintroduction of Cartesian PML in the surrounding medja) PML truncation.

methods, some modified formulations have been proposedgtagt al. [28] have successfully transformed the
non linear eigenproblem into a linear one for the specia cdis surrounding fluid (scalar waves). Gravenkamp
et al. [34] have proposed a simplified boundary conditiomelg dashpot boundary condition, which amounts
to neglect transverse wavenumbers in the exact radiatioditton. This dashpot condition is usually no longer

accurate for low frequency or for low contrast of acoustip@dance. Unlike the SAFE-BEM approach, both the
SAFE-AL and SAFE-PML methods yield a linear eigenvalue peob

In this paper, the SAFE-PML technique is proposed as amaltiee to SAFE-AL and SAFE-BEM methods
to compute modes in three-dimensional elastic waveguifi@sdrary cross-section embedded in an unbounded
solid matrix. Two kinds of PML, Cartesian and radial, aresidered. This yields two formulations referred to
as the SAFE-Cartesian PML (SAFE-CPML) method and the SAdtat PML (SAFE-RPML) method. It is
pointed out that both kinds of PML have been analyzed mattieatlg for computing the acoustic resonances of
open cavities [35, 36], which constitutes a problem closén&b of the present paper. Note also that the SAFE-
CPML formulation of this paper is indeed similar to the 2.5Bpdacement-based PML formulation recently
proposed in Ref. [37] (yet in this reference, the discretizoblem was not considered as an eigenvalue problem,
but rather inverted by considering a source term for fixealsvarse wavenumbers).

This paper focuses on the implementation and the validaticghe SAFE-PML method. The comparative
study between this technique and other techniques such BE-3A or SAFE-BEM methods is out of scope of
this paper and left for further studies.

The SAFE-CPML and SAFE-RPML formulations are presentedeénsS 2 and 3 respectively. In order
to understand the various spectral objects obtained frasetfiormulations and to clarify thefects of PML
parameters, the eigenvalue spectrum is analyzed for eaciulation based on analytical studies and numerical
experiments. In Sec. 4, the computation of modal propeftiesip velocity, energy velocity and kinetic energy)
is introduced and dispersion curves are computed for selestecases taken from the literature to validate both
formulations.

2. SAFE - CPML method

2.1. Initial formulation of 3D elastodynamics

One considers a three-dimensional Waveg@)de Sx] — o0, +o0[. Linear elastic materials are assumed. The
waveguide cross-sectidh lies in the ¢ §) plane. The tilde notation will be explained through thedduction
of PML in Sec. 2.2. The time harmonic dependence is chosen'ds @he study is focused on eigenmodes.
Acoustic sources and external forces are then discarded.

The variational formulation of the elastodynamic problemthe displacement field is given by

f §€' 6 dQ — w? f Pt adQ = 0 (1)
Q Q



where d2 = dXdydz. This formulation holds for any kinematically admissibisplacemensti = [y oty 60, .
The notationse = [§exx 5&yy 0&;, 20€xy 20€x; 2067 is the virtual strain vectorr = [Gxx Gyy 622 Fxy T xz Ty |
denotes the stress vector. The stress-strain relatiorvé& diy o = Cé, whereC is the matrix of material
properties.pis the material mass density. The superscfigtenotes the matrix transpose. We assume@hat
andp depend only on the transverse coordinate§)("'which means that we consider translationally invariant
waveguides along theaxis. Moreover we assume that the medium is homogeneous®atdounded region
which represents the core of the waveguide.

Separating transverse from axial derivatives, the stiéplacement relation can be written as follows:

0
e=|Ls+L,—]|0 2
€ (s+ Z&z)u (2
0 0
wherelL g = LX6_>~< + Lya—)7 and
1 0 O 0 0O 0 0 O
0 0 O 010 0 0 O
0 0 O 0 0O 0 0 1
L=lo 1 o' Y%=|1 00| =0 0 0 (3)
0 0 1 0 0O 1 0 O
0 0O 0 0 1 0 1 0

Lg andL,0/0z are the operators of derivatives with respect to the trassvdirections Xy) and the axiz
respectively.

2.2. Combining SAFE and Cartesian PML techniques

The SAFE method consists in assuming a harmonic axial depeedf fields and applying the FE method
to the transverse directions. The problem is then reduaed fhree dimensions to the two dimensions of the
waveguide cross-section. The SAFE method has been widety fas modeling closed waveguides (guides in
vacuum), for which the cross-section is bounded (see foamee [20, 21, 22, 23]).

The modeling of open waveguides requires to combine the SAEBtBod with another technique due to the
unbounded nature of the section. We assume that outsideséolyashomogeneous region representing the core
of the waveguide, the medium is homogeneous. The basic mesists in closing the waveguide section by
replacing the unbounded homogeneous region with a PML dkfthickness. As shown in Fig. 1, a PML is
introduced along the Cartesian transverse coordinatasler to attenuate waves in the surrounding medium. By
truncating the cross-section to afistiently large distance, the problem becomes closed andAlR& $nethod
can be applied. In this cas®,denotes the truncated section including the PML.

The basic principle of PML can be readily understood in a dimensional situation. Consider for instance
the case of a longitudinal wave traveling in the positivdirection. Such a wave can be expressed as an ex-
ponential function expkiX), which extends to an entire function for complex valuexofHence, instead of
considering reak,”"one can choose a particular pxix)“in the complex plane parametrized by a real variable
such that explki X(x)) decays exponentially astends to+co. The same considerations apply in théifection or
for a shear wave. The Cartesian PML method consists in eixtgitide initial equilibrium equations to complex
coordinatesxandy, properly parametrized to attenuate waves (the PML paraagon will be discussed in
Sec. 2.4). Here we define

X Y
50 = [ e 50)= [ nioes @
whereyx(X), yy(y) are complex functions satisfying
o yx(X) =1for|x <dy;yy(y) =1forlyl <dy,

o Im{yy} > O0for|x > dy; Im{yy} > O forly| > d.



dy anddy are positive parameters chosen such that the rectandie+{d,] x [-dy, +dy] contains the inhomoge-
neous part of the medium. Thusandy become non-real in the homogeneous surrounding medium.

Since waves are attenuated, the PML can be truncated ateadisiance. We denote by andh, the PML
thicknesses in theandy directions respectively (see Fig. 1c). Thus, in theg/j plane, the truncated cross-section
including the PML is the rectangle of half-thicknessigs- hy anddy + hy. On the exterior boundary of the PML,
the boundary condition can be arbitrarily chosen (usudlidchlet type).

From Eq. (4), the change of variabbess"x, § - y yields for any functiorf:

of 19f of 1 of - .
o% - Yx axv ay - Yy ay» dx = )’xdx: dy_ Vydy (5)
wheref(X(X), (y), 2) = f(x. Y, 2).

Applying this change of variable to Eq. (2) leaves the opetlat unchanged while the operatog has to be

replaced with
1 0 1, 0
LS e an + ” yay (6)

Now applying the SAFE method, the displacemerand the virtual displacement are expressed on one
element as follows:

u(x, vy, 2) = N8(x, y)U%e®?, su(x,y, 2) = N&(x, y)sUe™? (7)
wherek is the axial wavenumbeld€ is the displacement vector ait is the matrix of interpolating functions on
the elemene.

Replacing the axial derivativg/dz of the trial and test functions with products kik and—ik respectively,
the formulation (1) is reduced from three dimensiaoxny(2) to a bidimensional problem written in the transverse
directions &, y). The strain-displacement relation becomes

€= (Ls +ikL,) NeU®"?, (8)
The FE discretization of the truncated cross-section finadllds
(K1 - w?M +ik(Kz - KJ) +K?K3lU =0 (9)

with the elementary matrices:

KS = f NeTL LCL sN®yyy,dxdy, K§ = f N°eTL L CL ;N®yyyydxdy
e e

KE = f NeTLCL ;N®yyy,dxdy, M® = f PNETNCyyydxdy.
e e
Note that the SAFE-CPML matrices are complex due to the fanst, andyy in the integrands.

2.3. Linear eigenvalue problem
Given the frequency, the formulation (9) is quadratic with respectikonvhich can be linearized as [33, 38]

(A-kB)U =0 (10)
with

0 I I O ~ U
A=~y - w?M) —i(Kz—K;)]’ B‘[o Ks]’ U‘[ku]' (11)

The symmetry ofK;, K3 andM implies that ifk is an eigenvalue of (9), thenk is also an eigenvalue.
Thus, the eigenspectrum includes two families of solutigksU7) and ¢k, U7), (j = 1,...,n) representing
positive-going anch negative-going waves.

In the presence of PMLK 1, K5, K3 andM are complex.A andB are not Hermitian, which somewhat
complicates the numerical treatment of the eigensystem (A6 outlined in Ref. [35, 30], the non-hermitian
character of matrices may yield spurious eigenvalues whiehassociated with large values of the norm of
resolvent. This problem can be reduced by setting the PMItawofar from the core.

In this paper, the ARPACK library [39] is used for solving thigensystem (10). This library is based on the
implicitly restarted Arnoldi method. For each frequencgp&cified number of eigenvalues is looked for around
a user-defined shift.
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2.4. PML absorbing functions

In each directiorx andy, the PML depends on three user-defined parameters: thégposftthe interface
(dy, dy), the thicknessh, hy) and the absorbing functionyy,yy). For a given interface position and PML thick-
ness, the optimal choice of absorbing functions is cruciehfaximizing the attenuation of waves with minimal
reflections.

In scattering problems (source problems), the PML funcisnosually frequency dependent [40, 41] and
chosen asyx(X) = 1+iox(X)/w whereoy(X) is a continuous function, parabolic inside the PML regiasimilar
expression holds foyy(y)). In modal problems, the proper choice of PML functiondigrgly different.

As mentioned in the preceding section, if we consider a kowgnal or shear wave exf(jsX) for real X
(wherek; andks denote the transverse longitudinal and shear wavenumligesgfect of an infinite PML in the
positivex direction is to transform this function into an exponetyialecaying function expki;sX(x)) asx tends
to +co. From (4), it is easily seen that the total attenuation acedsyer of finite thickneds is given by

exp-Im(ky/syxhx)) = explkysliyxhxsin(ardk s + argyx)) (12)

whereyy denotes the average valuesgygfin the layer :

dy+hy
=i [ o (13)
X Jdy

One recalls that leaky modes decay along the axial direetftm k > 0) but grow in the transverse direction,
i.e.Imk;s < 0 or equivalently arg;;s < 0. From Eq. (12), leaky waves can be attenuated by the PMLif Such
that arg,s > — argyx (in this paper, arg denotes the principal argument andii#fsd interval }- 7, +x]). Hence,
increasing argy will enlarge the region of the complex plane where leaky nsathn be computed. Increasing
[yxlhy will increase the PML absorption.

For trapped modes, waves propagate without axial attesnuéltimk = 0) and exponentially decay in the
transverse direction so that: Rg = 0 and Ink;;s > O, or equivalently ar§;;s = 7/2. In the presence of PML,
trapped waves will thus remain decaying if axg< n/2. The PML will be able to enhance the natural decay of
trapped modes if Ink{;syx) > Imki/s, or equivalently Rey > 1.

Note thatly,| cannot be too high in practice for a givag otherwise waves will attenuate too fast to be well
approximated by the FE discretization. This phenomenorelskmown in the PML literature [40].

For a PML introduced in thg-direction, the above considerations also holds wjtdefined by

R 1 dy+hy
W=n [ e 14)
y Jd,

For open waveguide modal problems, the PML functions haga bsually set to a constant complex value [30,
42, 43, 44], yielding a discontinuity at the PML interfaceowtver a smooth profile can improve the accuracy
of modes, as recently shown in Refs. [32, 33]. In this pappagrabolic function is set for both the real and the
imaginary parts ofx andyy:

1 if X < dy 1 if |yl<dy

—do\? - —dy)\? )
1+3@x— 1)(|X|h dx) if X >dy ’ 7o) 1+3(py - 1)(|y|h y) if Iyl >dy
X Yy

yx(X) = (15)

¥x andyy quantify the PML absorption. Note that the PML functionsandy, are independent ab, which
avoids the calculation of SAFE-CPML matrices at each fregye

2.5. Eigenspectrum

The goal of this subsection is to get a better understanditigeanfluence of each PML parameter upon each
type of modes. First, the analytical solution of a homogeisaoedium is derived and compared with numerical
results obtained with the SAFE-CPML method. Second, a mongxtex case corresponding to a steel cylinder
buried in a solid medium is considered. Numerical experisiane performed to understand how the Cartesian
PML acts on the eigenspectrum.
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2.5.1. Homogeneous medium

An isotropic elastic homogeneous medium in three dimessian be viewed as an open homogeneous
waveguide of unbounded section in they() plane ¢ being the axial direction). Introducing a PML of finite
thickness in both directionsandy, the problem becomes closed. A boundary condition, defiated, Imust be
applied at the PML ends. Let us dendjgand{y the half thicknesses of the whole cross-sectiyn=( dy + hy,
t, = dy + h,). £x and?, are the complex half thicknesses, defined as follows:

Uy ~ fy
7= fo IO = A+ s By = fo WO = d, + Fyhy. (16)

Analytical solution. Applying the Helmholtz decomposition [45], the displacereectoru’is written asu™ =
Vé +V A g (With V- g = 0), wherep andy = [Jy zpy )T are scalar and vector potentials correspondlng to lon-
gitudinal () and shearq) waves respectively. The equilibrium equations of elagtagnics yield the uncoupled
differential equations for potentials:

’6 %9 ( Wy

?+A)¢ 0 and —+—+(C§+/1)lﬁ=0» (17)

+— + >
| %2 = oy

ox2 " oy

wherel = —k2. ¢ andcs are the bulk velocities of longitudinal and shear waveseetyely.
Free or Dirichlet boundary conditions couple the potestighndys so that fully analytical solutions are not
achievable. Instead, the following mixed boundary condgiare considered:

U=0, Guy=0, 6x,=0 at X=+lx and Gy =0, Gyxy=0, Gy, =0 aty=+f. (18)

It can be shown that such boundary conditions yield uncalipteindary conditions fap andy:

¢ . 7 Jy=0atX =/ ~ .z
& = oatx= ifx { 6;{} =0atxX= iNX ;f'; " { lﬁz =0atx= ifx (19)
0 . . v _ y_ .7 y_ 7
6($=Oaty=i£y Ux = 0aty = +ly a—y—oaty—iy Y. =0aty ==l
By separating the variablesahdy, the eigenvalues of the problem (17) and (19) are given by
2 2 2 2 2 2
AP = _w_2 + (p_zr) + (q—f) , A — _w_2 + (E) + (n_zr) (20)
G 205 2y cs  \ 20 20y

wherem, n, p, g are integers. These apparently formal calculations caasig/gustified following the same ideas
asin[33].

From Eq. (20), it can be seen that two spectra occur instead®fvith scalar waveguides [30, 43]. These
two spectra correspond to compressional and shear wayEcieely.

Without PML, the eigenvalues are red} & ¢y, Ey = {y). In the initial unbounded problerd, and¢, tend to
infinity: the spectra in terms of = —k? tend to two real continuous half-lines§?/c?, +oo[ and [-w?/c2, +co[.
These continua of eigenmodes are the so-called radiatiatesyavhich are standing waves oscillating in the
transverse directions. As simply shown by Eq. (20), eachimoum is discretized by the truncation of cross-
section at some finite distance.

With PML, the eigenvalued are no longer real. The associated modes are still refeorex$ radiation
modes since they are oscillating inside the PML. In the cempiplane, the eigenvalues of Eq. (20) belong to
two angular sectors of Orlgln5w2/02 and-w?/c2. Each sector is limited by two half-lines of rotation angles
—2argly and—2 argt’y For clarity, these half-lines are denoted as

(A): — P/ + RYE,  (A)): — /s + RY/E. (21)
Each sector reduces to half-lines if af;;g: ~argfy. \{Vhenlfx| and|Ey| increase, each spectrum of radiation modes

gets denser and becomes continuous whgand|{,| tend toco.
7



Material ¢ (m/s) cs(m/s) p (kg/m®) B (Np/wavelength) s (Np/wavelength)

Steel 5960 3260 7932 0.003 0.008
Concrete 42221 2637.5 2300 0.0 0.0
Stiff stone 5720 3300 2200 0.0 0.0

Grout 2810 1700 1600 0.043 0.100

Table 1: Material characteristics.

From Eq. (16), the rotation angles (af}*) and(Ay°) are respectively

—2argly = —2argth + 9xhy), —2argly = —2arggy + Jyhy). (22)

This shows that each angle does not depend on the PML fungtadfile itself (only its average value has an
effect). Itis noteworthy that the result given by Eq. (22) agneih that obtained in Ref. [46] from a mathematical
study of the scalar acoustic PML problem.

Numerical exampleA concrete medium is considered. The material charadtesiate given in Tab. 1. The
PML interface positions are chosengs= dy = d and the PML thicknesses are setifo= hy = 3d. The whole
section is a square of half-thicknesggs- ¢, = 4d.

Figure 2 shows the dimensionless spectidhat the dimensionless angular frequesity: wd/cs = 1 with
different values ofx andyy.

As shown in Figs. 2a and 2c, the analytical eigenvalues diyeeq. (20) belong to two angular sectors. They
are limited by two half-line§Ay®) and(Ay/*) defined in Eq. (21), rotated from the real axis by angles o#°
and-113 respectively, in agreement with Eq. (22). As can be seen fiys. 2b and 2d, the angular sectors are
reduced to half-lines when PML parameters are identicabih directions.

Numerical eigenvalues computed by the SAFE-CPML methodaks®@ shown in Fig. 2 (crosses). The fi-
nite elements are six-node triangles, whose average lesginoted bye. The PML functionsy, andyy are
parabolic, as defined by Eqg. (15).

Numerical results are in agreement with the analytical persept for poles that are far from the real axis.
Such poles indeed correspond to higher order modes (higthees ofp, g, m, nin Eq. (20)), which have high
transverse wavenumbeis. small transverse wavelengths. As in conventional eigelevBE problems, these
modes are not well approximation due to the FE discretimatiRefining the mesh allows to improve numerical
results, as confirmed by Figs. 2c and 2d.

2.5.2. Embedded cylindrical elastic waveguides

In this subsection, numerical experiments are conducteal @indrical waveguide embedded into a softer
solid matrix (the bulk velocities of the core are greatentirathe surrounding medium). The test case is taken
from the paper of Castaings et al. [24]. It consists of a stgkhder of 10 mm radius buried in concrete. The
material characteristics are given in Tab. 1. The steelisiclered as elastic in this te@ & Bs = 0, wheres,
andgs denote the longitudinal and shear bulk wave attenuatiohejrer per wavelength).

Contrary to the previous subsection, the eigenspectruminolwdes leaky modes in addition to radiation
modes (note that no trapped modes occur in this test case).

Numerical parametersThe radius of the circular core section is denoted@by Dirichlet condition is applied
at the exterior boundary of the truncated section. As shoviig. 3, finite elements are six-node triangles. PML
functions are parabolic. The PML parameters inxtendy directions are identicald, = dy, hy = hy, 7x = yy.
The PML thicknesses are equal t®&

Numerical eigenspectrunEigure 4 represents the dimensionless numerical spectadrfor various PML pa-
rameters at the dimensionless frequeficy wa/cs, = 3.86 (Wherecg is the shear wave velocity of the core).
Two kinds of modes can be distinguished.



oF :
¢ &
05 8F 1 8
At Prate &
&* g
o~ F . o b
C\:E 15 %q_j'-_ §.+g® §
T -2+ qqa:e- o+$o g
= 2 tTer ey b
+ ¥ &+ g
25r 8 P og® Tgh+ g
+ + eof o
'3'++°%:’6Jr +$++ o
--++O_#_ 4 T +;|_+ ER
-3'5-c% Yoot * oo+ O‘-""*’+ *3-@-
-2 -1 0
Re(rd?)
(@
0.
05 -
A} A s
g g
— - [ 2
Sol I A O L.
\E/ 2t ¢ @ ¢ Po &
= F 2 o ®
25t o, g &
£ ® -]
.t ©
o® & ¢
H
-3'5-é>+ o +-:3® O‘i’? e?
2 -1 0
Re(rd?)

o 3 %
05 % %
Al 3 %
;] -]
c\g -1.5¢ % %
\g _2 | 7] &
25 % %
L )
=3F +0 O:_
#%
35 j;% L+
2 1 0
Re(d?)
(b)
o 3 %
05 % %
) 34
-] -]
c\g -1.5¢ % %
E _2 L @ @
2.5 0%
[:7] [:7]
-3r ® ®
@ &®
35 % %
2 1 0
Re(Zd?)

(d)

Figure 2: Spectrum of homogeneous concrete medium witibseirtincated by Cartesian PML &= 1 (dx = dy = d, hy = hy = 3d) for:
(@7Px =1+i, 7y =1+2i,le=04d, (b)Jx =¥y =1+i,le =04d, () yx = 1+i, ¥y = 1+ 2i,le = 0.2d and (d)yx = Jy = 1 +1, le = 0.2d.
Crosses: SAFE-CPML results, circles: analytical resisshed Iines(A'x/S), continuous Iines(A'y/S).



Figure 3: Cross-section mesh of an embedded cylindricaliiag Cartesian PMLU{ = 0.2a).
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The first kind corresponds to radiation modes, yielding twectra of origins {w?/c?, 0) and Fw?/cZ,0),
wherec; andcs denote the bulk longitudinal and shear wave velocities efémbedding medium (concrete).
Similarly to Sec. 2.5.1, these spectra correspond to theratized continua of longitudinal and shear waves.
Modes near the origins approximately form straight lindatex from the real axis with angles equal to 16v
Fig. 4a and 61in Fig. 4b. These angles are in agreement with the analytcalula given by Eq. (22). Far from
their origins, radiation modes deviate from straight lin8ach modes are high order modes which the FE mesh
can no longer approximate. This is confirmed by Fig. 4d, olethivith a refined mesh (the deviation occurs at a
greater distance from the origins).

The rotation of radiation modes indeed allows to discovee@nd kind of modes, hidden in the original
problem without PML. These modes are leaky modes. As obdenvEig. 4, the number of discovered leaky
modes grows as the rotation angle is increased: comparéd.tdd(yy = 3y, = 2 + 4i), two leaky modes are not
present in Fig. 4b)x = 9y = 4 + 4i). As expected from Sec. 2.4, more leaky modes can be foyiiicbeasing
the argument ofx andyy.

The rotation angles can also be modified by adjusting the PMgrfiace positiordy andd,. Comparing
Fig. 4c with 4a shows that high values @f anddy reduce the rotation angles, in agreement with Eq. (22). In
Fig. 4c, note that two leaky modes are spoiled by the deviatfdigh order radiation modes.

In practice for computing leaky modes, the PML interfaceudtidoe set close to the core as suggested in
Refs. [33, 30, 35]. From a physical point of view, a PML ingexé too far from the core allows leaky modes to
significantly grow before entering the PML, which can detrate their computation. This has been mathemati-
cally justified by the increase of the norm of the resolverthefeigenproblem [30, 35].

The spectra of radiation modes can be densified by choosihghvalues of PML parametew(dy), (hx. hy)
or (¥x ¥y), Which increases the complex half-thickneqégasand|fy| as explained in Sec. 2.5.1. As an example,
compared to Figs. 4a, these spectra get denser in Figs. 4écarfiol which the parameters iRe= Rey, and
dy = dy have been increased respectively.

3. SAFE - RPML method

In this section, the SAFE-RPML formulation is introducedllBwing the same approach as in Sec. 2, the
associated eigenspectrum is briefly studied through @onalygtnd numerical experiments.

3.1. Combining SAFE and radial PML techniques
The formulation (1) is rewritten in cylindrical coordinatas follows:

f s€' Fdfdodz — w? f polT ifdFdedz = 0 (23)
Q Q

whereX = ' cosf, § = ' sing. The tilde notation represents the introduction of a PMLnglthe radial direction.
Note that in the above formulation, vectors and tensors aitéew in cylindrical coordinates but still expressed
in the Cartesian basis. In cylindrical coordinates, therajpel ¢ of the strain-displacement relation (2) is

0 sing d .0 cost o
LS—LX(COSG%—T—)-FL)/(S"]G&-FT% . (24)

Applying the PML technique in the radial direction, the faration (23) can be interpreted as the analytical
continuation of the equilibrium equations into the compiadial coordinate, with

F(r) = fo W) (25)

wherey(r) is a complex function satisfying
e y(r)=1forr <d

e Im{y} > Oforr > d.
11



(7

Figure 5: Open waveguide with cross-section truncated dar&@ML.

d is the position of the PML interface. As shown in Fig. 5, thess-section of a SAFE-RPML problem is
typically a circle of radiug + h, h denoting the PML thickness. Similarly to Cartesian PML, Bwindary
condition applied at the PML exterior boundary can be aabir chosen.
From Eg. (25), the change of varialsles r yields for any functionf :

af  10f

— ==—, dif = ydr 26

or yor 4 (26)
where f(F,6,2) = f(r,6,2). Applying this change of variable and the SAFE method to.24) leads to an
expression identical to Eq. (8), with

y or F 90

e 27
Y or T 00 27)

(cos@ 0 sind é)) (sin9 0 cosd 6)
Ls = LX —_— + y — .

Before FE discretization, the formulation must be transfed back to Cartesian coordinates. The opetator
then becomes

X y\o (1 1\ 0 1 1\ 8 (¥ x\o
Ls=Ly|l =+ =+ - =|xy=|+L,|/[ = - = |xy—+|= + = | =]|. 2
ST X [(yrz T ) ax (yr2 fr ) Xyay} " y[(yrz fr ) Vox (yr2 T ) ay} (28)
Finally, the FE discretization of the formulation along titess-section yields the same form of eigenproblem
as Eq. (9), but with the following elementary matrices:

ngfNeTLgc:LSNerTydxdy,ngfNeTLgC,LZNerTydxdy
e e
KS = fNeTLTCL Nef—ydxdy Me—f NeTNeF—ded
3~ z z r > - p r y
e e
3.2. PML absorbing function

As suggested for Cartesian PML, a parabolic profile indepenadf frequency is chosen for the radial PML
functionvy, expressed as follows:

1 if r<d
_ C\2
Y0=1 13¢5 1)(%) if r>d (29)
wherey'is the average value ¢fin the radial PML region:
. 1 d+h
=5 [ o (30)

For radial PML, the influence of dn wave absorption can be illustrated by considering waltisos in
cylindrical coordinates. In the PML region ¢ d), the wave fields can be expressed by a combination of Hankel
12



functions. Assuming negligible refection from the PML eideboundary ( = ¢, = d+h), the radial dependence
of wave fields is written aH,ﬂl)(k./SF), WhereH,ﬂl) is the Hankel function of first kind ankl,s denotes the radial
wavenumber (shear or longitudinal).

Let us denote the complex radifisby

~ b
7 - fo Nk, (31)

For simplicity, we assume that the radial wavelength is serugh compared td and|Z| (i.e. lki/sd| > 1 and
lk,/s;| > 1). Then, the wave solutions at the PML interface and at thé BN, written in terms ofH{P(k;d)
andH{Y(k,sf;) respectively, asymptotically behave lik&:d/ /iy od and éstr/ [k of, = (e““/sd/ ‘/kl/sfr)eik'/s?h
respectively. Therefore, the total attenuation from therfiace to the PML end can then be approximated by

HP(aysfr)l _ expelkyslipthsin(argays + argy))

HPasd)l 1. %h’

(32)

Concerning the numerator (exponential term), it can becedtihat the radial wavenumblefs plays the same
role as in Eq. (12). Therefore, the influenceyois similar to the &ect of y, andyy, with the Cartesian PML
method, already described in Sec. 2.4.

The slight diterence with radial PML is that this exponential term is madledi by an attenuation factor given
by 1/ +/I1 + %h/d|. Without PML (¢ = 1), this attenuation factor corresponds to the geometaitahuation of
cylindrical waves and is equal tg 3/1 + h/d. A radial PML enhances this attenuation factofjasncreases.

3.3. Eigenspectrum (homogeneous medium)

The SAFE-RPML eigenspectrum is now briefly analyzed in otdeunderstand how a radial PML acts
on the eigenspectrum. The analytical solution of a homogesnenedium is derived. Compared to Cartesian
coordinates, it is diicult with cylindrical coordinates to find appropriate boanglconditions leading to fully
analytical solutions of the elastic problem. Therefore, éimalytical solution of this section is obtained for the
scalar wave equation of acoustics. The elastic problemheilhandled through numerical experiments. For
conciseness, this section is limited to the case of a honemenmedium. The reader is referred to Appendix
A for the analysis of a cylindrical core waveguide embedd#d an infinite medium, where similarly to the
homogeneous case, the analytical solution for an acoustieguide is first studied and numerical experiments
in the elastic case are then performed.

A homogeneous medium can be considered as an open homogevea@guide of unbounded cross-section.
Introducing a radial PML of finite thickne$sand of positiord, the cross-section becomes bounded and of radius
¢t =d+h.

Analytical solution for a scalar problemThe acoustic wave equation written in cylindrical coordésas

dp 1dp nP. (w? S\
A P R 9

whereg denotes the acoustic variabreis the circumferential order arwis the acoustic wave velocity.

The solution of Eq. (33) ig(F) = Adi(kT) + BYa(kT), wherek; is the radial wavenumber satisfying the
relationk? + k¥ = w?/c. J, andY, are Bessel functions of the first kind and of the second kisgeetively.
SinceY,(k f) tends to infinity wherf| tends to OB must vanish. A Dirichlet conditiogi(,) = 0 is applied at the
PML exterior boundary, yielding the characteristic eqoiatil, (k. £;) = 0. The eigenvalues are hence

2 2
2 . W Xnm
/1nm = —knm = —g + (_Er ) (34)
whereynm denotes thenth zero ofJy(X).
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Figure 6: Dimensionless spectrum of homogeneous concrettum computed with the SAFE-RPML methoduat/cs = 1. PML parame-
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Without PML (¢, = ¢), the eigenvalues are real. In the initial problem of inéirsectionR tends to infinity
and thed spectrum becomes a real continuous half-lin@{/c?, +oo[. This continuum can be referred to as the
essential spectrum of radiation modes [30, 35].

With a radial PML, the eigenvaluasof radiation modes become complex. In the complex plang,likkong
to a discretized half-line of rotation angle

—2argl; = -2 arg@ + 7h). (35)

This coincides with the result obtained in Ref. [35] for tlenputation of acoustic resonances with a radial PML
method. Similarly to the Cartesian PML (see Sec. 2.5.1)diberetized half-line gets denser whén increases
and the rotation angle is independent of the radial PML fiongbrofile.

Numerical solution for an elastic problenThe radiation modes of a homogeneous elastic problem are now
computed by the SAFE-RPML method. A concrete medium is clamed. Finite elements are six-node triangles,
whose average lengthis chosen as.@d. The PML functiony is parabolic, as defined by Eq. (29). The PML
thickness is set tb = 3d. The radius of the whole cross-sectiorfjis= 4d.

Figure 6 shows the spectrum at the dimensionless frequ@neywd/cs = 1 withy = 2 + 4i. Instead of
one half-line with the scalar problem, the eigenvaluestto two discretized half-lines starting fr(}lcmuz/cl2
and-w?/c2. As already found in Sec. 2.5.1, these two spectra of radiatiodes correspond to longitudinal and
shear waves respectively (their deviation from straightdi being due to the poor FE approximation of higher
order modes).

The half-lines are rotated from the real axis with equaltioteangles, approximately equal to 218This
angle is in agreement with the acoustic formula (35).

4. Dispersion curves

In this section, the dispersion curves of leaky and trappedes are computed by both the SAFE-CPML and
the SAFE-RPML methods for three test cases taken from theatitre. The calculation of modal properties in
open waveguides is presented first (kinetic energy, enegigpeity and group velocity).

4.1. Kinetic energy

By analytical continuation into complex coordinates, thess-section and time averaged kinetic energy can
be defined a&y = 3 fgﬁﬁdé, whereV = dii/dt is the velocity vector and bars denote time averaging over on
period. As already mentioned in Sec. Z2jenotes the waveguide cross-section including the tredd@mIL.

This definition is rewritten by using the change of varialffesn complex to real coordinates, as

— 1 . ~ w2 ; . W . o
Ex = —pre(v -V)dS = —pre(u - u)ds = —fpu - uds (36)
4 Js 4 Js 4 Js
14



where & = Yxyydxdy for the SAFE-CPML method andX = fy/rdxdy for the SAFE-RPML method. The
superscript: refers to the complex conjugate transpose.
The FE expression of kinetic energy is given by

Ex = “’_ZZ u® - uedS = w—ZZUE‘* NTNEaS| Ue = £ urMu (37)
k= 4 s ep B 4 S Sep - 4 .

This result is the same as for closed waveguides (without P[1, 47]. In the presence of PML, the slight
difference is thal is no longer real and the kinetic energy becomes complex.

4.2. Energy velocity
For closed waveguides, the energy velocity is defined agvisI[45]:

) Re(fsﬁ- nds)
¢ Re(Ex) + ReEp)

whereP is the complex Poynting vector given By = —2vi ;. E,, denotes the cross-section and time averaged
potential energy, given bEp = % fSEdS. n is the unit vector normal to the cross section (in ziddrection).

The potential energEp and the complex power fI0\fé P-ndS can be post-processed from SAFE matrices thanks
to the following formula [47], here modified for complex wanenbers:

(38)

fP.nds: —'%u:; (K, +ikK3) U, Ex = %U*M U, Ep= %u* (Kq+ikKz —ik'K] + k'kK3) U. (39)
S

For open waveguides, the definition\afis similar to Eq. (38). However the integrals on the crosgisa
are usually restricted to the core region [48, 49], whichidsdhe transverse growth of leaky modes at infinity.
Hence, Egs. (38) and (39) still apply for open waveguidesatust be replaced witlsg, which denotes the
cross-section of the core.

4.3. Group velocity

The group velocity is usually defined by = dw/0k. The calculation ofy can be achieved from the derivative
of the SAFE eigensystem with respecticas done in Refs. [21, 50]. However, the definitign= dw/dk only
applies when the axial wavenumbeis real. In open waveguides, the axial wavenumber of leakgenas
complex. The proper definition of group velocity for dampealdes is [48, 51]

dw dk \|™*
= —— =|Re[— . 40
Y9~ dRe® e(dw)] (40)
Let (kj, Uj) denote an eigensolution of Eq. (9):
(K1— M +ikj(Kz - K]) + k?K3) UT = 0. (41)
Taking the derivative of Eq. (41) with respectdoyields
. dk; dk; _ du?r
(—ZwM + |d—aj(K2 —KD) + 2k,-d—a')K3) Uf = — (K1 - 0®M +ikj(Kz - K]) + KK3) d—a:. (42)

As mentioned in Sec. 2.2:-k;, Ujf) is also a solution of Eq. (9). Left-multiplying Eq. (42) biyet transpose of
Uj allows the right-hand term to vanish, which leads to the greelocity of thej" mode:

-1

Vg, = (43)

]

2wU; MUY
Re
U;T (i(K2 - KJ) + 2kiKs) UT
The calculation ofyy for a given mode hence requires its opposite-going couaterp
As opposed to the energy velocity, it should be noticed thatgroup velocity may generally be not appro-
priate for attenuated waves [48] (including leaky wave®t, ¥he group velocity still applies for trapped modes,

which are non-attenuated (in non-dissipative media).
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4.4, Modal filtering

According to Secs. 2.5, 3.3 and Appendix A, the SAFE-PML rodthprovide many radiation modes in
addition to the modes of interest (leaky or trapped). Siackation modes mainly oscillate inside the PML, they
are dependent on the choice of PML parameters and cannotis&leced as intrinsic to the physics. A large
number of radiation modes perturbs the visualization gbelision curves of trapped and leaky modes. A modal
filtering must be processed to identify and remove thesatiadi modes. The filtering criterion proposed in this
paper is based on the ratio of kinetic energy in the PML regigat the kinetic energy of the whole cross-section.
Physical modes are then identified if this criterion is serathan a user-defined valygax:

=
|Exl

< Imax (44)

whereEy,,, is defined from Eq. (36) by replacirgwith Spy., which denotes the cross-section restricted to the
PML region. Note that the modulus must be used in Eq. (44 esihe kinetic energy is complex in the presence
of PML. Note thatymax is independent of frequency in this paper. For a given FE mibshappropriate value
of nmax €ssentially depends on the PML parameters, which have lsseim&d as constant with frequency (see
Secs. 2.4 and 3.2).

4.5. Results

Three examples of open waveguides are considered. Therigdtas already been described in Secs. 2.5.2
and Appendix A (steel cylinder in concrete). The seconddase is taken from the work of Pavlakovic [19] and
is a 1mm radius steel cylinder intstone. This case is of interest due to the existence of oppdthmode. The
third example, taken from Ref. [26], is a steel square baielun a viscoelastic grout, for which no analytical
solution is available. Material characteristics are giireffab. 1. The steel is considered as elastic for the first
two examplesf = 8s = 0) and as viscoelastic in the last o £ 0.003,85 = 0.043).

The PML position and thickness are setio= hy = h = 0.9a anddy = dy = d = 1.1a, wherea denotes the
radius of the cylindrical core for the first two test cases #redhalf-thickness of the squared core for the third
case. Note that with the SAFE-RPML formulation, the PML abbé set tad = a when the core is cylindrical.

A Dirichlet condition is applied at the PML exterior boungr (numerical tests have shown that other boundary
conditions yield small dferences on trapped and leaky modes). The finite elementixarede triangles whose
length satisfies the following meshing criterida:< Am/5, wheredy, = min(cs)/ max(f) (min(cs) is the lowest
shear velocity of the problem). The SAFE-PML dispersiorvesrare shown after modal filtering, the parameter
nmax being specified for each example.

Let us consider the first test case. The FE meshes are showgsir8rand 7. According to the eigenspectrum
analyses in Secs. 2.5.2 and Appendix A, the eigenvaluesky imodes are located aroujag/¢/| in the complex
plane. The computation has been centered araunyd; in order to reduce the number of eigenvalues to solve.
In this way, only positive-going modes are calculated. 3@@les have been computed at each frequency with
the SAFE-CPML method, against 150 modes with the SAFE-RPMthod. Actually, the SAFE-RPML method
appears more advantageous from a computational point wffaiethis example because the core is of circular
shape: the PML region can be smaller, which also decreasasutinber of radiation modes to solve. Besides,
5139 dofs (degrees of freedom) are generated with the SAFRIOMethod against 3975 dofs with the SAFE-
RPML method.

In order to illustrate the féiciency of the filtering criterion proposed in Sec. 4.4, Figst®ws the phase
velocity dispersion curves obtained by both SAFE-PML mdthaithout modal filtering. Clearly, the presence
of many radiation modes in the dispersion curves preveertglémtification of leaky modes.

Figure 9 represents the kinetic energy ratio of modes obtdy the SAFE-RPML method at 200 kHz. It can
be observed that radiation modes yields a ratio approxugigitequal to 1 because they mainly oscillate in the
PML region, as opposed to leaky modes. Figure 9 shows thartbrgy kinetic ratio allows to well distinguish
the radiation modes from the others and that an approprédite \of the thresholgmay is rather easy to choose
(here, a threshold value of b turns out to be satisfying).

Figure 10 represents the dispersion curves with modalifiierThe curves of leaky modes are now clearly
observed (compare Figs. 10a and 8). We point out that otte¥ggmatio, based on Poynting vector or potential
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Figure 8: Phase velocity dispersion curves of steel-céaagindrical waveguide without filtemfax = 1). Crosses: SAFE-CPML results,
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energy, have been experimented. However, our numerit¢aliage not shown any improvementin the filtering of
radiation modes (results not shown for paper concisen&bgyefore, the kinetic energy based ratio is preferred
owing to its simpler post-processing.

The axial attenuation expressed in/dB(Fig. 10b) is defined by = 8.686 Ink. Note that for calculating the
group velocity (Fig. 10d), it was also necessary to computeniegative-going modes by searching eigenvalues
around-w/c;.

The dispersion curves obtained with the SAFE-CPML and th&ERPML methods are superimposed,
which tends to show that both methods yield the same ordezaifracy. The curves shown in Fig. 10a, b and c
are in good agreement with the results obtained by the SAEEeghnique [24] or the SAFE-BEM method [26].
This validates the SAFE-PML approaches proposed in thisp#&jpte that the AL thickness used in Ref. [24] is
16 times larger than the core radius, so approximately 1&dilarger than the PML used in this paper, yielding
dispersion curves that are not so accurate as those obtajrted PML method.

It can be observed that the group velocity curvekediquite significantly from the energy velocity (compare
Fig. 10c and d). One recalls that Bernard et al. [48] have sitbat this diference disappears for modes with no
attenuation but always exists for attenuated modes (sulgakg modes).

Figure 11 shows the axial displacement field of a given modeg the leaky compressional L(0,1) mode,
obtained with each method at 18%Hz. In the PML region, it can be observed that the CPML gt
strength is non-axially symmetric, as opposed to the RPMthow: However, the modeshapes are found to be
identical in the physical region.€. excluding the PML zone).
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Figure 11: Modulus of axial displacement of the L(0,1) motd@88 kHz (steel-concrete cylindrical waveguide) obtained &y AFE-
CPML and (b) SAFE-RPML methods. Dashed line: PML interfazmtinuous line: material interface.

From a physical point of view, it can be noticed that the Lf@&ad F(2,1) curves are discontinuous around
163 kHz and 135 kHz respectively. These discontinuitiespémesical and occur when the phase velogity
crosses the bulk wave velocitiesor cs of the surrounding medium (concrete) — see Fig. 10a for firegta For
a given mode, the partial longitudinal (or shear) wave distehianges from leaky to trapped whepbecomes
lower thanc (or cs) [19].

In practice, the calculation of modes having a phase veglatithe vicinity ofc; andcs can be dificult due to
the undefined nature of partial waves (Fig. 10) [19, 24, 2@]s problem is also encountered with SAFE-PML
methods because the transverse wavenumbers become smailyih close toc or cs. According to Egs. (12)
and (32), large values of PML thickness or PML function wobédrequired to sficiently attenuate waves.

The same problem is also encountered for the computationodemat low frequencies. For instance, in
Fig. 10, leaky modes are still found to exist for phase véiegiof a given mode smaller than the bulk shear
velocity of the surrounding media, which does not seem @aylsi correct. These low frequency modes are
indeed not properly computed. Restricting the analysidéavdrequency range, one remedy would be to enhance
the PML absorption strength by increasing the PML thickrieshe average value of PML functions.

Figure 12 represents the phase velocity and the attenuatidhe second test case (steefisstone waveg-
uide). The FE meshes used with Cartesian and radial PML rdstli@ the same as in the first test case. In this
example, the F(1,1) mode is trapped Kim 0) while the other modes are leaky. In the initial problemhwitt
PML, trapped modes are located on the real axis of the conghéare. Their wavenumber in absolute value is
larger thanw/cs [4, 52]. Hence in this test case, the computation has bedrrmegharoundy/cs instead ofw/c.

For each frequency, 265 and 180 modes have been solved f8ARE-CPML and the SAFE-RPML methods
respectively.

Since both trapped and leaky modes exist, the real and imgparts ofyy, y, andy have been set to a
suficiently large valuexy = 9y = ¥ = 4+ 4i) in order to attenuate both kinds of modes. Results argrieaament
with those of Ref. [19] calculated by an analytical approdnlparticular, the trapped mode is well approximated
by SAFE-PML methods (except for lowest frequencies, forghme reason as mentioned in the previous test
case).

For the third test case (viscoelastic steel-grout squascguide), the SAFE-CPML method has been pre-
ferred because the cross-section of the core is of rectangfuhpe. The FE mesh is shown in Fig. 13, generating
5127 dofs. 600 modes have been solved, centered royind Figure 14 shows the dispersion curves in phase
velocity and attenuation. The modes have been labeled asfin[#5]. Here again, numerical results are in
good agreement with literature results, obtained in Red] {#ith a SAFE-BEM technique. Note that a poor
approximation of lowest frequency modes possibly occur#ie same reasons as in the previous test case.
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5. Conclusion

In this work, SAFE-PML methods have been applied to comphaesigenmodes of three-dimensional open
elastic waveguides. Two kinds of PML, Cartesian and rabdele been implemented.

The spectral objects obtained from the proposed numenaoach have been clarified and theeets of
PML parameters on radiation and leaky modes have been giget through analytical solutions and numerical
experiments. The radiation modes of open elastic waveg@ideshown to belong to two continua corresponding
to longitudinal and shear waves respectively. The PML est#ttese continua in the complex plane. The trunca-
tion of the PML discretizes them, with a densification by @asing the so-called complex thickness (or radius).
The rotation angle of radiation modes are shown to be indégrarof PML function profiles and must be large
enough to discover the leaky modes of interest.

For three test cases taken from the literature, the digpeirves computed by both SAFE-CPML and
SAFE-RPML methods provide satisfying results, for leakyde®as well as trapped modes. A modal filtering
criterion has been proposed. This criterion is based ondtie of kinetic energy in the PML region over the
whole section and allows tdfeciently remove the radiation modes in the visualizationispdrsion curves. As
far as the computational time is concerned, the SAFE-RPMateafs to be more suitable for modeling open
waveguides of circular cross-section. Conversely, theeSan PML should be preferred when the cross-section
of the core is rectangular.

The main drawback of the approach is the presence of mangtimaimodes, which significantly increases
the computational time. These modes are not intrinsic tpkysics (since they depend on PML parameters) and
are not of interest for NDE. Another drawback is the appmtprchoice of PML parameters. Such a drawback
is inherent to any problem involving PML and is also encotedevith the AL technique. When the reference
results are not knowa priori, a convergence study is necessary. For instance for a gieéfef PML function,
the convergence of numerical results can be investigateefimyng the finite element size and increasing the PML
thickness. Note that the appropriate PML interface pasisaather straightforward to choose as the PML should
be set as close as possible to the core in order to limit tinsvwese growth of leaky waves.

Appendix A. Eigenspectrum of embedded cylindrical waveguideswith radial PML

Analytical solution of scalar problemln this analytical study, one considers a cylindrical aticusaveguide of
radiusa embedded into an infinite medium. A radial PML of finite thielssh is introduced at the positiath> a.
The total radius of cross-section including PMLZjs= d + h.

The system of equations in radial complex coordinates isrghy two Helmholtz equations (one for each
medium). Continuity conditions are applied at the integfae- a between both media and a Dirichlet condition
is applied at the PML exterior boundary:

- 1 d¢ 1dé .

go(@) = §(a), ——=(a) = =— (), $(&) =0. (A1)

po dr p df

#o and¢ denote the acoustic variables in the core and in the suringmadedium respectively, andp are the
mass densities of the core and of the exterior medium. Werasshat the core and the surrounding medium are
homogeneous: fluid properties are constant (the tilde hais pped for conciseness).

It can be readily shown that the dispersion relation assedi® this problem is

3, (key) [ Ya(kr@) Jn(keZr) = Ya(keEr) (ke % = Jnkeo@) | Yi(k @) In(ke £r) = Ya(ke ) (k-2 | % =0 (A2

wherek;, = /w?/c3 -k andk = +w?/c?—k? are the transverse wavenumbers in each medignarfdc
denote the velocities of the core and of the exterior mediespectively).

The above equation cannot be solved analytically. Conegmaidiation modes, further insight can be gained
from an asymptotic point of view. Assuming a large complediua (7, /al > 1), the transverse wavelength of
low order radiation modes can be considered #scsently large to neglect the influence of the core: such modes
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Figure A.15: Analytical spectrum of an embedded cylindreoustic waveguide & = wa/cy = 3.86 (0 = 0.2y, ¢ = 0.81cy) with
d=11a h=009afor: (a)y = 2+ 4i and (b)y = 4+ 4i. Dashed line: 41), continuous line: 42).

almost satisfy the homogeneous medium equation deriveddn33j.e. J,(k¢;) ~ 0, yielding a first asymptote

(A1): -
(A1) : —w?/C® +RY/L2 (A.3)

which is a half-line of origin-w?/c? rotated by-2 argf; in the complex plane.
Conversely, it can be shown that for a givgrthe eigenvalues of high order radiation modes (low transverse

wavelength) tend toward a second asymptatg (lefined by

(A): - w?/P +RY/(C - a)? (A.4)

yielding a half-line of origin-w?/c? rotated by—2arg¢; — a). Details are not shown for paper conciseness.
Similar asymptotic developments can be found in Ref. [30].

Figure A.15 shows an example of eigensolutions of Eq. (f0RYif= 1.1a, h = 0.9a and diferent values of.”
In this example,do, Co) and p, c) are the mass densities and the shear velocities of steebaxedete respectively
(see Tab. 1). The circumferential ordevaries from 0 to 10. As expected, the eigenspectrum contaitisleaky
modes and radiation modes. It can be observed that the iladiabdes appear to be included inside a sector
delimited by (\;) and (A2). More precisely, radiation modes are found to be locatedr@enbranch asymptotic to
(A1) and sub-branches. In each sub-branch, the radiation ngedesoser to 41) as the circumferential order

increases.
Note that the rotation angles af{) and (A,) are also independent of the PML function profileecause one

has
(A.5)

~2argl, = —2argd +7h), —2arg{, —a) = —2argd + 7h— a).
Compared to Fig. A.15a, the angular sector of radiation reegleeduced in Fig. A.15b. This is due to the
fact that increasing Re ihcreases Ré&;, which reduces the fierence between the rotation angles #f)(and
(A2) (this can be readily shown from Eg. (A.5)). Given that leakgdes are discovered in the region where
argd < —2 arg¢;, more leaky modes are found in Fig. A.15a than in Fig. A.1%imks to a greater rotation angle
of (Ay).
Without core & = 0), note that Egs. (A.3) and (A.4) yields equal rotation asdbor (A1) and (A,): the
radiation modes sector is reduced to one discretized im&frbtated by-2 argé,, which coincides with the result

of Sec. 3.3.
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Numerical experiments on an elastic waveguidée same test case as in Sec. 2.5.2 is considered (elaslic ste
concrete waveguide). Figure 7 shows the example of a cext®a mesh used with the SAFE-RPML method
(le = 0.2a). Note that the fects of radial PML interface position and mesh size on eigectsum are identical to
Cartesian PML (see Sec. 2.5.2). Therefore this subseaimrsés on theffects ofy specific to the SAFE-RPML
method.

Figure A.16 represents the eigenspectrum computed by th&ESHPML method at the dimensionless fre-
quencyQ = 3.86. As suggested for Cartesian PML, the radial PML interfacet close to the corel = 1.1a).
The average length of finite elementdds- 0.1a.

As shown for the scalar problem in the previous subsecti@an be noticed that the radiation elastic modes
are included in sectors. Instead of one, the elastic prolields two sectors, associated with longitudinal and
shear waves respectively. Each sector is limited by twolivads, denoted asﬁ(l/ %) and (A'z/s), of rotation angles
approximately equal to 10@&nd 120 in Fig. A.16a (73 and 88 in Fig. A.16b). These angles are closed to the
acoustic formula (A.5). Similarly to the acoustic case hesector is formed by one branch asymptoticzt}fo
and sub-branches and angular sectors are reducethasm&edses (compare Figs. A.16b with A.16a). Similarly
to the SAFE-CPML method, increasifg densifies the spectrum of radiation modes.

Concerning leaky modes, only those of arguments lower thanangle of 4&'1/3) can be discovered.é¢.
argd < -2 argZ,), which explains why less leaky modes are found in Fig. A.théim in Fig. A.16a.

To conclude this section, it is worth noting that the leakyd@® shown in Fig. A.16 are in agreement with
those of Fig. 4, obtained the SAFE-RPML method.
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