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Hencky-type discrete model for pantographic structures: numerical
comparison with second gradient continuum models

Emilio Turco, Francesco dell’Isola, Antonio Cazzani and Nicola Luigi Rizzi

Abstract. Hencky ( ̈Uber die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. 
Ph.D. thesis, Engelmann, 1921) proposed a discrete model for elasticae by introducing rigid bars and rotational springs. 
Hencky (Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016) approach has been introduced to heuristically motivate 
the need of second gradient continua. Here, we present a novel numerical code implementing directly the discrete Hencky-
type model which is robust enough to solve the problem of the determination of equilibrium configurations in the large 
deformation and displacement regimes. We apply this model to study some potentially applicable problems, and we compare 
its performances with those of the second gradient continuum model. The numerical evidence presented supports the
conjecture that Hencky-type converges to second gradient model.

Keywords. Pantographic structures, Micro-mechanical model, Second gradient continuum, Nonlinear problems.

1. Introduction

In this paper, we introduce ab initio a discrete model for planar pantographic structures and we cor-
respondingly formulate, using MATLAB, an effective computation tool which overcomes some technical 
difficulties confronted in [3,4] via heavier finite elements-based computational schemes, whose formula-
tion starts from second gradient continuum models. The developed computation tool, in particular, is 
better suited for determining the deformed shapes of pantographic sheets when: (1) large extensions are 
activated locally, (2) shear angles approach the value π

2 and (3) locking or “hourglass deformation effects” 
could arise due to the high heterogeneity of the material properties.

To explicit its effectiveness, we compare the newly developed computational tool with the one previ-
ously adopted using the FEM implemented in COMSOL Multiphysics (see [2]) based on a second gradient 
continuum model. The presented comparison considers some typical deformation problems including: (1) 
standard extension bias test; (2) shear/extension tests; (3) bending/extension tests; and (4) deformations 
induced by displacements imposed to single fibers (extraction tests).

The discrete model which we consider here includes both pairwise and triple elastic interactions 
between material particles and generalizes Hencky discrete model for the elastica [2,5–9].

The mechanical systems which could be described by the introduced discrete model include those 
considered and studied in [2,4,5,10,11]. Indeed, (1) the pivots interconnecting (see Fig. 1 for a 3D printing) 
the two arrays of beams are to be identified with the material particles which we introduce here; (2) the 
fact that these pivots may store elastic energy may be efficiently modeled introducing suitable “shearing” 
springs (that is the rotational springs called r3 in the following Figs. 3, 4); (3) the bending phenomena 
occurring between the two closest pivots and the corresponding stored elastic energy are modeled by the 
rotational springs called r1 and r2 in the following Figs. 3 and 4; and (4) the extensional phenomena 
occurring between two closer pivots are modeled by the extensional springs called r0.
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However, we believe that the potential scope of the presented model is wider: it very likely may include
the most relevant deformation phenomena in the woven fabrics described in [12–19]. Indeed, the fibers
constituting these fabrics intersect one with the others very similarly than in pantographic structures,
and in their deformation, one can still distinguish extension, bending and shear: even if the hypothesis
of elastic behavior in woven fabrics is applicable in a smaller range of deformation states, the model
presented here seems capable of catching some relevant aspects of its phenomenology. Similarly, some
biological living tissues which are characterized by fibers embedded in a soft matrix can be described
with the proposed model (see e.g., [20–24]).

In conclusion, we are sure that the synthetic discrete description given in this paper may supply some
insight in all those phenomena where chains of forces may be activated by directional strain fields. A
careful comparison with available experimental evidence will be the subject of some following papers.

After the concise statement concerning the original results, we complete this introduction by framing
the presented results in the more general context of the mechanics of metamaterials and their continuum
modeling. The dichotomy between discrete and continuum modeling will be shortly treated in a digression
preceding the synthetic description of the structure of the paper.

1.1. Metamaterials and their modeling with generalized continua

The reader will find an increasing literature dealing with the class of materials which has been collec-
tively gathered under the unifying concept of metamaterials. In this context, we have found particularly
interesting the works by [25,26], where metamaterials are described as those materials which, while not
existing in Nature, are conceived by means of a theoretical abstraction and then engineered to have
“exotic” properties.

Metamaterials are obtained by the “architectured” assemblage of multiple individual “microscopic”
elements constituted by standard materials, usually arranged in (quasi-)periodic substructures [27]. It
results that the macroscopic physical properties of metamaterials depend in a critical way on the topology
of their microstructures and the nature of the interaction among constituting elements, while they are
less sensitive to the standard properties of the micro-material constituting their microstructural elements.
The macroscopic physical properties tailored in the design of metamaterial may be, for instance, optical,
electromagnetic, thermal, mechanical and any combination (and coupling) of many of them. For instance,
the particular shape, geometry, size, orientation and arrangement of the microstructural elements affect,
in some particular metamaterials, the propagation of waves in a not-often-observed manner, e.g., not
allowing the propagation in some band gaps (see, e.g., [28–31]) even if such a property is not present in the
material constituting the microstructural elements (see also [32–35] for others unusual wave propagation
phenomena).

1.1.1. Mechanical metamaterials. In the literature, more recently, a particular class of metamaterials
has attracted the attention of mechanicians: the so-called mechanical metamaterials. The properties for
which these architectured materials show unexpected or exotic features are purely mechanical. The newly
synthesized metamaterial studied in [5] and considered here belongs to this class.

To give a hint of the possible performance of newly designed metamaterials, we list here some whose
applications seem closer to those which we have in mind (for a more detailed discussion the reader
is referred to [3,36,37]): (1) it has been synthesized a (micro-)composite medium showing a negative
effective bulk modulus, or a negative effective mass density, or both properties; (2) it is possible to design
and fabricate metamaterials with negative Poisson’s ratio; (3) it is possible to tailor materials showing
selective damping effects using special material microstructures (see e.g., [38,39]).

The main problem in the theory of metamaterials is actually an inverse problem: given a contin-
uum/discrete model (i.e., a set of kinematical parameters, either finite or infinite dimensional, and a
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Lagrangian action functional), one has to find if there actually exist mechanical systems which, at a
specific length scale, behave as it is prescribed by the chosen (continuum or discrete) model.

The problem actually consists in finding the microscopic properties and structure of such mechanical
systems to be able to construct (or how sometimes it is said with a word derived from Greek: synthesize)
them, after having solved the corresponding technological problems.

The metamaterial conceived in [2,5,9,40] has been designed to be governed, when considering macro-
scopic behavior, as a second gradient continuum and to have an enhanced extensional toughness: it has
been actually synthesized exploiting the novel possibilities given by 3D printing technologies. This new
class of bidimensional metamaterials, which have been also called extensible pantographic sheets, has
been modeled using bidimensional continua which generalize those introduced in [41–43]: indeed they
are conceived to account for the elastic energy in the extensional deformation and geodesic bending of
constituting fibers simultaneously.

1.1.2. Generalized continuum models. Continuum mechanics is a powerful mean for the design of mechan-
ical structures: indeed starting from the first half of nineteenth century this design has been based on
the application of predictive mathematical models. Starting from the pioneering works by Navier and
Piola (see the discussion in the following subsection), it was established that continuum models could
be deduced from discrete microscopic ones: the underlying idea is that materials can be ultimately mod-
eled at a micro-level as finite-dimensional Lagrangian systems and that their effective properties can be
all obtained via a suitable homogenization procedure. However, the working assumptions put forward by
Cauchy were later assumed to be of universal validity. The works of Piola on generalized continua (see [44])
and what has been later rediscovered and called peridynamics (see [45]) remained for a long time nearly
unknown. The limiting assumptions accepted by Cauchy include the absence of length scale phenomena
and of high contrast in microscopic properties. On the other hand, the particular class of microstructured
mechanical systems which present high contrast1 in microscopic properties once homogenized has been
shown to produce generalized continua in [46–53].

Actually, the continuum model introduced by Cauchy is very accurate for a large class of phenomena
but cannot be applied to all materials in every physical condition (and the contrary would be really
surprising). When introducing generalized continua, the true conceptual frame settled by Cauchy and
Navier is to be drastically modified. The concept of stress becomes secondary and the main role is played
by deformation measures together with action and dissipation functionals (see [54] or e.g., [55–58]).
The Euler–Lagrange equation obtained in this more encompassing modeling process cannot be anymore
regarded to coincide with the balance of force unless one generalizes the concept of force. This can be done
by introducing generalized actions as the dual quantities in the work of the gradients of displacements
(see e.g., [59–62] or [63–65] for 2D or 1D generalized continua characterized by a specific microstructure).

All these difficulties are easily surmounted when discrete models are usable: what we prove is possible
in the present paper. Moreover, a further consideration is needed here: at the end a continuum model, for
getting predictions, needs to be discretized. In other words, in any case a discrete model is used, whose
structure is rather out of the control of the modeler as it is mediated by many complex steps. In the case
of pantographic structures, they can be shortly listed as follows: (1) to find the right class of generalized
continua which is able to capture their behavior (and it seems that such class must be at least the class
of second gradient Piola continua, if not the class of micro-stretch continua); (2) to find the correct FEM
for getting algorithms converging to the physically meaningful shapes of introduced continua; and (3) to
establish the correct identification of constitutive parameters for getting physically founded predictions.

Here, we control totally the modeling process by introducing a convincing discrete model, we formulate
a Lagrangian equilibrium condition, and we find with a robust code under our complete control, since

1 These systems are defined as quasiperiodical systems having some of the physical properties diverging when the size
of the representative elementary volume tends to zero, while simultaneously some others properties are vanishing in this
limit. Pantographic structures verify this definition, see [2].
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it has been developed by ourselves, to determine all equilibrium configurations. The comparison with
the previously obtained results found in [3,5] is really comforting: there is a total correspondence of the
predictions. When one of the two models fails to converge, it is always the one obtained via the mediation
of generalized continuum theories.

1.2. A historical perspective

The controversy about the prevalence of continuum models on discrete models (or vice versa, depending
on the tastes and the schools) for mechanical (or more generally physical) systems is very old. Probably,
it started with the antithesis between Epicurean atomism and Heraclitean continuum approach: the more
recent dispute between Mach and Boltzmann is an example of how bitter this contraposition may become.
In this paper, we do not try a historical analysis of this contraposition and we do not dare to take position
on the aforementioned controversy. Actually, we believe that one has to assume a pragmatic view on the
question. In general, a mathematical model to be used for describing physical systems has to have the
following obvious features: (1) it has to be formulated based on a clear minimal set of postulates which
should be self-consistent and (2) it has to be predictive when applied to describe physical phenomena.

In order to get predictions out of a set of postulates, some exercises of mathematics need to be solved:
the obtained solutions, when engineering applications are needed, must involve the performance of specific
computations, which allow for the exact quantitative verification of considered models and for the precise
design of novel devices.

Before the advent of modern computing machines, the most powerful computing tool has been given
by mathematical analysis and its ancillary disciplines, i.e., the theories of analytical, elementary or spe-
cial functions. In fact, once a model was postulated on the basis of a variational principle (see, e.g.,
[44,45,66]) then the corresponding Euler–Lagrange conditions were found in order to be able to apply
for their solutions all the methods which are made available by mathematical analysis. We refer, for
instance, to the approximate methods of solutions by series, by polynomial approximations, separation
of variables, or to the so-called analytical or semi-analytical methods. Instead discrete mathematics, and
in particular the theory of discrete difference equations, could not produce calculation methods based on
closed form solutions, as it is done, instead, very effectively by infinitesimal analysis. As a consequence,
also those scientists who, being followers of Epicurean school, believed in the atomistic and discrete fun-
damental nature of matter did study continuum models. Piola [66], Navier [67], and later Boltzmann [68]
(just to name a few of them) started their postulation starting with a discrete finite-dimensional model
where Lagrangian coordinates consist of N -tuples of material particles coordinates and then, via suitable
homogenization methods, deduced the governing equations of the continuum approximating one.

Therefore, without the modern powerful tools of automatic computation, also the Epicureans needed
to deduce continuum models to get applicable equations from which, via suitable analytical and simple
numerical computations, they could get quantitative predictions.

A paradoxical situation was then created. Continuum models, which had been first created as auxiliary
tools needed for performing calculations and obtained via a deductive process, were regarded subsequently
as constituting the most fundamental ones, simply because they were considered the most effective way
for describing macroscopic phenomena (see [69]). The basic postulates in these continuum models have
been identified with a list of balance laws (see [44]) to which a (presumed) firmer physical meaning has
been (more or less arbitrarily) attributed. Subsequently, discrete models were introduced as an ancil-
lary tool for getting effective calculation algorithms: variational principles for continuum models were
therefore deduced as “theorems” (and it did not seem to many an oxymoron to talk about the theorem
(sic!) of the principle of virtual work) to be used for introducing the continuum model discretization.
Actually, as the historical circumstances were changed, discrete models had become the most suitable
ones for supplying quantitative predictions, as von Neumann machines are able to calculate the solution
of algebraic equations having millions of unknowns.
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This shift on the role given, in the passage from a cultural paradigm (in the sense of Kuhn [70])
to another paradigm, to the same concept is not new in the history of science. One concept may be
considered as “fundamental” by a school and “ancillary” in another one and vice versa. We postpone
a careful study of these cultural phenomena to further investigations as it seems that it plays a major
role also in mechanical sciences. Simply we want to recall here (see, e.g., [71]) that in Hellenistic science
a predictive model describing the motion of planets seems to have been formulated. The main tool for
calculating these motions was some mechanisms (like Antikythera Machine see [72]) whose functioning
mechanism was epicyclic gears: Ptolemy, being a practical astronomer, instead of teaching the underlying
astronomic theory decided to describe simply the theory needed for constructing the relative calculation
ancillary tools. As a consequence, during Middle Age, the astronomers believed to the existence of several
heavens around the Earth, the closer ones embedding the “moving planets” which were supported by
moving structures and the most distant one being constituted by a fixed vault on which also fixed stars
were blocked. The cultural shift was again of the same nature: those concepts, which had been conceived
as secondary ones needed for supplying calculating tools, did eventually become the most fundamental
ones, assumed as the basis of the whole theoretical speculation.

1.3. Structure of the paper

In Sect. 2, the Lagrangian finite-dimensional model proposed and studied in this paper is introduced. The
spirit of Piola, when he describes the molecular mechanical system which he places at the foundation of
his presentation, is faithfully followed. A lattice of positions is defined which characterizes the reference
configuration of all particles constituting the system. Lagrangian mechanics formalism is then assumed:
a deformation energy is associated with the set of interaction springs introduced and the problem of its
minimization is presented.

In Sect. 3, a solution strategy of the aforementioned minimization problem is presented, and all the
details needed for its eventual reproduction are given.

In Sect. 4, some numerical solutions are shown for some equilibrium problems related to engineering
applications. In particular there are presented solutions which are relevant to standard extension bias
test with the correspondent reactive force distributions and resultants induced by imposed displacements
on constraints.

The reader will remark that in the dedicated literature the determination of reactive forces for bias
test is considered somehow difficult. Moreover, some equilibrium shapes are shown in the presence of
displacements imposed on single fibers and in the test of extraction of a fiber.

In Sect. 5, the performance of the presented numerical model is compared with those shown in [2].
The code which is presented here needed an ad hoc programming activity while previously the code was
obtained by using a standard FE integrator (COMSOL). As expected, the convergence capacities (to
solution having a correct physical interpretation) of the newly presented model are improved remarkably.
Of course, with FE codes one can improve the results related to higher gradient continuum theories using
newly developed numerical tools with an intrinsic high continuity as done, e.g., in [73,74,74–80]; however,
herein we want to explore the potential of the proposed discrete model whose features are based on the
microstructure properties of the system under study and compare its performances with already tested
and verified models.

In conclusions, the future immediate research perspectives are listed and some major possible modeling
improvements are delineated.

2. Hencky–Piola-type model for planar pantographic sheets

As discussed in Introduction, among the many modeling possibilities, we have chosen, in this paper, to
introduce a finite-dimensional Lagrangian model for describing pantographic planar sheets.
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Fig. 1. Pantographic structure
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Fig. 2. Pantographic lattice

This model is Piola type as we consider a finite number of material particles occupying, in a reference
configuration, the nodes of a rectangular square cell lattice having length ε (see Fig. 2, where it was
assumed that nf = 10 square cells constitute the shorter side of the rectangular lattice).

The lattice is, roughly speaking, composed by two arrays of fibers which are oriented at an angle π/4
and −π/4 with respect to x1 axis: we will call array 1 that at the angle π/4 and array 2 the other one.

Each of the introduced material particles models the pivots which in the 3D printed specimen inter-
connect the two considered arrays of beams, see Fig. 1.

This model is Lagrangian because we introduce the reference position of the generic ith material
particle via the position Pi and we consider as a Lagrangian kinematical parameter for each of them the
actual position, denoted by pi.
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Fig. 3. Discrete mechanical model

This model is also a Hencky type one because, as done in his pioneering work (see [1,6–8]) for elasticae,
we model the elastic interactions among the particles by means of rotational and extensional springs such
as those represented in Fig. 3, so that we assume to need pairwise and triple particles interactions.

Our conjecture is that it is formulated, in this way, a discrete mathematical model which is able to
supply an accurate prediction of the structural response in the regime of (very) large displacements.

The modeling procedure is to be completed by defining the deformation energy of each spring element.
The problem of determining equilibrium configurations is successively solved by imposing the stationarity
of total potential energy following the algorithm described in Sect. 3.

Our Ansatz concerning deformation energies can be summarized as follows:
Deformation energy for axial springs Each axial spring stores elastically an energy which depends
quadratically on its variation of length:

w0 =
1
2
r0 (‖pj − pi‖ − ε)2 , (1)

where pi and pj are the actual position, see Figs. 3 and 4, of the nodes connected by the considered
extensional spring whose rigidity is denoted r0 while ε is the initial unstressed length of the axial
spring.
Deformation energy for bending springs Three consecutive particles along array 1 or 2 interact via a
rotational spring whose stored energy depends on the angle formed by the two consecutive segments
connecting, in the actual configurations, the particles’ positions:

w1,2 = r1,2 (cos γ1,2 + 1) , (2)

where

cos γ1,2 =
‖pj1,2 − pi1,2‖2 + ‖pk1,2 − pj1,2‖2 − ‖pk1,2 − pi1,2‖2

2‖pj1,2 − pi1,2‖ ‖pk1,2 − pj1,2‖
, (3)

and pi1,2 , pj1,2 and pk1,2 are the ordered actual position of the three aligned nodes along array 1 or
2 and r1, see Figs. 3 and 4, and r2 denote the rigidities of the corresponding rotational springs.



 85 Page 8 of 28 E. Turco et al. ZAMP

x1, u1

x2, u2

ε

Pi

Pi

P j

P j

P j

pi

pi p j

p j

p j

p j − pi

Pk
pk

γ

Pk2

Pk1

γ 3

pk2

pk1

Fig. 4. Kinematics of extensional, bending and shear springs

The deformation energies for springs at the nodes where displacement is imposed need the
specification of suitable boundary conditions. In particular, if the short sides of the lattice are
constrained to be fixed on two rigid bodies and the bending springs are connected with material
segments of these bodies then the previous formulae obviously supply the needed relations when
setting (if the constrained node j has not the subsequent node k in the interior of the lattice)

pk1,2 = Pk1,2 + Rk1,2 ,

or (if the constrained node j has not the preceding node i in the interior of the lattice)

pi1,2 = Pi1,2 + Ri1,2 ,

where Rk1,2 or Ri1,2 represent the corresponded rigid displacement.
Deformation energy for shear springs Via the interconnecting pivots, the two arrays of fibers interact
elastically: if the actual angle between the two arrays is γ3 we assume that the stored energy depends
quadratically on the difference

(
γ3 − π

2

)

w3 =
1
2
r3

(
γ3 − π

2

)2

, (4)

where (see Figs. 3, 4)

cos γ3 =
‖pj1 − p

k2
‖2 + ‖pk1 − pj1‖2 − ‖pk1 − pk2‖2
2‖pj1 − p

k2
‖ ‖pk1 − pj1‖

, (5)

if pj1and pk1 , p
k2

are the actual position of the nodes relative to the rotational spring of rigidity r3
connecting array 1 with array 2. Remark that we assume to have one of such shear springs also in
quadrants II, III and IV, see Fig. 3.

The strain energy defined for each kind of introduced springs supplies a Hencky-type model for the
pantographic sheet and allows us to easily define the total strain energy by simply summing each contri-
bution.

In order to have a complete solution of the considered equilibrium problem, displacements and forces
or couples exerted by each spring, a step-by-step procedure was implemented to reconstruct the complete
equilibrium path of the pantographic sheet, as it will be described in detail in the following Sect. 3.
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3. The solution algorithm

We collect the nodal displacements in the lattice in the vector d in order to write the total energy of the
pantographic structure in the form:

W (d) =
∑

e

w0 + w1 + w2 + w3 − Lext, (6)

where e ranges on all the spring, extensional, bending and shear and Lext is the work of the external
loads and all quantities on the RHS depend on the variable d.

The equilibrium problem which we want to consider is a mixed one: we assume that the displacements
of some particles are imposed and that some external conservative forces are applied to the remaining
particles. Let us therefore decompose d into the pair composed by two vectors: the imposed displacements
ua and the free displacements u. For notational aims, we will reorder d to get the decomposition

d = (u,ua) .

Because of our assumption, we have that Lext depends only on u.
The nonlinear system of equilibrium equations is obtained by imposing that the first variation of W

vanishes:
s(u) − p(u) = 0, (7)

where p(u) is the vector which collects the Lagrangian components of external forces (which may be
assumed to be dead loads, for instance, so that p becomes independent of u) and s(u) is the vector of
the internal forces (called also, in the context of structural mechanics, structural reaction), as defined by:

s(u) =
dW

du
, p(u) =

dLe

du
. (8)

The tangent stiffness matrix is defined as the derivative of the structural reaction s(u) with respect
to the displacements vector u, in formulae:

KT (u) =
ds(u)
du

=
d2W

du2
, (9)

If the external load potential depends on a parameter μ and the imposed displacements depend on a
parameter λ (as in the case of quasi-static loading and imposed displacements), then Eq. (7) becomes:

r(u, λ, μ) := s(u,ua(λ)) − p(u, μ) = 0.

An equilibrium manifold is defined as a surface u(λ, μ) such that

r(u(λ,μ), λ,μ) = 0. (10)

For example, in the case of an external dead load, we will have that p is independent of u, so that if
a linear dependence on μ is assumed, we can set:

p(μ) = p0 + μp̂, (11)

Moreover, when the equilibrium equation (7) can be linearized in the neighborhood of the solution u0

relative to the dead load p0 then, as s(u0) − p0 = 0 and setting (u − u0) =: Δu we have

0 = s(u (μ)) − p0 − μp̂ � s(u0) − p0 + KT (u0)Δu−μp̂ = KT (u0)Δu−μp̂,

from which we deduce
Δu =μ (KT (u0))

−1 p̂, (12)

which will be of use in the sequel.
The solution of the nonlinear equilibrium system of Eq. (10) can be found by means of an incremental

iterative procedure based on the Newton–Raphson scheme.
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As we will limit ourselves to the case of equilibrium paths depending only on imposed displacements,
we introduce here only the parameter λ. Starting from an estimated point of the equilibrium path (λj ,uj)
verifying the condition ∥

∥
∥r(uj , λj)

∥
∥
∥≤ η, (13)

i.e., with a pair being an η-approximate solution of the equilibrium condition (7), the iterative
scheme, once the step Δλ is fixed, is obtained by constructing the η-approximate solution (uj+1 =:
uj + Δuj , λj+1 := λj + Δλ) by using a sub-iteration scheme for calculating Δuj .

This sub-iteration is specified by the following steps

1. We calculate the so-called residual nodal forces relative to the initial tentative value Δuj,0

(
uj , λj

)
=

0

r
(
uj , λj + Δλ

)
=: pj,0.

2. Once calculated the hth approximation
∑h

l=0 Δuj,l

(
uj , λj

)
of the increment Δuj , we calculate the

corresponding residual

r

(

uj +
h∑

l=0

Δuj,l

(
uj , λj

)
, λj + Δλ

)

=: pj,h.

3. If the inequality

‖pj,h‖ > η,

is verified we set, on the basis of (12) and assuming μ = −1 (this is equivalent to trying to find the
solution by “imposing” fictitious external dead loads being opposed to the calculated residuals)

Δuj,h+1 = −
(

∂r(uj +
∑h

l=0 Δuj,l

(
uj , λj

)
, λj + Δλ)

∂u

)−1

pj,h,

and continue the sub-iteration.
4. If the inequality

‖pj,h‖ ≤ η,

is verified, then we set

Δuj :=
h∑

l=0

Δuj,l

(
uj , λj

)
.

and we stop the iteration.

4. Some numerical results

The geometrical parameters considered to model the pantographic structure are:

� = 70mm,

ε =
√

2
2

�

nf
,

where nf is the number of fibers which intercept the smaller side of the lattice, e.g., in Fig. 2 nf = 10
and consequently ε ≈ 4.95mm.
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Fig. 5. Bias test for nf = 10: reference configuration (gray), deformation and color bar of the internal forces on extensional
springs (color figure online)

The mechanical parameters of the lattice are the rigidities of the springs for which the following values
are used:

r0 = 134Nmm,

r1 = r2 = 19.2Nmm,

r3 = k̄3ε
2 =

3.90
4

Nmm.

4.1. Standard extension bias test

This test is characterized by assuming, see again Fig. 2:

u1(0, x2) = u2(0, x2) = u2(3�, x2) = 0,

u1(3�, x2) = 0.8 � = 56mm.

In Fig. 5, the deformation of the lattice, compared with its reference position (in gray), along with the
color bar which indicates the level of the internal forces on the extensional springs for the case nf = 10
is reported. For the same test, Fig. 6a shows the global reaction of constraints on the side x1 = 3�, more
precisely the x1 component in blue and the x2 component in red, as a function of the parameter λ ∈ (0, 1)
which guides the imposed displacements from 0 to u1(3�, x2). Figure 6b shows the discrete density r(x2)
of the global reaction on x1 = 0 when λ = 1 (the x1 component in blue and the x2 component in red),
and Fig. 6c shows the axial Ea(λ), bending Eb(λ) and shear Es(λ) energies. Figure 7 reports, always
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Fig. 6. Bias test for nf = 10: global reaction of constraints R(λ) (a), its density r(x2) when λ = 1 (b) and strain energies
(c). a x1 component in blue and x2 component in red. b x1 component in blue and x2 component in red. c axial, Ea (blue),
bending, Eb (red), and shear, Es (green), strain energy versus λ (color figure online)
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Fig. 8. Bias test performed by using a second gradient model: reference configuration (gray), deformation and color bar of
the strain energy (color figure online)
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Fig. 9. Bias test performed by using a second gradient model: global reaction of constraints R(λ) (a), its density r(x2)

when λ = 1 (b) and strain energies (c). a x1 component in blue. b x1 component in blue and x2 component in red. c axial,
Ea (blue), bending, Eb (red), and shear, Es (green), strain energy versus λ (color figure online)
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Fig. 10. Bias test performed by using a second gradient model: spring elongation along x2 =
√

2ε + x1

0 50 100 150 200 250
-40

-20

0

20

40

60

80

100

5 10 15 20 25 30

Fig. 11. Bias test for nf = 20: reference configuration (gray), deformation and color bar of the internal forces on extensional
springs (color figure online)

for the case nf = 10, a plot which shows the elongations of the extensional springs which lie on the line
x2 =

√
2ε + x1.

The same test was performed by using a second gradient model, see Figs. 8, 9 and 10 which show the
good agreement between the discrete and the continuum models. This is more evident when the numerical



 85 Page 16 of 28 E. Turco et al. ZAMP

0 0.2 0.4 0.6 0.8 1

λ

-10

0

10

20

30

40

50

60

70

R
(λ

)
(a)

-10 0 10 20 30 40 50 60 70 80
x2

-25

-20

-15

-10

-5

0

5

10

15

20

25

r(
x 2)

(b)

(c)

0 0.2 0.4 0.6 0.8 1

λ

0

100

200

300

400

500

600

700

800

E
(λ

)

E
a

E
b

E
s

Fig. 12. Bias test for nf = 20: global reaction of constraints R(λ) (a), its density r(x2) when λ = 1 (b) and strain energies
(c). a x1 component in blue and x2 component in red. b x1 component in blue and x2 component in red. c axial, Ea (blue),
bending, Eb (red), and shear, Es (green), strain energy versus λ = ū/ūmax (color figure online)
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Fig. 13. Bending–extension test for nf = 10: reference configuration (gray), deformation and color bar of the internal forces
on extensional springs (color figure online)

results of the Hencky-type model for a pantographic structure with nf = 20 are considered, see Figs. 11
and 12.

4.2. Bending–extension test

In this case, the imposed displacements are:

u1(0, x2) = u2(0, x2) = u2(3�, x2) = 0,

u1(3�, x2)) = 80 − 5
7
x2 mm,

which produce, for the case nf = 10, the deformation plot reported in Fig. 13 along with the color bar of
the internal forces on extensional springs. Figure 14, as for the previous numerical test, reports the global
reaction R(λ), its density r(x2) and the strain energies subdivided in the extensional, bending and shear
parts.

Figures 15 and 16 show, for the same test, the results obtained from a second gradient model confirming
the reliability of the discrete model results.

4.3. Shear–extension test

Shear–extension test is defined by the following displacements:

u1(0, x2) = u2(0, x2) = 0,
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Fig. 14. Bending–extension test for nf = 10: global reaction of constraints R(λ) versus λ = ū/ūmax (a) and its density
r(x2) when λ = 1 (b) and strain energies (c). a x1 component in blue and x2 component in red. b x1 component in blue and
x2 component in red. c axial, Ea (blue), bending, Eb (red), and shear, Es (green), strain energy versus λ = ū/ūmax (color
figure online)
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Fig. 15. Bending–extension test by using a second gradient model: reference configuration (gray), deformation and color
bar of the strain energy (color figure online)

u1(3�, x2)) = 0.4 � = 28mm,

u2(3�, x2) = � = 70mm,

which produce, for the case nf = 10, the deformation plot reported in Fig. 17 along with the color bar
of the internal forces on extensional springs. Analogously, Fig. 18 reports the global reaction R(λ), its
density r(x2) and the strain energies subdivided in the extensional, bending and shear parts.

4.4. Extraction test

The last numerical test is characterized by the following imposed displacements:

u1(0, 0) = u2(0, 0) = u1(0, �) = u2(0, �) = 0.0

u1(3�, 0) = u2(3�, 0) = 0.8� = 56mm,

u1(3�, �) = u2(3�, �) = 0.8� = 56mm,

which produce, for the case nf = 10, the deformation plot reported in Fig. 19 along with the color bar of
the internal forces on extensional springs. Finally, Fig. 20, reports the global reaction R(λ), its density
r(x2) and the strain energies subdivided in the extensional, bending and shear parts.
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Fig. 16. Bending–extension test by using a second gradient model: global reaction of constraints R(λ) (a), its density r(x2)

when λ = 1 (b) and strain energies (c). a x1 component in blue and x2 component in red. b x1 component in blue and
x2 component in red. c axial, Ea (blue), bending, Eb (red), and shear, Es (green), strain energy versus λ = ū/ūmax (color
figure online)
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Fig. 17. Shear–extension test: reference configuration (gray), deformation and color bar of the internal forces on extensional
springs for nf = 10 (color figure online)

5. Conclusions and future perspectives

This paper is intended to supply the designing tool for an extensive campaign of measurements to be
performed on pantographic structures, in planar deformations.

The features of the code which is elaborated and described here are promising:

1. It is robust: its applications to fiber extraction test show that it can be applied in limit cases; the
reader will remark that in this case first gradient continuum mechanics cannot be applied and that
higher gradient continua require more complex FEM tools;

2. The constitutive parameters characterizing the model are only five: two extensional, two bending
moduli to which one has to add a single shear modulus;

3. It allows for a rather intuitive micro–macro identification procedure, so that it is possible to easily
identify the aforementioned moduli in terms of the material properties constituting the pantographic
sheet and in terms of the geometric properties of the beam lattice constituting them.

The results presented here open interesting perspectives in different contexts:

1. First of all, they supply a strong motivation to the study of several complex mathematical problems,
especially in homogenization theory; indeed the methods presented in [81] need to be applied to the
present context to prove that the correct homogenized model is indeed the second gradient model
presented in [2]; this results will be of use when, in perspective, the pantographic structure will
be constituted by nanofibers, so that at the smaller scale the considered system will have several
millions of degrees of freedom, making the presented discrete approach not applicable;

2. Secondly, we have obtained an efficient predictive and designing tool, when the pantographic
microstructure has not a too small characteristic length scale; it has been proven that with several
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Fig. 18. Shear–extension test: global reaction of constraints R(λ) versus λ = ū/ūmax (a), its density r(x2) when λ = 1

(b) and strain energies for nf = 10 (c). a x1 component in blue and x2 component in red. b x1 component in blue and
x2 component in red. c axial, Ea (blue), bending, Eb (red), and shear, Es (green), strain energy versus λ = ū/ūmax (color
figure online)
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Fig. 19. Extraction test for nf = 10: reference configuration (gray), deformation and color bar of the internal forces on
extensional springs (color figure online)

thousands material particles the code is producing reliable results with a very limited computing
time; as a consequence, we plan to use it to direct the 3D printing of many specimen and use the
presented code for predicting their behavior;

3. Finally, we have the motivation to optimize the presented code and generalize it to the study of
pantographic structures which are more general than those considered here; in particular, we will
generalize it to 2D pantographic structures moving in the space, or to more general 3D pantographic
materials.

Some future developments concern contact problem between fibers, see, for instance, [82–84]; although
stability problem is not explicitly considered in this paper, the extension to these cases could be based on
the following papers [85–90] while pantographic structures with initially curved beams can take advantage
of the theory of the symmetry group treated in [91,92]

A final remark is needed: we do not manage to take a clear position in the “atomistic” (or discrete)
versus “continuum” (or infinite dimensional) eternal contraposition, also when giving up to discuss about
the ultimate nature of matter and willing to limit one-self to the more utilitarian perspective of the
choice of the most effective calculation tool. Indeed, while in the presented context discrete models
simply seem more suitable, we have presented in the previous point (1) a perspective in which the
synthetic approach given by continuum higher gradient models may be more fruitful. Actually, when
the set of material particles is very large, also rotational and extensional spring correspondingly increase
in number, and the intermediate step represented by the introduction of a continuum model may be
a clever tool for capturing in a synthetic way “global” behavior of large subgroups of particles and
springs.
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(1827)
68. Cercignani, C: Ludwig Boltzmann: The Man who Trusted Atoms. OUP Oxford, Oxford (2006)
69. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)
70. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press, Chicago (2012)
71. Russo, L.: Forgotten Revolution: How Science was Born in 300 BC and Why it Had to be Reborn. Springer, Berlin (2013)
72. de Solla Price D.: Gears from the Greek. The Antikythera mechanism: a calendar computer from ca. 80 BC. Trans. Am.

Philos. Soc. 64(7), 1–70 (1974)
73. Bilotta, A., Formica, G., Turco, E.: Performance of a high-continuity finite element in three-dimensional elasticity. Int.

J. Numer. Methods Biomed. Eng. (Commun. Numer. Methods Eng.) 26, 1155–1175 (2010)
74. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite elements and isogeometric analysis of the whole

spectrum of Timoshenko beams. Z. Angew. Math. Mech. 1–25 (2016). doi:10.1002/zamm.201500280
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