Skip to Main content Skip to Navigation
Journal articles

Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage

Abstract : Thermal energy storage (TES) is a key factor for increasing the efficiency of concentrated solar power plants. TES using a reversible chemical reaction appears to be a promising technology for high energy density thermal storage (100–500 kW h m-3), at high temperature(up to 1000 °C) and during a long period (24 h to several months). This paper details an experimental study to carry out the reversible reaction Ca(OH)2(s) + DHr <=> CaO(s) + H2O(g) in a fluidized bed (FB) reactor. The 4 micron Ca(OH)2 powder fluidization has been performed with an appropriate proportion of inert easy-to-fluidize particles. Then, Ca(OH)2 dehydration and CaO hydration have been implemented in a FB reactor and 50 cycles have been reached. The mean energy density obtained is 60 kW h m-3 solid_mixture which amounts to a promising energy density of 156 kW h m-3 Ca(OH)2-bulk if the reactants and the easy-to-fluidize particles are separated. The results demonstrated the feasibility of the implementation of the Ca(OH)2/CaO thermochemical heat storage in a fluidized bed reactor.
Complete list of metadata

Cited literature [33 references]  Display  Hide  Download
Contributor : Open Archive Toulouse Archive Ouverte (OATAO) Connect in order to contact the contributor
Submitted on : Friday, July 15, 2016 - 4:12:55 PM
Last modification on : Wednesday, June 1, 2022 - 4:02:19 AM


Files produced by the author(s)




Pedro Pardo, Zoé Anxionnaz-Minvielle, Sylvie Rougé, Patrick Cognet, Michel Cabassud. Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage. Solar Energy, Elsevier, 2014, vol. 107, pp. 605-616. ⟨10.1016/j.solener.2014.06.010⟩. ⟨hal-01345769⟩



Record views


Files downloads