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Modelling the Variability of the Wind Energy Resource

on Monthly and Seasonal Timescales

Bastien Alonzo1,2,, Hans-Kristian Ringkjob1,2,4,, Benedicte Jourdier1,3,,
Philippe Drobinski1,, Riwal Plougonven1,, Peter Tankov2,

Abstract

An avenue for modelling part of the long-term variability of the wind energy
resource from knowledge of the large-scale state of the atmosphere is inves-
tigated. The timescales considered are monthly to seasonal, and the focus is
on France and its vicinity. On such timescales, one may obtain information
on likely surface winds from the large-scale state of the atmosphere, deter-
mining for instance the most likely paths for storms impinging on Europe.
In a first part, we reconstruct surface wind distributions on monthly and
seasonal timescales from the knowledge of the large-scale state of the atmo-
sphere, which is summarized using a principal components analysis. We then
apply a multi-polynomial regression to model surface wind speed distribu-
tions in the parametric context of the Weibull distribution. Several methods
are tested for the reconstruction of the parameters of the Weibull distribu-
tion, and some of them show good performance. This proves that there is
a significant potential for information in the relation between the synoptic
circulation and the surface wind speed. In the second part of the paper,
the knowledge obtained on the relationship between the large-scale situation
of the atmosphere and surface wind speeds is used in an attempt to fore-
cast wind speeds distributions on a monthly horizon. The forecast results
are promising but they also indicate that the Numerical Weather Prediction
seasonal forecasts on which they are based, are not yet mature enough to
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provide reliable information for timescales exceeding one month.

Keywords: Seasonal modelling, Wind distribution, Variability, large-scale
circulation, Forecasts, Wind energy

1. Introduction1

Owing to a well-established technology and the ever stronger push to-2

wards replacing fossil fuels with clean renewable power, wind energy has3

seen a dramatic growth in the recent years. According to the European4

Wind Energy Association, about 12.8 GW of wind power was installed in5

the European Union (EU) in 2015, bringing EUs total installed capacity to6

141.6 GW. This corresponds to an electricity generation sufficient to cover7

11.4 % of the EUs electricity consumption during an average year [1].8

With the growing importance of wind energy, the interest and demand9

for forecasts of the wind speed near the surface has seen a major boost.10

Numerous methods exist for forecasting the wind speeds at different forecast11

horizons implying different applications [2, 3]. Many studies focus on the12

short-term scale ranging from several minutes to 1 day [4, 5, 6]. Medium-13

term forecast methods, ranging from several days up to 10 days, have also14

been well investigated [7, 8, 9]. On much longer timescales and with very15

different implications and motivations, the impact of climate change on wind16

speeds has also been addressed [10, 11, 12].17

By contrast, the intermediate timescale ranging from one month to a18

season (hereafter referred to as long-term) has received only little attention.19

Monthly and seasonal forecasts can be very useful for example in mainte-20

nance planning, financial estimates and predictions of electricity generation21

for network management. Some studies showed good results in forecasting22

the monthly mean wind speed at several observation sites by using Artificial23

Neural Network models (ANN) [13, 14], giving an acurate trend of the wind24

speed at the yearly horizon, but a limited information on the wind variability25

at higher frequency. Other authors forecasted daily mean wind speed at the26

seasonal scale using ANN [15, 16, 17] allowing to gather more informations on27

the wind variability inside a given season and which would allow to evaluate28

the energy production. The ANN output is a predicted wind time serie. They29

calculate the error regarding the real wind speed and compare the results to30

other ANN [15, 16] or other statistical methods namely ARIMA models [17].31

As ANN behaves like black box which we feed with data, the results are32
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difficult to explain physically. Moreover, each methods focuses on different33

observation sites giving a limited idea of the spatial variations of the method34

performance. Even though there are very few works on seasonal forecasts35

of wind speeds, seasonal forecasting of other meteorological quantities is a36

popular research topic with continuous improvement. For example, there37

have been many works on seasonal forecasts of recurrent oscillating patterns38

in the atmosphere, such as the El Nino [18, 19].39

This paper focuses on modelling the wind variability on the long-term40

timescale and makes an attempt of long-term wind speed distribution fore-41

casting. The method proposed in this work aims to use the information found42

in the large-scale configuration of the atmosphere in order to reconstruct ex-43

pected distribution of surface winds. This paper answers some questions that44

arise from this topic :45

• How much information on the monthly or seasonal distribution of sur-46

face winds can we obtain from knowledge of only the large-scale state47

of the atmosphere?48

• Are the proposed methods performing better than the climatology in49

reproducing the surface wind speed distribution, and in estimating the50

electricity generation?51

• Do seasonal forecasts from an operational center of weather production52

contain relevant information for an attempt of forecasting wind speed53

distributions and electricity generation?54

To address these questions in a consistent framework, we use data from55

the European Center for Medium-Range Weather Forecasts (ECMWF). In-56

deed, surface winds from ECMWF reanalysis have been shown to well re-57

produce the observed surface winds in France [20]. Using reanalysis data58

allows a better investigation of the statistical relation between local surface59

winds and the large-scale circulation variability, especially because they pro-60

vide a continuous description of surface wind speed over a wide domain and61

over long time period. We focus on France and its vicinity not only because62

the reanalyzed winds had been assessed there, but also because France has63

a significant wind energy potential and interestingly includes regions with64

different wind regimes. In Northern France the wind energy potential stems65

from the storm tracks, whereas local orographic effects and channeling play66

a major role in strong wind events of Southern France [21].67
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In the first part of this paper, the data and methodology used to link68

the large scale circulation with the surface wind speed and to reconstruct69

its monthly/seasonal distributions is described. Then, the performance of70

the proposed methods is evaluated by comparing their results to the clima-71

tology distributions. The performance is evaluated in terms of recontructed72

electricity generation as well. In the last part of the paper, an attempt in73

forecasting wind speed distributions and electricity generation is discussed.74

2. Data and Methods75

2.1. Data76

ERAI reanalysis. Wind speed, geopotential height at 500hPa (Z500) and77

Mean Sea Level Pressure (MSLP) are collected from ERA-Interim reanal-78

ysis (ERAI, [22]) with a time-step of six hours during 35 years between79

01/01/1979 and 12/31/2013, and then averaged to daily data. The horizon-80

tal resolution of ERAI is 0.75◦ in latitude and longitude. Z500 and MSLP81

span the North Atlantic and European grid (20◦N to 80◦N and 90◦W to82

40◦E), and the surface wind speeds are obtained for a domain encompassing83

France (40.5◦N to 52.5◦N and −6.75◦W to 10.5◦E).84

The ERAI reanalysis data act as the reference data for wind speed. B.85

Jourdier [20] showed that the ERA-Interim reanalysis has a good skill for86

wind speeds in France, and is the best in comparison to two other reanalyses:87

MERRA and the NCEP/NCAR. To reconstruct the distribution of the wind,88

a 20 years calibration period, on which we train our methods, has been89

defined from 1 January 1979 to 31 December 1998. Then a validation period90

lasting 15 years from 01 January 1999 to 31 December 2013 follows.91

ECMWF Forecasts. In the forecast section, the full 35 years period of ERAI92

is used as a calibration period, while the period of forecast is always of 393

months, permitting to predict either monthly or seasonal distribution of the94

surface wind speed. We retrieve twelve seasonal forecast sets of ECMWFs95

numerical weather prediction model [23], from the years 2012, 2013 and 2014,96

each lasting three months, starting from January, April, July and October.97

Each set is composed of 41 seasonal forecast members from which we compute98

the most likely scenario. This scenario is used as the only forecasted state99

of the atmosphere. We apply the same methods using the 35 years of ERAI100

to learn the relation between the surface wind speed and the large-scale101

circulation of the atmosphere, and apply this relation to the forecasted state102

of the atmosphere to predict wind speed distribution.103
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2.2. Methods104

At a monthly to seasonal timescale, the surface wind speed is mainly ex-105

plained by the large scale circulation of the atmosphere. The geopotential106

height at 500hPa (Z500) and the Mean Sea Level Pressure (MSLP) are vari-107

ables that well summarize this circulation. In this paper, we only present the108

results of reconstruction using the Z500 variable as a predictor of the surface109

wind speed. Indeed, results found when adding MSLP to Z500 predictor were110

comparable and the improvement was neither systematic nor significant.111

In the following paragraphs, we describe in detail the reconstruction112

methodology which is summarized in Figure 1.113

Our attempt aims at reconstructing the distribution of winds on the114

monthly to seasonal timescales, but not at reconstructing daily timeseries115

of winds. Indeed, our reconstruction methodology is based on the prin-116

cipal components analysis of the Z500 predictor which informs about the117

large-scale state of the atmoshpere. This knowledge will constrain the likely118

distribution of surface winds on timescales larger than the lifetime of indi-119

vidual synoptic systems (fronts, storms) and thus will not allow to recon-120

struct such high frequency timeseries. Following the common practice, we121

use the Weibull distribution to summarize the surface wind speed distribution122

[24, 25].123

Figure 1: Flow chart describing the reconstruction methodology
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Principal component analysis. To obtain a more compact representation of124

the large-scale situation we perform a Principal Component Analysis (PCA)125

on Z500. It results in a set of Empirical Orthogonal Functions (EOF), which126

represent the typical oscillation patterns spanning the North Atlantic do-127

main. Each EOF is associated with one scalar timeseries (the corresponding128

PC) which describes how each pattern evolves in time. Figure 2 shows the129

five first EOFs and their associated PCs.130

The first PC corresponds to the seasonal cycle (Fig 2. a,b), explaining131

as much as 54.1% of the variance in the dataset: in winter the meridional132

pressure gradient strengthens, leading to stronger winds and more intense133

synoptic systems. The following four PCs have a clear physical interpretation134

[26, 27], they all be related to teleconnection patterns, respectively the North135

Atlantic Oscillation (NAO) (Fig 2. c,d), the Eastern Atlantic Pattern (EA)136

(Fig 2. e,f), the Scandinavian pattern (SCA) (Fig 2. g,h) and the 2nd137

European pattern (EU2) (Fig 2. i,j). These five first PCs explain 76.9% of138

the variance in the entire dataset.139

Weibull distribution. To summarize the wind distributions, we choose the140

Weibull distribution as the parametric representation for montly and seasonal141

distribution of the surface wind speed at a given location. This theoretical142

distribution is widely used in the wind energy industry [28, 29, 24]. It pro-143

vides a simple way to represent the wind distribution as it is based on only144

two parameters: the shape parameter and the scale parameter. We must145

highlight the fact that other theorical distributions better capture the shape146

of the real wind distribution. In particular, the Rayleigh-Rice distribution147

can have two modes, which is not the case for the Weibull [21].148

The probability density function (PDF) and the cumulative distribution
function (CDF) of the Weibull distribution are expressed as follows.

f(u; k, c) =
k

u

(u
c

)k

e−(u/c)k (1)

F (u; k, c) = 1− e−(u/c)k , (2)

where u is the wind speed, k and c are respectively the shape and the scale149

parameter.150

We now define three ways to reconstruct the parameters k and c from the
data. The WAsP method, referred in the following as WAsP [30], computes
these parameters from the moments U and U3, as well as the probability of
exceeding the mean wind speed 1−P (U) (which must be estimated from the
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Figure 2: Five firsts EOFs (left side) and five first PCs (right side) of the PCA performed
on the 35years and on the entire domain of ERAI Z500 dataset

data). The method focuses on the right-hand tail of the Weibull distribution,
which is an important part of the distribution in terms of energy [31]. This
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is why the WAsP method is preferred amongst the wind energy industry. In
this method, k and c are calculated by solving the following equations.

U
3

U3
Γ
(
1 +

3

k

) k
3
= −ln(1− P (U)) (3)

c = 3

√
U3

Γ(1 + 3
k
)

(4)

In a second method, referred in the following as KCrec, we take advantage
of the fact that the Weibull distribution is given by two parameters, k and
c, and straightforwardly reconstruct these: they are fitted by the Maximum
Likelyhood Estimator (MLE) [32] on the calibration period. The MLE of the
Weibull parameters is defined by the following equations.∑n

i=1 u
k
i ln(ui)∑n

i=1 u
k
i

− 1

k
− 1

n

n∑
i=1

ln(ui) = 0, (5)

c =

∑n
i=1 u

k
i

n
. (6)

A last method was introduced in order to take into account how spread
out the wind distribution is. This method, referred in the following as Perc,
uses two values, F (u1) and F (u2), of the Weibull distribution function, cor-
responding to wind speeds u1 and u2. The Weibull k and c parameters are
then given explicitly by:

c =
ln ln( 1

1−F (u2)
) ln(u1)− ln ln( 1

1−F (u1)
) ln(u2)

ln ln( 1
1−F (u2)

)− ln ln( 1
1−F (u1)

)
, (7)

k =
c

u1

ln ln(
1

1− F (u1)
). (8)

In order to determine the optimal values of u1 and u2, a synthetic test was151

performed. First, we generated 30 (one month) or 90 (one season) samples152

from the reference Weibull distribution with parameters k = 2 and c = 3.5.153

Next, we determined the two Weibull parameters from the simulated samples154

using the Perc method, using different combinations (u1, u2). To find the155

best combination, we compared the resulting distributions with the reference156

distribution using the Cramer-von Mises (CvM) score (see Appendix). It157

was found that the best combination on a monthly scale is the 11th and 83rd158
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percentile. On the seasonal scale, the optimal combination is the 17th and159

the 92nd percentile. The combination of the percentiles was not found to be160

very sensitive, as there was a small region around the optimum combination161

with very similar scores.162

Multi-polynomial regression. We propose to link the large-scale situation163

and surface wind speed distribution by a multi-polynomial regression tak-164

ing the monthly mean PCs as explanatory variables and the parameters of165

the Weibull distribution as dependent variables:166

P̃ = β0 +
N∑

n=1

βn,nCn(t)
2 +

N−1∑
n

N∑
m=n+1

βn,mCn(t)Cm(t). (9)

Here, P̃ is the dependent variable (Weibull parameter k or c for a given loca-167

tion), Cn are the principal components and βn,n and βn,m are the regression168

weights found by least squares. The number N of principal components is169

determined by cross validation as explained below. We perform the regres-170

sion on a calibration period of 20 years between 1979 and 1998. This results171

in weights quantifying the relationship between the large-scale circulation172

and the Weibull parameters for each individual location. These weights can173

be combined with the known PC values on the reconstruction period of 15174

years between 1999 and 2013 to reconstruct the monthly/seasonal Weibull175

distribution.176

Optimizing the number of principal components through cross validation. The177

first five PCs of the Z500 can be easily interpreted as predictors of the wind.178

Still, to a certain extent, the following PCs can also explain the variability of179

the wind at the monthly/seasonal scale. To check whether taking five PCs is180

really optimal, we performed a cross-validation procedure. For this purpose,181

we calculated the temporally and spatially averaged CvM score (see Ap-182

pendix) of 7 reconstructions of 5 years each, taking the remaining 30 years of183

the data set as calibration period. Figure 3 plots the CvM scores as function184

of the number of PCs used. The minimum mean CvM is clearly apparent185

for all three methods for both monthly (Fig 3. a, b, c) and seasonal (Fig 3.186

d, e, f,) reconstruction. This minimum is around five PCs which confirms187

the fact that the large-scale circulation variability is accurately linked to the188

wind speed variability at the monthly and seasonal timescale.189
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Figure 3: Mean CvM score obtained by cross validation in function of the number of PCs
used to reconstruct the distribution of the surface wind speed. From left to right: Wasp
(a,d), Perc (b,e), and KCrec (c,f) methods; top: CvM score for monthly wind distribution
reconstruction (a,b,c); bottom: CvM score for seasonal wind distribution reconstruction
(d,e,f)

3. Evaluating the reconstruction methods190

As mentionned in the Introduction, we use the wind speed from the ERAI-191

reanalysis as the reference wind speed. To assess the reconstruction quality,192

the CvM score (see Appendix) is calculated between the reconstructed CDF193

and the real wind CDF. The CvM scores of the reconstructed wind speed194

distributions are then compared to the CvM scores computed between the195

real wind distributions and the climatological distributions. In simple terms,196

the climatological distribution is the distribution of all values of wind for each197

month or season in one specific location, based on all reanalysis data from this198

location and the specific month or season. The climatological distributions199

are usually used by the industry to have a first assessment of the wind energy200

production at a seasonal time scale. An example of real, climatological and201

reconstructed wind speed CDFs is shown in Figure 4.202

3.1. Performance of methods for wind speed distribution reconstruction203

The CvM score allows to test the null hypothesis (H0) that the two sam-204

ples come from the same distribution. Assuming that the reconstructed205
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distributions and the real distributions are based on samples large enough to206

say that the corresponding CvM scores follow the limiting distribution, we207

can define the p-value corresponding to 95% confidence (see Appendix). If208

the calculated CvM score is below this value, we can say at 95% confidence209

that the two compared samples come from the same distribution. We com-210

pare results of the tests for the climatology and the reconstruction methods.211

We can define five different cases:212

• Case A: H0 is not rejected for the method and rejected for the clima-213

tology214

• Case B: H0 is not rejected for both and the CvM of the method is215

smaller than the CvM of the climatology216

• Case C: H0 is not rejected for both and the CvM of the method is217

larger than the CvM of the climatology218

• Case D: H0 is rejected for the method and not rejected for the clima-219

tology220

• Case E: H0 is rejected for both the method and the climatology221
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Results over the whole domain in all different cases are given in table 1222

and 2 for monthly and seasonal reconstruction respectively. We compare the223

reconstruction methods to not only the classical climatology (a), but also to224

the parametric climatology (b).225

Indeed, the hypothesis of the Weibull distribution introduces a bias in the226

distribution reconstruction which is not present in the classical climatology.227

In order to have a fair comparison, we also fit by MLE a Weibull distribution228

on the historical data referred as the parametric climatology.229

Methods Wasp Perc KCrec Clim Parametric Clim

CvM < p 69.1 82.1 85.2 89.3 81.7

Comparison with a b a b a b - -

Case A 5.8 11.5 6.5 11.9 6.9 13.0 - -

Case B 17.8 24.1 25.0 34.0 27.3 37.1 - -

Case C 45.5 33.5 50.5 36.2 51.1 35.1 - -

Case D 26.0 24.1 13.8 11.6 11.2 9.5 - -

Case E 4.8 6.8 4.1 6.3 3.7 5.3 - -

Table 1: Percentage of time the result of the CvM test gives Cases A,B,C,D, or E on
the whole domain, for the entire validation period, for monthly reconstructed distribution
compared to the classical climatology (a) and to the parametric climatology (b). The
p-value, p, is 0.46136 for 95% confidence level (see appendix)

Methods Wasp Perc KCrec Clim Parametric Clim

CvM < p 44.3 73.3 79.8 88.6 77.3

Comparison with a b a b a b - -

Case A 3.8 8.9 5.5 11.0 6.1 13.9 - -

Case B 10.5 13.6 22.8 31.2 23.8 34.2 - -

Case C 30.0 21.9 45.0 31.1 49.9 31.7 - -

Case D 48.1 41.9 20.8 15.0 14.9 11.4 - -

Case E 7.5 13.8 5.9 11.7 5.3 8.8 - -

Table 2: Same as table 1 but for seasonal distribution

The first lines of tables 1 and 2 show the fraction of time each method230

gives a distribution not discernable from the real distribution at 95% con-231

fidence level. It shows that all methods, appart from Wasp, have a good232

ability to reconstruct the real wind distribution. We can also see that fit-233

ting a Weibull distribution on the climatology reduces by about 10% this234

percentage. Cases A and B summarize the number of time each method is235
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doing better than the climatology (non-parametric (a) or parametric (b)).236

On the contrary, Cases C and D summarize the number of time the cli-237

matology is doing better than the method. On average, on the all domain238

and for monthly and seasonal timescales, the non-parametric climatology (a)239

do better than every methods more than 60% of the time (78.1% against240

Wasp at the seasonal scale, to 62.3% against KCrec at the monthly scale).241

Nevertheless, when comparing to the parametric climatology, for monthly242

and seasonal reconstruction, the KCrec method performs 49.1% of the time243

better at monthly scale, and 48.1% at the seasonal scale. This shows again244

the error brought by the Weibull distribution reconstruction. In all cases,245

methods perform better at the monthly scale than at the seasonal scale. It246

is interesting to notice that the cases for which the percentage is increased247

at the seasonal scale are cases D and E, corresponding to times when recon-248

structed distribution cannot be believed to come from the same distribution249

as the real sample, at 95% confidence level. (Tables 1 and 2).250

Figure 5 and 6 show on average on the validation the number of time251

each method behaves better than the classical climatology (Cases A and B).252

It can be seen that the Perc and KCrec methods do better than the Wasp253

method. Indeed, at monthly timescale, the Perc and KCrec methods can254

do better than the climatology in average more than 30% of times, while255

the Wasp method does better than the climatology about 25% of times on256

average displaying a clear difference between north and south (Figure 5 and257

Table 1). On a seasonal scale, the Wasp method performs clearly worse258

than at a monthly scale. The Perc and KCrec methods at a seasonal scale259

display an interesting spatial variability. Indeed, they do more than 40%260

of times better than the climatology in the north of France, whereas in the261

south, this percentage is about 20% to 25% (Figure 6). When comparing262

to the parametric climatology, all methods display the same pattern, but all263

percentages are increased more than 10% (Not shown).264

We can argue that the climatology does not reproduce well the extremes265

of the wind distribution that is to say the strongest winds because it acts as266

a filter of high frequency wind variations. In the northern part of France,267

the storm track in winter and autumn brings stronger winds than in spring268

and summer. We can assume that the reconstruction methods based on the269

PCs of Z500 may better reproduce those strong winds than the climatology,270

because the storm track position and strength is mainly driven by the NAO271

and SCA oscillation patterns. Figure 7 shows the ratio of the number of times272

each method is doing better than the climatology for seasonal distributions,273
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Figure 5: Fraction of times each method does better than the climatology (cases A and
B) for monthly distribution reconstruction. From left to right: Wasp (a), Perc (b), KCrec
(c)
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Figure 6: Same as Figure 5 but for seasonal distribution reconstruction.

by taking each season separately. We can clearly see on this figure that274

the performance regarding the climatology of the Perc and KCrec methods,275

and to a certain extent the Wasp method, depends on the season and on276

the region. Indeed, both the Perc and the KCrec methods display a high277

percentage of times (up to 70% at some points) when they do better than278

the climatology in the north of France for the winter and autumn seasons.279

3.2. Performance of the methods for estimating the capacity factor280

For wind energy purposes, it is not exactly the full wind distribution that281

needs to be estimated. For a given turbine, once the wind is between the282

nominal wind speed and below the cut-out speed, the precise value does not283

matter. In the present section we take this into account and reevaluate each284
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Figure 7: Fraction of time each method do better than the climatology (cases A and
B) for seasonal distribution reconstruction based on Z500 for each season. From left to
right: Winter, Spring, Summer and Autumn; From top to bottom: Wasp, Perc,and KCrec
methods

method. A preliminary step consists in designing a procedure which mimicks285

the weighting of wind values by a power curve, in a manner which accounts286

for the considerable geographical variations of the wind (a single, generic287

power curve would not make sense).288

Each wind turbine is characterized by its power curve which gives the289

output power as function of the wind speed. The energy produced during a290

given period can be expressed as :291

E = T

∫ ∞

0

Pout(u)dU, (10)

where T is the period considered (month or season) and Pout(u) is the output292

power given the wind speed u. The capacity factor is defined as the ratio293
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between the actual energy produced during a given period and the energy294

that would have been produced if the wind turbine had run at its maximum295

power during the entire period :296

CF =
E

PnT
, (11)

where Pn is the nominal power of the wind turbine.297

In order to take into account the fact that the data used are at 10-meter298

height and the mean wind speed is highly varying among different locations,299

we use a location-adapted power curve, proposed by Jourdier [20]. In this300

curve, the wind speed is divided by a location-dependent parameter a, cho-301

sen so that the modified power curve has a capacity factor of 23% on the302

calibration period. This corresponds to the average capacity factor in France303

in 2014 [33]. This procedure is illustrated in Figure 8.304

To assess the accuracy of the reconstructed capacity factor, the relative305

error between the reconstructed capacity factor and the capacity factor from306

the reanalysis is computed :307

∆CF =
CF − CFreal

CFreal

(12)

Figure 8: Example of the location-adapted power curve. In solid black: the real power
curve for wind speed at 80m height; in dashed blue: the adapted power curve. It has the
same shape, but the wind speed is divided by a number a to achieve a capacity factor of
23%.

Figures 9 and 10 show the relative error on the calculated capacity factor308

for monthly and seasonal reconstructions respectively. At both timescales,309
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Figure 9: Relative error on the capacity factor (%) for monthly distributions given by: non
parametric climatology (a), parametric climatology (b), Wasp (c), Perc (d), and KCrec
(e)
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Figure 10: Same as Figure 9 but for seasonal distributions.
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the Perc method overestimates it mostly onshore by about 25% on average.310

The KCrec method behaves like the Perc methods at the monthly scale, but311

is performing better at the seasonal scale with an overestimation of about312

10% onshore. As expected, the Wasp method shows good performance in es-313

timating the capacity factor as its reconstruction focuses on the right tail of314

the Weibull distribution. Nevertheless, it overestimates the energy produc-315

tion in the northern part of France at a monthly scale and underestimates316

it in the southern part of France at a seasonal scale. The non-parametric317

climatology behaves very well at the seasonal scale even though it displays a318

slight overestimation in the north of France. At the monthly scale, on aver-319

age, on the entire domain it overestimates the capacity factor by about 25%.320

By contrast, the parametric climatology behaves very badly at the monthly321

scale, overestimating the energy production by 50% in average. At a seasonal322

scale, this overestimation decreases but is still high, highlighting again the323

error induced by the Weibull distribution hypothesis.324

In any case, there is a tendency of all methods to overestimate the capacity325

factor, mostly onshore. The climatology acts as a filter of high frequency326

variation of the wind, meaning that it does not describes well the tails of327

the distribution. As the power curve is designed so that the wind turbine328

works at its nominal power near the mean wind speed, this results in an329

overestimation of the capacity factor.330

On the other hand, Drobinski et al. [21] showed that a Weibull distri-331

bution fitted by MLE describes well the center of the distribution (near the332

mean wind speed), but tends to underestimate the tails of the distribution.333

This leads to the same consequence. That explains why the parametric clima-334

tology acts worse than the non-parametric climatology, but also why KCrec335

overestimates the capacity factor. This has no such effect offshore because336

the wind above sea is steadier so that the distribution is more peaked around337

the mean. Regarding the Perc method, the Weibull reconstruction is based338

on two percentiles defined to minimize the CvM score. It may results in339

the same effect of underestimation of the tails of the distribution. Future340

work could focus on a sensitivity analysis to the percentiles definition by341

minimizing the error on capacity factor.342

At the seasonal scale, the real distribution is based on a larger sample343

which implies that the center of the distribution has a much larger weight344

than the tails at this scale than at the monthly scale. The effect of underes-345

timating the tails is thus less visible.346
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4. Towards monthly and seasonal forecast of the wind speed dis-347

tribution348

The analysis described above has shown that the large-scale state of the349

atmosphere contains information on the likely distribution of surface winds,350

and our proposed methods allow to recover at least part of this information.351

A long-term perspective will be to use this to build forecasts of surface wind352

distributions. Below we present a preliminary attempt based on existing353

seasonal forecasts, to assess the potential of this method for monthly or354

seasonal forecasts.355

A first step is to assess the skill in seasonal forecasts for predicting the356

large-scale state of the atmosphere in our region of interest. The root mean357

square error (RMSE) between the daily PCs of Era-Interim and those of the358

seasonal forecast is shown in Figure 11. This figure gives an idea of the lead-359

time of such a forecast. It shows that the error increases rapidly until it levels360

off after 20 days indicating that there is no more valuable information on the361

large-scale circulation in the data. As a consequence, it will not be possible362

to have an accurate wind distribution forecast at more than the monthly363

horizon.364

One technical difficulty arises: the monthly distribution of wind coming365

from the ECMWF analysis stands for the real distribution. As the analysis366

does not come from the same model as the ERA-Interim data, a bias ex-367

ists between the distributions coming from the analysis and the distributions368

based on ERA-Interim data. We thus apply a classical quantile/quantile369

correction between the 4 years based distributions of the analysis and of370

ERA-Interim between 2012 and 2015 at each point of the gridded domain.371

We apply this correction to the monthly wind distribution of the analysis.372

Because of the small amount of forecasts and of the uncertainties due to the373

bias, we will not be able to have the same deep analysis as in the reconstruc-374

tion part of the paper. The corrected monthly distribution of the wind speed375

coming from the analysis is compared to the climatology of ERA-Interim and376

to the forecast distributions using the CvM score.377

The percentage of time each method does better than the climatology,378

averaged over the entire domain, for the 1st month of the 12 forecasts, is379

summarized in table 3. The results for the Perc and KCrec methods are380

comparable to the reconstruction results. On the contrary, the Wasp method381

shows a very high score when evaluating the entire distribution and a lesser382

score when evaluating the energy production, which is not consistent with383
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Figure 11: RMSE calculated between the PCs of Era-Interim and the PCs of the seasonal
forecast. The solid line represents the median of the error, dashed lines represent the 60th
percentile (top) and the 40th percentile (bottom). a. Seasonal, b. NAO, c. EA, d. SCA,
e. EU2

Forecast method Wasp Perc KCrec

total 1st month 46.4 (31.2 ) 20.2 (25.5 ) 28.8 (27.5 )

2012 41.0 (35.0 ) 15.1 (20.5 ) 22.9 (23.6 )
2013 44.1 (25.7 ) 22.9 (25.4 ) 32.4 (26.5 )
2014 54.0 (33.0 ) 22.5 (30.4 ) 31.3 (32.3 )

Table 3: Percentage of the number of times each method does better than the climatology
on the whole domain for the 3 years of forecasts. First values correspond to the evalua-
tion of the entire distribution; values in parenthesis corresponds to the evaluation of the
distribution between the cut in and the cut out.

the reconstruction results. When calculating the error on the capacity factor,384

the forecast methods always highly overestimate the wind energy production385

onshore (more than 100% at some points), and slightly underestimate it off-386

shore (more than 10%). The non-parametric climatology overestimates the387
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capacity factor by more than 10% onshore and underestimates it offshore,388

whereas the parametric climatology highly overestimates the energy produc-389

tion on the whole domain as it was the case in the evaluation part.390

Regarding the large uncertainty due to the limited number of forecasts,391

the robustness can be inferred from the consistency of the forecasts results392

with those obtained in the previous section.393

Still, work must be continued to evaluate the forecasts performance of394

such methods, by using larger sets of numerical seasonal weather forecast,395

but also by testing methods based on non-parametric distribution estimation.396

5. Conclusion397

In this paper, a new approach for modelling the wind speed at the seasonal398

scale has been proposed. We suggest to model not only the mean wind speed399

but the entire monthly/seasonal distribution of the wind. Linking the wind to400

its synoptic predictors we have shown that there is valuable information in the401

large-scale circulation variability that can explain the wind speed distribution402

at such long timescales. The proposed methods show good performances in403

reconstructing the monthly and seasonal wind speed distributions even if404

the climatology is still a good predictor. Moreover, reconstruction methods405

performances display an interesting spatial and seasonal variability. Indeed,406

in the north of France in winter and fall, the proposed methods showed407

better ability to model strong winds than the climatology. Nevertheless,408

the attempt of forecasting also highlights the fact that seasonal forecasts of409

ECMWF are not yet mature enough to give valuable information on the410

large-scale circulation variability at the horizons exceeding a month.411
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Appendix: Cramer-Von Mises score417

To assess the reconstruction quality, we use the Cramer-Von-Mises score418

defined in Anderson et al. [35]:419

CvM =
MN

M +N

∫ ∞

∞
[FN(x)− FM(x)]2dHM+N(x) (.1)

Here, M and N are the sample sizes in each of the distributions, FN(x)420

and FM(x) are the CDFs of the two samples and HM+N(x) is the combined421

distribution of the two samples together. The smaller the CvM score, the422

better the goodness of fit between the two tested distributions. Anderson et423

al. [35] showed that Equation (.1) is equivalent to424

CvM =
U

NM(M +N)
− 4NM − 1

6(N +M
), (.2)

where U = N
∑N

i=1(ri−i)2+M
∑M

j=1(rj−j)2, ri are the ranks of the elements425

of the sample of size N in the combined sample and rj are the ranks of the426

sample of size M in the combined sample.427

The CvM score allows to test the null hypothesis H0:”the two samples428

come from the same distribution”. When M→∞ and N→∞, under the null429

hypothesis, the CvM score follows the limiting distribution with mean 1
6
and430

variance 1
45
. In this configuration, the p-value giving 95% confidence that431

the null hypothesis is true is p = 0.46136, [35].432
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