Mean first-passage times of non-Markovian random walkers in confinement.
T Guérin, N Levernier, O Bénichou, R Voituriez

To cite this version:

HAL Id: hal-01344629
https://hal.archives-ouvertes.fr/hal-01344629
Submitted on 12 Jul 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mean first-passage times of non-Markovian random walkers in confinement

T. Guérin1, N. Levernier2, O. Bénichou2 & R. Voituriez2,3

The first-passage time, defined as the time a random walker takes to reach a target point in a confining domain, is a key quantity in the theory of stochastic processes1. Its importance comes from its crucial role in quantifying the efficiency of processes as varied as diffusion-limited reactions2,3, target search processes4 or the spread of diseases5. Most methods of determining the properties of first-passage time in confined domains have been limited to Markovian (memoryless) processes3,6,7. However, as soon as the random walker interacts with its environment, memory effects cannot be neglected: that is, the future motion of the random walker does not depend only on its current position, but also on its past trajectory. Examples of non-Markovian dynamics include single-file diffusion in narrow channels8,9, or the motion of a tracer particle either attached to a polymeric chain9 or diffusing in simple10 or complex fluids such as nematics11, dense soft colloids12 or viscoelastic solutions13,14. Here we introduce an analytical approach to calculate, in the limit of a large confining volume, the mean first-passage time of a Gaussian non-Markovian random walker to a target. The non-Markovian features of the dynamics are encompassed by determining the statistical properties of the fictitious trajectory that the random walker would follow after the first-passage event takes place, which are shown to govern the first-passage time kinetics. This analysis is applicable to a broad range of stochastic processes, which may be correlated at long times. Our theoretical predictions are confirmed by numerical simulations for several examples of non-Markovian processes, including the case of fractional Brownian motion in one and higher dimensions. These results reveal, on the basis of Gaussian processes, the importance of memory effects in first-passage statistics of non-Markovian random walkers in confinement.

It has long been recognized that the kinetics of reactions is influenced by the properties of the transport process that brings reactants into contact1-2. Transport can even be the rate-limiting step, and in this diffusion-controlled regime, the reaction kinetics is quantified by the properties of the first encounter between molecules2. First-passage time (FPT) properties have been studied intensively in the past few decades3,15 and are now well understood when the stochastic motion of the reactants satisfies the Markov property, that is, is memoryless (uninfluenced by previous states, only by the current state). Under this assumption, exact asymptotic formulas characterizing the FPT of a tracer to a target located inside6,7,16 or at the boundary15 of a large confining volume have been obtained. These studies reveal that the geometrical parameters, as well as the complex properties of the stochastic transport process (such as subdiffusion), can have a strong impact on the reaction kinetics3,6,7.

However, as a general rule, the dynamics of a given reactant results from its interactions with its environment and cannot be described as a Markov process. Indeed, although the evolution of the set of all microscopic degrees of freedom of the system is Markovian, the dynamics restricted to the reactant only is not. This is typically the case for a tagged monomer, whose non-Markovian motion results from the structural dynamics of the whole chain to which it is attached9,17,18, as observed for example, in proteins19. Other experimentally observed examples of non-Markovian dynamics include the diffusion of tracers in crowded narrow channels9 or in complex fluids such as nematics11 or viscoelastic solutions13,14. Even in simple fluids, hydrodynamic memory effects and thus non-Markovian dynamics have been recently observed10. So far, most theoretical results on the first-passage properties of non-Markovian processes have been limited to specific examples17,18,20-22 or to unconfined systems, where non-trivial persistence exponents characterizing its long time decay have been calculated23-25. However, in many situations, geometric confinement has a key role in first-passage kinetics3,6,7. Here, we develop a theoretical framework with which to determine the mean FPT of non-Markovian random walkers in confinement.

More precisely, we consider a non-Markovian Gaussian stochastic process $x(t)$, defined in unconfined space, which represents the position of a random walker at time t, starting from x_0 at $t = 0$. As the process is non-Markovian, the FPT statistics in fact depend also on $x(t)$ for $t < 0$. For the sake of simplicity, we assume that at $t = 0$ the process of constant average x_0 is in the stationary state (see Supplementary Information for more general initial conditions), with increments $x(t + \tau) - x(t)$ independent of t. The process $x(t)$ is then entirely characterized by its mean square displacement (MSD): $\langle x(t + \tau) - x(t) \rangle^2$. Such a quantity is routinely measured in single particle tracking experiments and in fact includes all the memory effects in the case of Gaussian processes. At long times, the MSD is assumed to diverge and thus, typically, the particle does not remain close to its initial position. Last, the process is continuous and non-smooth15 ($\langle x(t)^2 \rangle = +\infty$), meaning that the trajectory is irregular and of fractal type, similar to standard Brownian motion. Note that the class of random walks that we consider here covers a broad spectrum of non-Markovian processes used in physics, and in particular the examples mentioned above.

The random walker is now confined in a domain of volume V with reflecting walls, and we focus on its mean FPT to reach a target of position $x = 0$ (see Fig. 1). Note that this setting also gives access to the reaction kinetics of a reactant in the presence of a concentration $c = 1/V$ of targets in infinite space. Although the theory can be developed in any space dimension (see Supplementary Information for an explicit treatment of the two-dimensional and three-dimensional cases), it is presented here for clarity in one dimension (see Fig. 1b). Our starting point is the following generalization of the renewal equation1

$$p(0,t) = \int_0^t \; d\tau F(\tau) p(0,t\mid \text{FPT} = \tau)$$

(1)

which results from a partition over the first-passage event. In this equation, $p(0,t)$ stands for the probability density of being at position $x = 0$ at time t, F is the FPT density and $p(0,t\mid \text{FPT} = \tau)$ is the probability that
When significant, error bars indicate the s.e.m. of the numerical simulations. Number of simulated trajectories: in a and e \(n = 173,328 \) (for \(V = 40 \)), \(n = 180,641 \) (for \(V = 60 \)), and \(n = 96,623 \) (for \(V = 120 \)). When significant, error bars give the s.e.m. of the numerical simulations. Number \(n \) of simulated trajectories: in a and e \(n = 173,328 \) (for \(V = 40 \)), \(n = 180,641 \) (for \(V = 60 \)), and \(n = 96,623 \) (for \(V = 120 \)).
stopped at the first encounter with the target, the mean FPT is controlled by the statistical properties of the fictitious path that the walker would follow if allowed to continue after the first encounter event. (3) Assuming that $\psi(t) \propto t^{2H}$ at large times, with $0 < H < 1$, it can be shown from the asymptotic analysis of equation (4) that:

$$\mu(t) \approx x_0 - A \cdot t^{2H-1} \quad (t \to \infty)$$

where A is a coefficient depending on the entire MSD function $\psi(t)$ (at all timescales) and on x_0 (it generally has the same sign as x_0). Thus, for processes that are subdiffusive at long times (so that the MSD grows slower than linearly with time, $H < 1/2$), $\mu(t)$ comes back to the initial position x_0 of the walker, which is consequently not forgotten. On the contrary, asymptotically superdiffusive walkers ($H > 1/2$) keep going away from the target in the future of the FPT with a non-trivial exponent. These behaviours reflect the anticorrelation and correlation of successive steps of subdiffusive and superdiffusive walks, respectively. Note that even for asymptotically diffusive processes ($H = 1/2$), $\mu(t)$ tends to a non-vanishing constant, in contrast to a pure (Markovian) Brownian motion. (4) The importance of non-Markovian effects can be appreciated by comparing the mean FPT to the result obtained by setting $\mu(t) = 0$, which amounts to neglecting the memory of the trajectory before the first passage. As shown by equation (5), $\mu(t)$ is actually not small, so that memory effects are important. They are especially marked for $H < 1/3$, where setting $\mu(t) = 0$ in equation (3) leads to an infinite mean FPT, as opposed to our finite non-Markovian prediction.

We now confirm the validity of these analytical results by comparing them to numerical simulations of representative examples of non-Markovian processes defined by the MSD $\psi(t)$. First, the choice dimensions is indicated for $D = 1$, $D_0 = 30$, $V = 100$, $\lambda = 1$ (arbitrary units). Time is in units of $1/\lambda$ and lengths are in units of a. In c and d, fractional Brownian motion in two dimensions is shown, with $K = 1$, $V = 60^2$ (arbitrary units). Time is in units of $a^2/\beta K/\lambda$ and lengths in units of a. The confining volume is a sphere of radius $R = 70$ or a cube of volume $V = 116^3$. When significant, error bars give the s.e.m. of the numerical simulations. Number n of simulated trajectories: in a and b $n = 55,334$, in c and d $n = 57,314$; and in e and f $n = 16,900$.}

![Figure 3](image-url)
deviation from a Markovian process (see Supplementary Information). Figures 2 and 3 reveal very good quantitative agreement between the analytical predictions and the numerical simulations far beyond this perturbative regime. Both the volume and the source–target distance dependence of the mean FPT are unambiguously captured by the theoretical analysis, at all the length scales involved in the problem. Note that, even if the theoretical prediction relies on large-volume asymptotics, numerical simulations show that it is accurate even for small confining systems (with various shapes of confining volumes, such as spherical or cubic). The very different nature of these examples (one, two or three dimensions, diffusive, superdiffusive or subdiffusive at long times...) demonstrates the wide range of applicability of our approach. Remarkably, the amplitude of memory effects is important in the examples shown in Figs 2 and 3, where the multiplicative factor between Markovian and non-Markovian estimates of the mean FPT can be up to 15 (Fig. 2c). As discussed above, this factor is even infinite for the fractional Brownian motion as soon as $H<1/3$. Interestingly, even for the process defined by $\psi(t) = \psi_D(t)$ above, which is diffusive both at short and long times, for which one could thus expect memory effects to be negligible, this factor is not small (typically 5; see Fig. 2a). The accuracy of our analytical predictions for the mean FPT traces back to the quantitative prediction for the trajectories in the future of the FPT $\mu(t)$, as shown in Figs 2 and 3. The strong dependence of $\mu(t)$ on the starting point x_0, predicted by our approach and confirmed numerically, is a direct manifestation of the non-Markovian feature of the random walks. Together, our results demonstrate and quantify the importance of memory effects in the first-passage properties of non-Markovian random walks in confined geometry.

Acknowledgements This work was supported by ERC grant FP7-615006.

Author Contributions All authors contributed equally to this work.