D. Altschuh, A. Lesk, A. Bloomer, and A. Klug, Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus, Journal of Molecular Biology, vol.193, issue.4, pp.693-707, 1987.
DOI : 10.1016/0022-2836(87)90352-4

U. Gobel, C. Sander, R. Schneider, and A. Valencia, Correlated mutations and residue contacts in proteins, Proteins: Structure, Function, and Genetics, vol.262, issue.4, pp.309-317, 1994.
DOI : 10.1002/prot.340180402

E. Neher, How frequent are correlated changes in families of protein sequences?, Proceedings of the National Academy of Sciences, vol.91, issue.1, pp.98-102, 1994.
DOI : 10.1073/pnas.91.1.98

I. Shindyalov, N. Kolchanov, and C. Sander, Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations?, "Protein Engineering, Design and Selection", vol.7, issue.3, pp.349-358, 1994.
DOI : 10.1093/protein/7.3.349

S. Lockless and R. Ranganathan, Evolutionarily Conserved Pathways of Energetic Connectivity in Protein Families, Science, vol.286, issue.5438, pp.295-299, 1999.
DOI : 10.1126/science.286.5438.295

A. Fodor and R. Aldrich, Influence of conservation on calculations of amino acid covariance in multiple sequence alignments, Proteins: Structure, Function, and Bioinformatics, vol.53, issue.Suppl 6, pp.211-221, 2004.
DOI : 10.1002/prot.20098

D. De-juan, F. Pazos, and A. Valencia, Emerging methods in protein coevolution, Nature Reviews Genetics, 2013.

M. Weigt, R. White, H. Szurmant, J. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, issue.1, pp.67-72, 2009.
DOI : 10.1073/pnas.0805923106

L. Burger and E. Van-nimwegen, Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments, PLoS Computational Biology, vol.14, issue.14, p.1000633, 2010.
DOI : 10.1371/journal.pcbi.1000633.s012

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, and D. Marks, Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1293-1301, 2011.
DOI : 10.1073/pnas.1111471108

S. Balakrishnan, H. Kamisetty, J. Carbonell, S. Lee, and C. Langmead, Learning generative models for protein fold families, Proteins: Structure, Function, and Bioinformatics, vol.34, issue.4, p.1061, 2011.
DOI : 10.1002/prot.22934

D. Jones, D. Buchan, D. Cozzetto, and M. Pontil, PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, issue.2, p.184, 2012.
DOI : 10.1093/bioinformatics/btr638

J. Sreekumar, C. Ter-braak, R. Van-ham, and A. Van-dijk, Correlated mutations via regularized multinomial regression, BMC Bioinformatics, vol.12, issue.1, p.444, 2011.
DOI : 10.1093/protein/gzi029

S. Cocco, R. Monasson, and M. Weigt, From Principal Component to Direct Coupling Analysis of Coevolution in Proteins: Low-Eigenvalue Modes are Needed for Structure Prediction, PLoS Computational Biology, vol.38, issue.8, p.1003176, 2013.
DOI : 10.1371/journal.pcbi.1003176.s002

URL : https://hal.archives-ouvertes.fr/hal-00764377

M. Ekeberg, C. Lövkvist, Y. Lan, M. Weigt, and E. Aurell, Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models, Physical Review E, vol.87, issue.1, p.12707, 2013.
DOI : 10.1103/PhysRevE.87.012707

H. Kamisetty, S. Ovchinnikov, and D. Baker, Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era, Proceedings of the National Academy of Sciences, vol.110, issue.39, pp.15674-15679, 2013.
DOI : 10.1073/pnas.1314045110

L. Burger and E. Van-nimwegen, Accurate prediction of protein???protein interactions from sequence alignments using a Bayesian method, Molecular Systems Biology, vol.8, p.165, 2008.
DOI : 10.1038/msb4100203

A. Procaccini, B. Lunt, H. Szurmant, T. Hwa, and M. Weigt, Dissecting the Specificity of Protein-Protein Interaction in Bacterial Two-Component Signaling: Orphans and Crosstalks, PLoS ONE, vol.36, issue.5, p.19729, 2011.
DOI : 10.1371/journal.pone.0019729.s008

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, p.620630, 1957.
DOI : 10.1103/PhysRev.106.620

E. Jaynes, Information Theory and Statistical Mechanics. II, Physical Review, vol.108, issue.2, p.171190, 1957.
DOI : 10.1103/PhysRev.108.171

A. Lapedes, B. Giraud, L. Liu, and G. Stormo, Correlated mutations in models of protein sequences: Phylogenetic and structural effects. Lecture Notes- Monograph Series, Statistics in Molecular Biology and Genetics, vol.33, pp.236-256, 1999.

A. Lapedes, B. Giraud, and C. Jarzynski, Using sequence alignments to predict protein structure and stability with high accuracy. arXiv preprint ar- Xiv, p.12072484, 2012.

T. Mora, A. Walczak, W. Bialek, and C. Callan, Maximum entropy models for antibody diversity, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5405-5410, 2010.
DOI : 10.1073/pnas.1001705107

A. Schug, M. Weigt, J. Onuchic, T. Hwa, and H. Szurmant, High-resolution protein complexes from integrating genomic information with molecular simulation, Proceedings of the National Academy of Sciences, vol.106, issue.52, p.22124, 2009.
DOI : 10.1073/pnas.0912100106

A. Dago, A. Schug, A. Procaccini, J. Hoch, and M. Weigt, Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis, Proceedings of the National Academy of Sciences, 2012.
DOI : 10.1073/pnas.1201301109

D. Marks, L. Colwell, R. Sheridan, T. Hopf, and A. Pagnani, Protein 3D Structure Computed from Evolutionary Sequence Variation, PLoS ONE, vol.437, issue.12, p.28766, 2011.
DOI : 10.1371/journal.pone.0028766.s022

M. Sadowski, K. Maksimiak, and W. Taylor, Direct correlation analysis improves fold recognition, Computational Biology and Chemistry, vol.35, issue.5, pp.323-332, 2011.
DOI : 10.1016/j.compbiolchem.2011.08.002

T. Nugent and D. Jones, Accurate de novo structure prediction of large transmembrane protein domains using fragment-assembly and correlated mutation analysis, Proceedings of the National Academy of Sciences, vol.109, issue.24, pp.1540-1547, 2012.
DOI : 10.1073/pnas.1120036109

J. Sulkowska, F. Morcos, M. Weigt, T. Hwa, and J. Onuchic, Genomics-aided structure prediction, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10340-10345, 2012.
DOI : 10.1073/pnas.1207864109

W. Taylor, D. Jones, and M. Sadowski, Protein topology from predicted residue contacts, Protein Science, vol.8, issue.Suppl. 5, pp.299-305, 2012.
DOI : 10.1002/pro.2002

T. Hopf, L. Colwell, R. Sheridan, B. Rost, and C. Sander, Threedimensional structures of membrane proteins from genomic sequencing, Cell, 2012.

C. Wang, J. Sang, J. Wang, M. Su, and J. Downey, Mechanistic Insights Revealed by the Crystal Structure of a Histidine Kinase with Signal Transducer and Sensor Domains, PLoS Biology, vol.356, issue.2, p.1001493, 2013.
DOI : 10.1371/journal.pbio.1001493.s014

R. Diensthuber, M. Bommer, T. Gleichmann, and A. Mglich, Full-Length Structure of a Sensor Histidine Kinase Pinpoints Coaxial Coiled Coils as Signal Transducers and Modulators, Structure, vol.21, issue.7, pp.1127-1136, 2013.
DOI : 10.1016/j.str.2013.04.024

A. Stock, V. Robinson, and P. Goudreau, Two-Component Signal Transduction, Annual Review of Biochemistry, vol.69, issue.1, pp.183-215, 2000.
DOI : 10.1146/annurev.biochem.69.1.183

J. Hoch and K. Varughese, Keeping Signals Straight in Phosphorelay Signal Transduction, Journal of Bacteriology, vol.183, issue.17, pp.4941-4949, 2001.
DOI : 10.1128/JB.183.17.4941-4949.2001

M. Laub and M. Goulian, Specificity in Two-Component Signal Transduction Pathways, Annual Review of Genetics, vol.41, issue.1, pp.121-145, 2007.
DOI : 10.1146/annurev.genet.41.042007.170548

H. Szurmant and J. Hoch, Interaction fidelity in two-component signaling, Current Opinion in Microbiology, vol.13, issue.2, pp.190-197, 2010.
DOI : 10.1016/j.mib.2010.01.007

M. Punta, P. Coggill, R. Eberhardt, J. Mistry, and J. Tate, The Pfam protein families database, Nucleic Acids Research, vol.40, issue.D1, p.290, 2012.
DOI : 10.1093/nar/gkr1065

URL : https://hal.archives-ouvertes.fr/hal-01294685

S. Dunn, L. Wahl, and G. Gloor, Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction, Bioinformatics, vol.24, issue.3, pp.333-340, 2008.
DOI : 10.1093/bioinformatics/btm604

S. Garbuzynskiy, M. Lobanov, and O. Galzitskaya, To be folded or to be unfolded?, Protein Science, vol.293, issue.11, pp.2871-2877, 2004.
DOI : 10.1110/ps.04881304

M. Jiang, W. Shao, M. Perego, and J. Hoch, Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis, Molecular Microbiology, vol.8, issue.3, pp.535-542, 2000.
DOI : 10.1016/S0969-2126(00)00174-X

N. Ohta and A. Newton, The Core Dimerization Domains of Histidine Kinases Contain Recognition Specificity for the Cognate Response Regulator, Journal of Bacteriology, vol.185, issue.15, pp.4424-4431, 2003.
DOI : 10.1128/JB.185.15.4424-4431.2003

J. Skerker, M. Prasol, B. Perchuk, E. Biondi, and M. Laub, Two-Component Signal Transduction Pathways Regulating Growth and Cell Cycle Progression in a Bacterium: A System-Level Analysis, PLoS Biology, vol.132, issue.10, p.334, 2005.
DOI : 10.1371/journal.pbio.0030334.st003

R. Finn, J. Tate, J. Mistry, P. Coggill, and S. Sammut, The Pfam protein families database, Nucleic Acids Research, vol.36, issue.Database, pp.281-288, 2008.
DOI : 10.1093/nar/gkm960

URL : https://hal.archives-ouvertes.fr/hal-01294685

S. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.
DOI : 10.1093/bioinformatics/14.9.755

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, and T. Bhat, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

R. Finn, J. Tate, J. Mistry, P. Coggill, and S. Sammut, The Pfam protein families database, Nucleic Acids Research, vol.36, issue.Database, pp.281-288, 2008.
DOI : 10.1093/nar/gkm960

URL : https://hal.archives-ouvertes.fr/hal-01294685

A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, 2003.