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A system of n masses, eqttal or not, intercomrec;ted ~Y 1101rl.~near "symmetrit;'' springs, 
and haui1rg " degrees of freedom is examitzed. The concept of tiormal modes is 
rigormesly defimd and the problem offi.11ding them is reduced to a geometrical maximum
mi11imum problem i1r an n-space of known metric. The solution of the geometrical 
problem redttr;es the conplcd equations of motion to 11 uncottPled eqteations whose n.atural 
frequettcies can alwa,•s be jou11il by a single gteadrature. An infinite class of systetns, 
of which the li1Jear system is a memher, has beett isol.ated for wMch the freqttency ampli
ltule can be}tnmd in closed form. 

In some earlier papers {1, 2, 3) 1 the "normal modes" 
of certain nonlinea.r two-degre.e-of-!reedom systems were dis
cussed, These systems consisted of masses and springs, a re
striction being that the forces with-which the springs resist being. 
deflected are odd functions of these deflections. 

Evidently, these papers have dealt with a heretofore undeJined 
subject matter since the concept,Qf normal modes is generally de
fined for linear systems only. In them, "normal solutions" is 
the term associated with a fundamental set of solutions, and it 
is a. well-known property of these, that a linear combination of 
the normal solutions yields all solutions of the system. 
Even if "it should be possible to isolate, for nonlinea.r systems, 
solutiol!s which are equivalent to the normal Yibrations of ,linear 
systems, such solutions cannot be used to construct new aolutions, 
sinc.e th~ superposition principle is ipso factQ inll.dmissible fu 
nonlinear systems. 

The earlier method [2) consisted in identifying the search for 
the eigeovectors with the solution of a maximum-minimum prob
lem in two-sp~~oce. Once the eigenvectors had been found in this 
manner they could be u'tilized to transform the two-degree-of
freedom problem into two separate problems, each in a single 
degree of freedom. This approach suggested itself readily, and it 
was relatively simple to exploit it, because the geometrical prob
lem (which is the equivalent of the dynamical one) is oue of 
geometry in two dimensions. It is natural to inquire whether it 
is even poasible, and if so, whether it is useful to extend this theory 
to n-"dimensions~ In fact, doubt as to the feasibility of this ex
tension has formed the substance of a discu~ion of an earlier 
paper [3].t It is the purpose of this paper to extend the 
ea.rliEU" fElBUlts tO 1;ystems having n-degl'ees Of f reed01,11. 

Equations of Motion 
Conside.r a ·system of ?Hnnsses (either equal t o or diffel'ent from 

each other ) interconnected by nonlinear springs, .and t he first 
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and last of the masses connected by nonlinear springs to fixed 
points (or to infinitely large masses). The springs also may be 
equal to or different from each other. The system has n degrees 
of freedom and is illustrated in Fig .. 1. The spring force of each 
spring is an Odd function of the spring deflection. Thus, if 
a ~pring S, is deflected by an amount u1, it rllSil!ts this deflec
tion with a force S1(u;), and 

S,( -t~) = -S;(u;) 

There exists (by definition of admissible systems) an equilibrium 
position of the system, and the displacement of the ith mnss from 
its equilibrium position is denoted by x1, so that the x;, (i =(1, 2, 
... , n) are the co-ordinates of the problem. Then, the equations 
of motion of the system are 

In what follows, we shall only admit springs whose forces are 
everywhere analytic in the deflections and, moreover, we shall 
assume that these forces are represented with a. l!9.tisfactory de
gree of accuracy by finite Taylor expansions. In the technical 
sense, these restrictions represent no limitations on the springs. 
Under them, the equations oi motion become 

Yl 

m,x, = E a;.;(x;-1 - x1)i 
j=I, 3, ••• 

~ i = 1, 2, ... , n} 
L-t a;H, ;(x1 - Xc+t)l, _ (2) 

j - 1,3,. .• Xo"" Xn+1=0 

Finally, it is convenient to normalize the. co-ordinates b:t means of 
the transformations 

(3) 

The equations of motion then take on their final form 

Fig. 1 



i = 1, 2, ... , n 

(4) 

Since the system is conservative, the right-hand sides of the 
equations of motion must be derivable from a potential function. 
In fact, one finds readily 

~~ = :~, i = 1, 2, .•. , n (5) 

U- - ~ ~ {~ ( ~H -~)/+1} LJ LJ • + 1 l/1 1/t I 
; ·- t, 2., ... j-1, 3, ... J 'llli- 1 'll~t . 

mo = 'llln+t = !X> (6) 

Evidently, U i~ .symmetric with respect to the·.origin; in other 
words, U remain!! unchanged if any one, or some, or all of the 
~H are replaced by - ~H provided that, at the same time, the 
corresponding~. are replaced by -~,. This important property 
is a direct consequence of the fact that all spring forces are odd 
functions of the spring displncements. 

The transformations (3} have normalized the system so that, 
in the transformed co-ordinates, the kinetic energy is 

n 

2T(~;) = L: ts 

• 
while, in the physical co-ordinates, 

n 

2T(x;) = Y: m,:i:,1 

i 

However, this transformation also admits a physical interpreta,
tion. The nontransformed equations (2) are those of the physical 
system of Fig. 1. However, the trllollsformed equations of motion 
may be regarded as those of a unit ma&s which moves in an 
n-dimensional space under forces which are derivable from the 
poteritialfunction U defined in (6); the~~ are, then, an orthogonal 
co-ordinate system in the n-space. Finally, it should be ob
served that the system ( 4), or (5) and (6), reduces to the linear 
problem when j = 1. · 

Normal Modes of Linear System 
When dealing with the linear system, the normal modes, or the 

eigeove.ctors; are usually determined after the eigenvalues are 
found. In fact, one usually substitutes sinusoidal functions· of 
time 

~1(1) = b, cos wt, i = 1, 2, . •. , n (7) 

into the equations of motion and finds in this manner a charac
teristic function whose zeros li.re the eigenvalues. Then, the rth 
eigenvector v,(w,) is found by attaching to each eigenvalue w, the 
associated eigenvector ri,.. The b;, are then the n.-components of 
v,. It is evident that, in the very first step, thi11 n:tethod makes 
use of a property which is unique to the linear problem; namely, 
that the displacemeots are_ sinusoi4al functions of time. Conse
quently, this method can never lead to a generalization of the 
concept of normal modes which comprises the nonlinear problem, 
and which reduces to the familiar meaning of the eigenvectot 
when the problem reduces to the linear one. 

Here, we wish to find a. new way of defining normal mQdes of 
the lin6llor system which must be such that (a) the normal modes 

of the linear system are uniquely and correctly defined by it and 
(b) the definition must be capable of a simple extension to the 
nonlinear system. 

This definition begins with the observation easily deducible 
from (7), that 

~.(1) = Mt + T) l · i- 1, 2, ..• , n 
~Ht(t) _ bm 1- _ 

0 
(8) 

--=- = Ci+l <;"+I= 
~,(t) b, 

The first of these states that the normal solutions of the linear 
system are all periodic of the Bame period, while the second states 
that the ratio of the displacement of any o.ne mass t o that of any 
other is identica.lly equal to a constant for all time. The first is 
a property whic:h muat be ret-ained in the nonlinear case while the 
second may either be retained in the form 

or, it is capable of the obvious generalization 

i- 1, 2, ... , n 
~HI ~ ~i+lat), 1: 

<;11+1 = 0 

where the ~i+t are single-valued functions of ~,. 

(9)· 

(10) 

The second of (8) harbors a well-known property of normal 
vibrations. Suppose there exists o. time lo such that ~1(41) = 0. 
Then, it must be t rue, in view of the second of (8), t hat ~., ~~ •... 
~n all vanish at the same instant. In other words, all roasst>s of 
the system of Fig. 1 pass through their equilibrium position at the 
same instant if the system vibrat·es in normal modes. The two 
properties of vibrations in normal modes, (a) that all mnsses 
vibrate at the same frequency and, (b) that they pnss through 
their equilibrium position at the same time is, irl fact, a descrip
tion of normal vibrations. If these properties are to be retained 
in the nonlinear system as generalized in (10), the boundary 
conditions 

t;+t(O) = O, i - 1, 2, ... , n - 1 (11) 

m\Jst be added to (10). If, however, (9) is to be retained, the 
condition (11) is .automatically satisfied. 

One additional property of the normal modes of linear systems 
must be exhibited before the array is sufficient for actu{l.]ly finding 
the eigenvectors; this property is connected with the manner in 
which the system is set into motion. Let us suppose that we start 
the motion without initial velocity, so that the initial conditions 
are 

~,(O) = b,, f,(O) .. 0, i - 1, 2, , .• , n (12) 

{We note here that the b; are not arbitrary. In fact, with arbi
trary values ofb, the system would not vibrate in normal modes; 
instead, energy exchange between the mlloSSes (or in the trans
formed system Lissajoux figures of the unit mass) would result. 
In fact, the b, are the ~,components of an eigenvector; finding 
these is the essential problem in the l!Olution of the eigenvalue 
problem. However, we assume here a priori. the well-known fapt 
that initial conditions like (9), and resulting in normal vibrations 
do exist. If it shoul(). be found in the generalization to nonlinear 
systems that such initial conditione do not exist, we shall say 
that the nonlinear system ia not capable of vibrating in normal 
modes.] 

It follows from a.n application of L'Hopita.l's rule that 

tH1(0) ~l+t(O) CIU /b~HI i - 1, 2, •• . 1 n 
~1(0) = ~,(0) - bU /b~l I en+1 =:!! 0 

or, at the time t = 0, 



d~. 
... = ()Uf?J~R (13) 

The meaning of this important property will be discussed a little 
further on. All these propertiE!I! of normal modes of linear systems 
are easily interpreted in a geometrical manner. 

Consider the (n + I)-dimensional space whose orthogono.l co
ordinates are~., f2, ... , ~ •• U. When the system is released at 
the time t = 0, it occupies a position of mrucimum potential 

U = -Uo (14) 

because it is released without initial velocity. But U = - Uo 
defineS an n-dimensional equipotentialsurface or, more precisely, 
it definea the projection of the equipotential surface U = - Uo 
on the (~,, ~2, ••• , ~n}-space. In fact, (14) defines a domain in 
the 1Hl]}nce .surrounding the origin, and eJl solutions must lie in 
this domain (for, if they did not, the potential would have to 
exceed its maximum value- Uo). We shall, therefore, call it the 
"bounding surface." 

Now, in virtue of the second of (8), the normal modes satisfy 
the relations 

The first of these, i.e., ~ = Ct~, robs the n-space of one dimen
sion (because one of the co-ordinates is e.'Cpressible in terms of 
another). In fact, it defines an (n - I)-dimensional hyperspace 
which intersects the ~~~rplane on the line ~~ = C2~l· In this hy
perspace, the equation ~~ = c3E1 defines an (n - 2)-dimensional 
hyperspace which intersects the ~~EJ-plane on the line ~~ = c1E1• 

A continuation of this argument finally defines a. straight line 
passing through the origin of the n-space and intersecting at 
least twice the bounding surface within which the solutions must 
lie. The component of this straight line along the ~ra..xis, say, is 
b;~;. We may picture the normal vibration as a periodic (and 
in the linear problem a simple harmonic) motion of the unitmass 
traveling along this line between the. points where tbnt line 
pierces the surface defined by U = - U0• The projections of that 
motion on the ~;-axes, (i = 1, 2, ... , n) are the normal vibrations 
of the system. 

We are now in a position to discuss the meaning of (13). At 
the time t = 0, the point moving along the straight line defined 
previously, and termed a "modal relation" [2], lies on the bound
ing surface, or in the domain defined by (14). At the !lame in~ 
stant, the relations (13) apply. But, since from (13) 

n 

dU = L: (15) 
i ..... 1. 2, ... 

It is evident that (13) are merely the well-known expreesions for 
the conditions that the modal line intersects the bounding surface 
defined by U = - Uo orthogonally. 

We have now collected the properties, necessary to define a 
normal mode of the linear system having n degrees of freedom. 

Definition. A normal mode of the linear system 

): <>U 
~,;; = ~~ i = 1, 2, .•. , n <>,.; (16) 

where u is given by ( 6) with j = l, it is a straight line in the ah 
~~ •... , E.,)-space defined by the (n - 1) equations 

(17) 

which are 11atisfied for all t by periodic solutions Ut) ~ Ut + T) 
of (16) in the closed domain u = - Uo of the celE!,' .. , En)-space, 
which passes through the origin of that space and which intersects 
the bounding surface defined by U = - Uo orthogonally. 

An Example. AB an example of the foregoing definition, consider 
the three-dimensional linear problem, and let 

e. = e. ~~ = t], ea = r 
The equations of motion of the physicAl system are 

nJt:i! -a,x - a2(x - y) 

Cit(x - y) - aa(Y - z) 

1113i = aa(Y - z) - a.z 

The transformed equations are 

f= as(TI r) + n~<~'/• 'fnt'/• - ma'l• 

We may also write the system a8 

where the potential function is defined as 

u = ~ Cn~~.r - ·~ C~~·;, -,:J;.r 
- ~~ (nl!~;, - ,~~.r -~ (m:.~.r 

It is evident that 

U = -Uo 

defines an ellipsoid in the ce, Tf, .n-space which is symmetric with 
respect to the origin. 

Let the normal solutions be 

Tt(t) t{t) l ~(t) = c~, ~(t) = er 
~.rare constants 

or 

., = c~~. r = er~ 

The first of these defines B plane in the ( ~. Tf, n-space which con
tains the r~axis, and which intersects the(~, t])-plnne on the line 
11 = c~~· The second defines another plane which contains the 
Tt-axis, and which intersects the (~. n-plane on the line r = 
er~· The intersection of these two planes is the line (OP), as 
shown in Fig. 2, and that line is the modal relation. Moreover, 

( ( B<lUNOING ElllPSOIO 

Fig. 2 



thll.t line intersects the ellipsoi~ U ~ - Uo a~ two points P and 
P' and, at these points, the modal line is normal to the surface of 
the ellipsoid. 

The model of the motion in hand is that of the unit mass 
traveling along the modal line in simple harmonic motion be
tween the points P and P' where the modal line intersects the 
surface of the ellipsoid. At the extremities, the velocity vanishes, 
Jl,nd the co-ordinates of the point P are the initial displacement 
components. 

Generafization of Normal Modes 
In a purely verbal manner we shall say that the nonlinear sys

tem in Fig. 1 vibrates in normal modes when all masses execute 
periodic motions of the sam~ period, when all of them pass through 
the equilibrium position at the same instant, and when, at any time 
t, the position of all the masses is uniq1tely defined by the position 
of any one of them, In view of these properties and of the pre::
ceding section, we give for normal modes, in genetal, the follow
ing: 

Deflnlllon. The mth normo1 mode of the system 

.. bU 
~j = ac,' i = 1, 2, .. •i n (18) 

where U is given by (6) is a line {curved or straight) in the 
(~1, ~2, ••• , ~ .. )-space which is defined by the (n - 1) aingle
valtted functions 

~; = ~; .. (~,), i = 2, 3, ... , n (19) 

which are satisfied for all t by the periodic solutions t(t) = t{t 
+ T) of (18) in the closed domain U ~ - Uo of the(~~~ ~t, .•• , tn)
space and which satisfies the boundary conditions that: 

(a) All ~;.,(0) = O, or the line passes through the origin of the 
(~1, ~2, •.. , ~,.)-space. 

(b) The line intersects the bounding smfa.ce defined by U = 
- Uo orthogonally. 

An illustration corresponding to that of Fig. 2 but applied to 
the nonline!J,r system of three degrees of freedom is shown in Fig. 
3. It should be abserved that, in the linear case, the bounding 
surface is an ellipsoid while, in the nonlinear case it is an ovaloid 
which is, in general, not au ellipsoid. 

While only one modal relation is referred to in th~ definitions 
and only one has been illustrated in Figs. 2 and 3, it is known that, 
in the linear case a.t least, as many such modal lines exist as there 
are degrees offreedom. For instance, in the example of the three::
degree-of-freedom system shown in Fig. 2, three modal lines e>dst 
and they are1 in fact, the principal axes of the ellipsoid. 

The Decoupled Equations 
For the present, we leave open the question as to whether, or 

how, the modal lines can be found. Supposing simply that they 
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are known, they ca,n be used in an obvious way to reduce the 
n-degree-of-freedom system of n-equa.tions, each in a single degree 
of freedom. For instance, the rth equation of motion is 

(20) 

in accordance with (5). In (20}1 the expression on the right-baud 
side d~notes the fact that, in general, the derivative oU/o~, 
depends on the three variables g,-,, ~" ~·H· If the equations 
(19) in one of the modes are known, one knows in particular the 
functions 

~r-1 ~.---1(~1) 

~. ~.(~!) 

Introducing them into (20) gives 

where prin1es denote differentiation with respect. to ~1, and dots 
differentiation with respect to time t. It follows that (21) is au 
equation in the single dependent variable ~~· If there are n 
modes r = 1, 2, ....• n, the system has now been reduced to n 
equations, each in the variable~~· 

A simplification of (21) can be. ~chieved if we choose r = 1 
(which we are free to do). In that case, (17) is 

.. CJU 
b = ~ c~~~ e2> (22) 

Knowledge of the equntions defining the modal relation includes 
the equation 

(23) 

Then, (19) becomes simply 

(24) 

which is, obvipusly, an equation in ~1, only. If there are n modes, 
there are n equations (23) and, introducing each in turn into (22), 
there are n equations of the form (24), all in ~1· 

The application of this procedure to the linear three-degree-of
freedom system may be instructive. · The first equation of motion 
IS 

and the eqlmtions of the modal relations are supposed known. 
But this implies knowledge of the three const~nts c~, in 

,. = 1, 2, 3 

Intruducing this relation into the first equation of mo.tion yields 
the three equations 

.. a1 { a2 [ (n~t)'/• ]} ~ = -m, 1 - ~ 1 - 1!h C~r . t r = 1, 2, 3 

From these, the three natural freqtiencies, or eigenvalues, can now 
be found without difficulty. 
It should be noticed .that knowledge of the eigenvectors has 

been assumed without any indication as to how they can be found. 
We shall now discus~ the questipn of finding the eigeuvectors with
ant prior knowledge of the eigenvalues. 



Determination of the Eigenvectors 
The dynamical problem in hand is to find the normal solutions 

of the system 

.. bU 
~~ = o~,, i = 1, 2, ... , n (25) 

Any solution of this system (including the normal solutions) is 
of the form 

~~ = Mt), i = 1, 2, .•. , n (26) 

Elimination of time between these functions and regarding ~I (for 
instance) as the independent variable, transforms (26) into 

~~ "" ~~(td, i = 2, 3, ••. , n (27) 

These functions constitute the trajectory of the system in the 
(~t, ~~ •... , ~ .. )-space. In a physical sense, they represent the 
trajectol'Y of the unit mass of the system (4), or (5) and (6). 
It is well known (4] that this trajectory is the geodesic in an 
n-dimensiona.l space whose metric is 

du~ = (Uo + U(~r, ~21 ••• , ~.)) t d~;2 (28) 
j=l, 2, - .. 

Consequently, the differential.equations of this geodesic are the 
Eulerequations of the variational problem 

r~ ( n )~ J£, (Uo + U)'l• 1 + ._ L ~/~ d~1 =stationary 
e J-2,3, ... 

(29) 

These Euler equations are 

2(Uo + U) {~;'' ( 1 + ~ ~/')- ~ ~/~/~/'} 

+ (1 + t t/') {tl' ?JU + t ~/~/ ?JU 
j Cl~; i*' ?Jt; 

- (r + f: ~/·) ?JU} = o (30) 
j:j::& bt; 

i, j = 2, 3, ... , n 

While every solution of (30} represents a trajectory of the dy
namical system in the (~1, ~2, , , ., ~n)-space, not all are modal 
lines. The modal lines are those solutions of (28) which satisfy 
the boundary conditions listed in the definition of normal modes. 
Since (30) is a system of (n - 1) second-order equations, it gives 
rise to 2(n - 1) constants of integration. But the trajectory is 
defined by the (n - 1) equations (27), and the satisfaction of the 
required boundary conditions (one being the value a.t the origin, 
the other the value of the slope on the bounding surface) re
quires the determination of 2(n - 1) constants. Therefore, it is 
possible, in principle a.t least, to solve the problem. N evertile
lesa, the system (30) is such a. complicated system of highly non
linear differential equations that the prospect of finding the gen
eral solution may be confidently regarded as hopeless. 

Straight Modal Relations 
Let us assume that, for certain forms of U, the modal relations 

are st,·aight lines. If tiley a,re, the second derivatives ~/, (j = 
Z, 3, ... , n) vanish. Then, since 

n 

1 + 2:: ~ /2 > o, 
i 

these straight modal relations must satisfy the.eystem of equations 

I ?JU ~ I I C>U 
!· ~ + 4. tt ~- ~ 

~· 1-t-1 . t;;., 

= 1 +I:~/· -·-; ( 
n ) bU 

j :j::i. . bt; 
i, j = 2, 3, ... , n (31) 

Writing (31) in terms of differentials (instead of derivatives) and 
adding (G>U /b~;)d~; 2 to both sides of the equation, it is found that 

r.l~. d~. 
?JU/?J~. = oU/b~2 = 

(32) 

[Actually, proceeding in the manner indicated yields (32) with 

dtt 
e>u;o~, 

absent. However, ~.is not intrinsically a. preterred co-ordinate; 
it has assumed a apecia.l position only because we have assigned 
to it the role of the independent variable, Tbus it is clear that 
the first term in (32) may be added to the set. One can also ob
tain this result in a fom1al manner by considering all ~~ to depend 
on a parameter a, and by treating the variational problem 

J: (Uo. + U)'1• (._ 1~ ••• ~r)''' da =stationary 

where primes denote differentiation with respect to a.] But 
(32) i3 similar to (13), the only difference being that (13) was 
valid only at t = 0 while (32) applies at every value of t. There
fore (32) implies that tile modal line under discussion is normal to 
all equipotential surfaces 

U ~ -H ~ -Uo 

This leads to tile following: 
Theorem. Every straight line in tile(~.., ~a, ... , t.)-space which 

intersects all equipotential surfaces orthogonally is a modal line. 
Conversely, every modal line which is straight intersects all 

equipotential surfaces orthogonally. 

Homogeneous Systems 
Among the systems illustrated in Fig. 1 whose equations of 

motion are given by ( 4), we select the cla~s who.se equations 
of motion are 

i = 1, 2, ... n } 
mo = 1nn+t = oo · (33) 

k = odd integer 

This class is called the homogeneous system of degree le because 
the right-hand sides are homogeneous functions. in the~~ of degree 
k. We shall show that, for this class, the modal relations are 
straight. 

The system (33) has considerable interest, both from the 
mathematical and from the physical point of view. lts mathe
ma tical interest resides in the fact tilat it represents a broad 
generalization of the linear problem since tile linear system is one 
of its members. Moreover, as we shall show later, in homogene
Olll> systems, the eigeuvalues as functions of the amplitudes 
can be found in terms of tabulated functions and without the 
approximations that must usually be made in the treatment of 
nonlinear problems. 

Physically, the homogeneous system is such that the springs 



resist being deflected with a force that. is proportional to the kth 
power of the deflection. Thus the system is of interest wherever 
springs are used which have this property. 

For our purposes, it is more convenient to write (33) in the 
form 

•• "()U 
t = "()~,, i = 1, 2, .•. , n 

We uow make u~ of the following J>roperty or surfaces in 
Euclidian n-space1: Consider a smooth surface in this space. 
Then, the straight line between the origin (of that space) and 
tha.t point on the surface which is nearest to, or farthest from, the 
origin intersects the surface orthogonally. 

We consider the equipotentialsurfaces 

U = -H = const 

0 > -H ~ -Ua 

and we seek those points on each of them whose distanee from the 
origin is stationary. If the locus of these points is a straight line, 
its equation will not contain the distance of these points from the 
origin. Therefore the procedure is to write the equations of the 
equipotentialsurfaces in generalized pola.r co-ordinates and, then, 
to apply the· condition which singles out those points on the sur
faces whose distance from the origin is stationary. A neeessary 
condition for the existence of straight modal relations is that the 
modules of the position vectors of these etationary points do not 
appear in the equations of the locus of these points. If the equa
tions of the locus have real zeros, the conditions which are, both, 
necessary and suffident. foa· the existence of str(l.ight modal rela
tions are fulfilled 

Let the generalized polar co-ordinates be 

~{ ... rj,(81, o~ . ... , 0,.-.), i ~ 1, 2, ...• n (34) 

They are such that, when r = 1 and the 01 take on all possible 
values between 0 < 8; ~ 211", all points on a hypersphere of radius 
1 in then-space are defined. If these co-ordinates are introduced 
into the equations of the equipotential surfaces 

- U = I; ~ ( ~~-~ . - +)Hl = 11 < Uo 
i=l k + 1 7nH/• rn.l• -

one finds 

n+l 
_ U ~ ri"H 2::.:; a;.k 

i-1, 2, ... k + 1 
(35) 

or, more generally 

U(r, 81, 8~, ... , 8,.-1) = R(r)S(81, 82, •. , 8,.-1) = H (36) 

Now, the locus of the stationary points in question is defined by 

dr = 0 

which implies 

oU 
"()(}; = 0, i = 1, 2, ..• , n - 1 

In view of (36), the last equation is equivalent to 

1 This iti. not the I'H!paee whose metric is given in (26), The n-
space under consideration here has the metric · 

oe 
?18, = 0, i = 1, 2, ... , n - 1 (37) 

and, thus, the condition which is neeessary for the existence of 
straight modal relations is sntisfied since e is a function of the 
angles 8; only. Whether the relations (37) have real roots 81" 

(r = 1, 2, ... ) cannot be answered without further calculation 
beca.use the f 1 have not been expressed explicitly as func.tions of 
the angles. We shall examine this question further for the rase of 
the nonlinea.r three-degree-of-freedom system. 

Homogeneous System With Three Degrees of Freedom 
Consider u homogeneous system like that of Fig. 1 but having 

only three degrees of freedom, and let 

a1.• = a,, at.t = a:, aa.t = aa, ~.~ = a, ~. = ~. ~2 = fJ, 

~~ = !, 81 = 0, 82 = "'' H = B 
The equation of the equipotential surface is 

a, ( ~ ·)k+l a2 ( ~ fJ )4+1 
k + 1 m1'!1 + k + 1 mt'/• - n~.t'l• 

a, ( fJ r )•+1 "' ( t )•+1 +-- -,---,- +-- -,- =H 
k + 1 1»2 I• m1 I• k + 1 ~ /i 

For simplicity (although this restriction is not necessary) we 
assume that all masses are equal. Introducing the nomenclature 

kH 
n.,;T = H, 

the foregoing equation simplifies to 

We now introduce polar co-ordinates 

~ r cos q> sin 0 

fJ r sin I{) sin 8 

r r cos (J 

into (38) and set the derivatives bU I~'P and ~U /~9 equal to 
zero. 

This results in the following pair of equations in lP and cot 8: 

a, cosk qJ sin 'P + a.( cos qJ - sin qJ )l( cos qJ + sin 'P) 

= aa(sin q> -cot (J)k cos qJ 
(40) 

a, cosH1 qJ + a,( cos qJ - l'jn qJ )HI 

= a, - aa(sin q> - cot 8)k(ain tp + 1/cot /J) 

Evidently, they are sufficient to determine the required angles. 
It is instructive to reduce these equations to the linear case 

and equal springs. In that case, the foregoing equations become 

cos1 tp - sin1 tp = -cos tp cot 0 

2 cos tp = (1/cot 0} - cot 8 

This pair of equations has the following roots: 

2 mode: tp = 0, 0 

3 mode: lP !::: 305° 15', 8 60° 

The eigenvectors corresponding to these roots are shown in Fig. 4. 



Fig, 4 

The roots of the transcendental equation yield the following well
known results (5] (as is evident from Fig. 4): 

1 mode: 1J 2'/t~, t ~. 

2 mode: 11 

3 mode: fJ 

In the nonlinear homogeneous case, the solution of the trans
cendental equations will yield the values of the constants c in 

Fig. 5 

properties stand out. For instance, in the linear problem, ( k = 1 ), 
the frequency of free vibrations is independent of the amplitude, 
while, in the nonlinear case, the frequency of free vibrations does 
depend on the amplitude. 

When the spring is hard' (k > 1), the amplitude increases with 
the frequency; when the spring is soft' (0 < k < 1), the amplitude 
decreases when the frequency increases, These a.nd other proper
ties of the backbone curves, easily deducible from (43), are 
illustrated in Fig. 5. 

t] = c~,~· r - er,~. r - 1, 2, ••. <41) Maximum-Minimum Properties 
and the largest value of r is equal to the number of modes. In 
general, one may expect as many sets of constants as there are 
degrees of freedom (i.e., here three), but the existence of super
abundant modes [3] is not excluded. In all that follows, it will 
be assumed that the transcendental equations (40) have been 
solved, and that the constants in (41) are known. 

The Eigenvalues 
If the first of ( 41) is substituted in the first equation of motion, 

one finds (2] (in view of the assumption that. the three masses 
are equal) 

~ = - [a1 + a,(l - c~,)k)~; r = I, 2,... (42) 

If the eigenvalues are denoted by w, (r - 1, 2, ..• ), (42) is in
tegrated over one period tmder the initial conditions ~(0) = x, 
~(0) .., 0, and use is made of the nomenclature w•/ar = P1, 

at!a2 = a,. it has been shown [3] that 

Before discussing thl11 equation, it should be remarked thn.t our 
entire discussion of the homogeneous system remains valid for 
noninteger, positive values of kif provisions are made for the odd 
characte~ of the spring forces. Tlus ca.n be done, for instance, by 
replacing terms of the sort ~1 in the equations of motion by 
~~~~~-1 and terms like (~i-1 - ~1)1+1 in the potential functions by 
1~•-t - ~~IH•. The reason for the extended validity of our dis
cussion is that, with these provisioll8, the equipotential surfaces 
rema.in symmetric with respect to the origin. 

Equation ( 43) has been diiiCussed heretofore. [3); it is the equa
tion of the frequency-amplitude relations of free normal vibra
tions, called by Klotter [6) the backbones. A number of familiar 

It is well known [7] that the eigenvalues of linear problems 
possess maximum-minimum properties. Moreover, it has bee.u 
shown [2) that the modal relations of the (linear or nonlinear) 
two-degree-of-freedom problem also have such properties. We 
would like now to show that this property also holds for n degree!! 
of freedom. 

To do this, we focus attention on the geodesics in the space 
whose metric is 

n 

du' = (Uo + U) L dt' 
i-1, 2, ... 

Clearly, all are eolutions of the dynamical problem. Suppose we 
seek the geodesics between the origin of this n-space and a point 
which is mov~~oble on the bounding surfnce U ~ - Uo. This 
movable-end-point problem produces not only the Euler equa.
tiollB (30) (and thus solutions to the dynamical problem), but 
also tra.nsversality conditione. But these transversality condi
tions state (8] that the geodesics must intersect the bounding sur
face orthogone.lly. Therefore they are the modal relations. 

In other words, the modal relations are the shortest and the 
longest of the lines of minimum length (geodesics) in then-space 
between any point on the bounding surface and the origin, where 
the space is defined by the metric (28). 
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• In hard sprin,gs, the spring stiffness (i.e., the slope of the spring 
force) inorea.sss with increasing deflection, in soft springs, it decreases 
with increasing deflection. 
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