N
N

N

HAL

open science

Applications of DEC-MDPs in multi-robot systems
Aurélie Beynier, Abdel-Illah Mouaddib

» To cite this version:

Aurélie Beynier, Abdel-Illah Mouaddib. Applications of DEC-MDPs in multi-robot systems. Enrique
Sucar, Eduardo Morales, Jesse Hoey. Decision Theory Models for Applications in Artificial Intelligence
Concepts and Solutions, IGI Global, pp.361-384, 2011, 978-1609601652.

2.ch016 . hal-01344447

HAL Id: hal-01344447
https://hal.science/hal-01344447
Submitted on 20 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.4018/978-1-60960-165-


https://hal.science/hal-01344447
https://hal.archives-ouvertes.fr

Applications of DEC-MDPs
in multi-robot systems

Aurélie Beynier Abdel-Illah Mouaddib
LIP6 - University Pierre and Marie Curie GREYC - University of Caen
104 avenue du Président Kennedy Bd. Maréchal Juin
75016 Paris, France 14032 Caen Cedex, France
aurelie.beynier @lip6.fr mouaddib@info.unicaen.fr
Abstract

Optimizing the operation of cooperative multi-robot systems that can coopera-
tively act in large and complex environments has become an important focal area
of research. This issue is motivated by many applications involving a set of cooper-
ative robots that have to decide in a decentralized way how to execute a large set of
tasks in partially observable and uncertain environments. Such decision problems
are encountered while developing exploration rovers, team of patrolling robots,
rescue-robot colonies, mine-clearance robots, etc.

In this chapter, we introduce problematics related to the decentralized control
of multi-robot systems. We first describe some applicative domains and review
the main characteristics of the decision problems the robots must deal with. Then,
we review some existing approaches to solve problems of multiagent decentral-
ized control in stochastic environments. We present the Decentralized Markov
Decision Processes and discuss their applicability to real-world multi-robot ap-
plications. Then, we introduce OC-DEC-MDPs and 2V-DEC-MDPs which have
been developed to increase the applicability of DEC-MDPs.

Introduction

Recent robotic researches have demonstrated the feasibility of projects such as space
exploration by mobile robots, mine clearance of risky area, search and rescue of civil-
ians in urban disaster environments, etc. In order to increase the performance and abili-
ties of these robots, researchers aim at developing multi-robot systems where the robots
could interact. As explained by Estlin et al. [Estlin et al., 1999] about multi-rover ex-
ploration of Mars, such teams of robots will be able to collect more data by dividing
tasks among the robots. More complex tasks that require several robots to cooperate,
could also be executed. Moreover, abilities of the team could be improved by enabling
each rover to have special skills. Finally, if one robot fails (robot breakdown or failure
of task execution), another robot will be able to repair the damage to the first robot or
will complete the unexecuted tasks. Teams of robots can also be used to increase the



efficiency of rescue robots, patrolling robots or to develop constellations of satellites
[Damiani et al., 2005]. All these applications share common characteristics: they are
composed of a set of robots that must autonomously and cooperatively act in uncertain
and partially observable environments. Thus, each robot must be able to decide on its
own, how to act so as to maximize the global performance of the system. In order
these robots to be able to optimize their behaviors, decision making approaches that
take into account characteristics of real-world applications (large systems, constraints
on task execution, uncertainty and partial observability) have then to be developed.

Markov Decision Processes (MDPs) and Partially Observable Markov Decision
Processes (POMDPs) have proved to be efficient tools for solving problems of single-
agent control in stochastic environments [Puterman, 2005, Kaelbling et al., 1998, Zilberstein et al., 2002].
The application of MDPs has therefore been extended to multiagent settings. Thus, De-
centralized Markov Decision Processes (DEC-MDPs) have been proposed [Bernstein et al., 2002].
They allow for modeling cooperative and distributed decision problems under uncer-
tainty and partial observability. This chapter will describe how DEC-MDP approaches
can contribute to solve multi-robot decision problems.

The chapter will be divided into three main parts. The first part will describe multi-
robot real-world applications and we will introduce problematics related to the decen-
tralized control of robot teams. The second part will introduce the DEC-MDP frame-
work and the last part of the chapter will present existing DEC-MDP approaches that
are concerned with solving multi-robot decision problems.

Decentralized control in multi-robot systems

This section introduces problematics related to the decentralized control of multi-robot
systems. Optimizing the operation of cooperative multi-robot systems that can cooper-
atively act in large and complex environments has become an important focal area of
research. This issue is motivated by many applications involving a set of cooperative
robots that have to decide in a decentralized way how to execute a large set of tasks in
partially observable and uncertain environments.

Mars exploration scenario

The first problem we consider consists in controlling task execution of a cooperative
team of Mars exploration rovers. Once a day, the team receives, from a ground center,
a set of tasks to execute (observations, measurements, moves) which is intended to
increase science knowledge. As the amount of useful scientific data returned to the
ground measures the success of the mission, rovers aim at maximizing science return.
This performance measure can be represented by an expected value function. In order
to optimize this function, several kinds of constraints must be respected while executing
the tasks [Cardon et al., 2001, Bresina et al., 2002, Zilberstein et al., 2002]:

e temporal constraints: start times and end times of tasks have to respect tem-
poral constraints. Since robots are solar-powered, most operations must be ex-
ecuted during the day. Moreover, because of illumination constraints, pictures



must be taken at sunset or sunrise. On the other hand, some operations must be
performed at night (atmospheric measurements).

e preconditions: some tasks have setup conditions that must hold before they can
be performed. For instance, instruments must be turned on and calibrated in
order an agent to perform measurements. If these preconditions do not hold, the
agent will fail to perform its task. Preconditions lead to precedence constraints
between the tasks and to dependencies between the agents. Let us consider that
a robot must take a sample of the ground in order for another robot to analyse it:
the second robot cannot start analysis before the first robot has finished to take
the sample. The success of the second robot relies therefore on the first robot.

e resource constraints: executing a task requires power, storage (storing pictures
or measurements) or bandwidth (data communication). These resources must be
available to complete a task.

Moreover, robots must handle uncertainty on task execution and partial observabil-
ity of the environment. Since accuracy and capacity of sensors are limited, each rover
partially senses its environment. Because the environment is unknown and the issue
of a task may depend on environment parameters (temperature, slope and roughness
of the terrain, etc.), durations and resource consumptions of tasks are uncertain. Thus,
each task takes differing amounts of time and consumes differing amounts of resources.

Furthermore, robots must deal with limited communications. Mars rovers commu-
nicate with operators via a satellite which is often unavailable due to its orbital rotation.
Moreover, communications take time and consume resources. Consequently, commu-
nications with operators are limited to once a day. During this communication window,
the robots send the data they have collected and they receive a new set of tasks to exe-
cute. During the rest of the day, the robots cannot communicate with the operators and
they must act in an autonomous way. If there is no obstacle between the robots and
they are close enough to each other, direct communication is possible. Nonetheless, as
rovers cover large area with many obstacles, such direct communication is often im-
possible. They must therefore be able to perform their tasks without direct information
exchange. Then, each rover must be able to autonomously decide how it will act and
decision processes have to be decentralized. Finally, space robots have limited com-
putation resources and data storage. Thus, in order to maximize collected data, each
rover must be able to efficiently decide (with little computing power and data storage)
which task to execute.

Rescue missions

There has been a growing interest in the recent years in disaster management cri-
sis [Morimoto, 2000, RoboCup, 2000]. The RoboCup Rescue Competition has been
organized since 2001 to promote research and development in this domain. The sce-
narios that are considered involve a team of rescue robots that must rescue civilians
and prevent buildings from burning, after an earthquake occurs. A team is composed
of three kinds of robots: fire brigade robots that must extinguish fires, ambulance robots
that must rescue injured people and drive them to hospital, and police robots that can



unblock roads. Such skills lead to dependencies between the robots. For instance,
ambulance robots and fire robots cannot pass a blockade. Thus, police robots must
unblock roads before the other robots can pass.

Rescue robots share many characteristics with planetary rovers. Rescue robots must
face uncertainty and partial observability of the environment. Task durations and re-
source consumptions are uncertain. For instance, extinguishing a fire can take differ-
ent amounts of time and consumes different amounts of water. Since communication
installations often breakdown in such scenarios, it is assumed that communications be-
tween the agents are impossible. Moreover, resources are limited: an ambulance can
load only one civilian at a time, a fire brigade robot has a limited amount of water, etc.
Finally, temporal constraints must be considered. First, a crisis deadline is set. Next,
temporal constraints can be deduced from scenarios’ characteristics. For instance, a
fire robots must have extinguished a fire before the building is entirely destroyed.

Multi-robot exploration and rescue rover missions are closely related to the problem
of Decentralized Simultaneous Localization and Mapping (DSLAM) [Kleiner and Sun, 2007,
Nettleton et al., 2003]. Decentralized SLAM addresses the problem of cooperatively
building a map of an envrionment: a set of agents navigate in an unknown environment
and jointly build a map of this environment while simultaneously localising themselves
relatively to the map. DSLAM approaches have been applied to the problem of fire
searching in an unknown environment [Marjovi et al., 2009].

Multi-robot flocking and platooning

The purpose of robot platooning [Michaud et al., 2006] is to build and to maintain a
formation for a group of mobile robots from a starting point to a goal. Because the
environments are unknown and the robots have imperfect sensing of the environment,
environments are assumed to have unpredictable properties so actions have nondeter-
ministic effects (for example, an agent can skid on a wet ground).Those kind of prob-
lems have been studied with flocking approach, where the agents have to maintain a
global shape thanks to few simple local basic rules. Flocking rules [Reynolds, 1987]
are a set of three very simple rules describing the behaviour of the agents. Those rules
are :

1. Cohesion: steer to move toward the average position of local flockmates,
2. Separation: steer to avoid crowding local flockmates,
3. Alignment: steer towards the average heading of local flockmates.

Despite the simplicity of those rules, agents manage to maintain the shape of the group.
The main advantage of this approach is that it is fully decentralized, with no commu-
nication at all.

The platooning can be seen as a particular form of flocking, where agents try to
maintain a line shape and to move toward the platoon’s objective (in this line, each
agent has the same orientation as the previous agent if it is possible, and the leader
heads to the objective. The global shape will then be a straight line or, if agents do
not have enough space, a broken straight line). This can be done by giving particular
flocking rules to each agent:
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Figure 1: Flocking rules: (1) cohesion, (2) separation, (3) alignment

1. Cohesion: steer to wait for agents behind it,
2. Separation: steer to avoid agents in front of it,

3. Alignment: steer to move toward the near agent in front of it, or toward the
objective if no one is in front of it.

The multi-robot teams presented in this section can be easily considered as cooper-
ative multiagent systems. These consist of a set of agents that have to autonomously ex-
ecute a set of tasks in the same environment so as to maximize a common performance
measure!. The problems that are considered involve large sets of tasks and agents.
For instance, regarding Mars exploration, the set of tasks to execute is sent once a day
and may involve about ten robots that have to complete hundreds of tasks. Different
kinds of constraints must be considered in order to achieve good performance. These
include temporal constraints, precedence constraints, resource constraints, limited or
impossible communication, limited computation capacities.

Decentralized Markov Decision Processes

The above mentioned multi-robot applications require a decentralized control approach
that enables each robot to decide how to act in a partially observable environments and
in a coordinated way with the other robots. Classical multiagent planning approaches
are not suitable to handle such decision problems since they are not able to consider un-
certainty and partial observability [Shoham and Tennenholtz, 1992, Weld, 1994a, Decker and Lesser, 1993a,

!'The Robocup rescue competition defines a score based on the number of rescued civilians, the rate of
burned buildings, etc.



Decker and Lesser, 1992, Clement and Barrett, 2003]. Some classical planning approaches,
such as STRIPS, GRAPHPLAN or PGRAPHPLAN, have been adapted for planning
under uncertainty [Blythe, 1999a, Blum and Furst, 1997, Blum and Langford, 1999].
Most of these approaches search for a plan that meets a threshold probability of success

or that exceeds a minimum expected utility. During task execution, if the agent devi-
ates from the computed plan, a new plan has to be re-computed. To limit re-planning,
some approaches compute a contingent plan that encodes a tree of possible courses of
actions. Nonetheless, a contingent plan may not consider all possible courses of actions

so, re-planning remains and optimality is not guaranteed.

Markov Decision Processes (MDP) provide a stochastic planning approach that
allows for computing optimal policies (see Chapter 3). As a policy maps each pos-
sible state of the agent to an action, there is no need for on-line re-planning. The
agent’s objectives are expressed as a utility function and efficient algorithms have been
developed to efficiently compute a policy that maximizes the utility [Puterman, 2005,
Howard, 1960]. MDPs have been successfully applied to many domains such as mobile
robots [Bernstein et al., 2001], spoken dialog managers [Roy et al., 2000] or inventory
management [Puterman, 2005]. Then, MDPs have been extended to deal with multia-
gent settings and Decentralized Markov Decision Processes (DEC-MDPs) [Bernstein et al., 2002]
have been defined.

Model description

DEC-MDPs provide a mathematical framework to model and solve problems of de-
centralized control in stochastic environments. So as to modelize partial observability
and uncertainty, the DEC-MDP model is composed of a set of observations, a proba-
bilistic observation function and a probabilistic transition function. A reward function
to maximize formalizes the objectives of the system.

Definition 1 A Decentralized Markov Decision Process (DEC-MDP) for n agents is
defined by a tuple < S, A, P,Q, O, R > where :

e S is a finite set of system states. The state of the system is assumed to be jointly
observable ?.

A= (Ay, -+, Ay) is a set of joint actions, A; is the set of actions a; that can
be executed by the agent Ag;.

e P=SxAxS8 — [0,1] is a transition function. P(s,a,s’) is the probability
of the outcome state s’ when the agents execute the joint action a in s.

e Q=01 xQy x---x8Q, is afinite state of observations where §; is agent Ag;’s
set of observations.

e O =8%xAxXxS xQ — [0,1] is the observation function. O(s,a,s’,0 =
(01, ,0n)) is the probability that each agent Ag; observes o; when the agents
execute the joint action a from state s and the system moves fo state s'.

2Decentralized Partially Observable Markov Decision Processes (DEC-POMDPs) generalize DEC-
MDPs to formalize problems where the state of the system is partially observable [Bernstein et al., 2002].



e R is a reward function. R(s,a,s’) is the reward the system obtains when the
agents execute joint action a from state s and the system moves to state s'.

Problem solving

Optimally solving a DEC-MDP consists in finding a joint policy which maximizes the
expected reward of the system.

Definition 2 A joint policy 7 in an n-agent DEC-MDP is a set of individual policies
(71, ..., mn) where m; is the individual policy of the agent Ag;. The individual policy
m; of an agent Ag; is a mapping from each possible state of the agent’s information (its
state, its observations or its belief state) to an action a; € A;.

Note that an individual policy 7; takes into account every possible information state
of the agent while methods based on classical planners find a sequence of actions based
on a set of possible initial states [Blythe, 1999b].

Recent works have focused on developing off-line planning algorithms to solve
problems formalized by DEC-MDPs. They consist in computing a set of individual
policies, one per agent, describing the agents’ behaviors. Each individual policy maps
the agent’s information (its state, its observations or its belief state) to an action. Since
solving optimally a DEC-MDP is a very hard problem (NEXP-hard) [Bernstein et al., 2002],
most approaches search for methods that reduce the complexity of the problem.

Two kinds of approaches can be identified to overcome the high complexity of
DEC-MDPs. The first set of approaches aims at identifying properties of DEC-MDPs
that reduce their complexity. Thus, Goldman and Zilberstein [Goldman and Zilberstein, 2004]
have introduced transition independence and observation independence. These proper-
ties enable identifying classes of problems that are easier to solve [Goldman and Zilberstein, 2004].
For instance, it has been proved that a DEC-MDP with independent transitions and ob-
servations is NP-complete. Based on this study, an optimal algorithm, the Coverage
Set Algorithm (CSA), has been developed to solve DEC-MDPs with independent ob-
servations and transitions [Becker et al., 2003].

Other attempts to solve DEC-MDPs have focused on finding approximate solutions
instead of computing the optimum. [Nair et al., 2003] describe an approach, the Joint
Equilibrium Based Search for Policies (JESP), to solve transition and observation in-
dependent DEC-MDPs. JESP relies on co-alternative improvement of policies: the
policies of a set of agents are fixed and the policies of the remaining agents are im-
proved. Policy improvement is executed in a centralized way and only a part of the
agents’ policies is improved at each step. Finally, the algorithm converges to a Nash
equilibrium. Chades et al. describe a similar approach based on the definition of subjec-
tive MDPs and the use of empathy [Chades et al., 2002]. Improvements of JESP have
also been proposed: DP-JESP [Nair et al., 2003] speeds up JESP algorithm using dy-
namic programming and LID-JESP [Nair et al., 2005] combines JESP and distributed
constraints optimization algorithms. Thus, LID-JESP exploits the locality of interac-
tions to improve the efficiency of JESP. SPIDER [Varakantham et al., 2007] also ex-
ploits the locality of interactions to compute an approximate solution. Moreover, SPI-
DER uses branch and bound search and abstraction to speed up policy computation.



[Peshkin et al., 2000] propose a distributed learning approach based on gradient de-
scent method that also allows finding a Nash equilibrium. [Emery-Montemerlo et al., 2004]
approximate DEC-MDP solutions using one-step Bayesian games that are solved by a
heuristic method. Alternatives to Hansen’s exact dynamic programming algorithm [Hansen et al., 2004]
have also been proposed by Bernstein et al.[Bernstein et al., 2005] and Amato et al.
[Amato et al., 2007]. They use memory bounded controllers to limit the required amount
of space to solve the problem. Recently, Wu et al. [Wu et al., 2010] have improved the
scalability of Amato et al.’s approach [Amato et al., 2007] by avoiding the full backup
performed at each step of the policy computation.
Finally, some approaches introduce direct communication so as to increase each
agent observability [Goldman and Zilberstein, 2003, Xuan et al., 2001, Pynadath and Tambe, 2002].
The agents communicate to inform the other agents of their local state or observation. If
communication is free and instantaneous and the system state is jointly observable, the
problem is reduced to a Multiagent Markov Decision Process (MMDP) [Boutilier et al., 1999]
that is easier to solve. Otherwise, the problem complexity remains unchanged and
heuristic methods are described to find near optimal policies.

DEC-MDP approaches for multi-robot systems

Even if DEC-MDP approaches describe a powerful framework to formalize and solve
multiagent decision problems, several issues arise while considering problems of de-
centralized control in real-world multi-robot systems. Bresina et al. [Bresina et al., 2002]
point out some difficulties in formalizing robotic planning problems using markovian
models. Indeed, this framework considers a simple model of time and actions. All ac-
tions are assumed to have the same duration (one time unit) so the agents are assumed
to be fully synchronized. Moreover, DEC-MDPs do not take into account temporal and
precedence constraints on action execution. The high complexity of optimally solving
DEC-MDPs also reduced their applicability since it is difficult to solve problems in-
volving more than two agents.

In this section we introduce two approaches based on DEC-MDPs that have been
proposed to reduce the gap between the kinds of problems DEC-MDPs can solve and
real world multi-robot applications. These models improve time and action representa-
tions and propose efficient approximate algorithms that can solve large problems con-
sidering constraints on task execution.

OC-DEC-MDP

The Opportunity Cost Decentralized Markov Decision Process (OC-DEC-MDP) frame-
work [Beynier and Mouaddib, 2005, Beynier and Mouaddib, 2006] has been proposed
to modelize and solve problems of decentralized control in multi-robot systems such
as the ones presented at the beginning of the chapter. Because of communication lim-
itations and unreliability of information exchange, communication between the agents
(i.e. the robots) is assumed to be impossible during task execution. In order for a
task to be successfully executed, temporal, precedence and resource constraints must
be respected. Temporal constraints define, for each task ¢;, a temporal window during



which the task should be executed. Precedence constraints partially order the tasks by
representing preconditions on task execution such as “task ¢; must be finished before
t; can start”. Finally, resource constraints guarantee that an agent has enough resources
to execute a task.

Mission Definition

Problems of decentralized control in multi-agent systems that are considered in the
OC-DEC-MDP framework, are defined as a mission X which stands for a couple <
Ag, T > where:

o Ag={Agi, --,Ag,} is a set of n agents Ag; € Ag.
o T ={t1, - ,t,}is the set of tasks to execute.

The problem is for the agents .Ag; € Ag to execute the set of tasks 7. The prob-
lem of task allocation is out of the scope of this chapter and tasks are supposed to
be divided among the agents. Note that task allocation must take into account each
agent’s skills and must result in a feasible mission. Thus, there must be at least one
interval of execution per task which respects temporal and precedence constraints.
Hanna and Mouaddib [Hanna and Mouaddib, 2002], and more recently Abdallah and
Lesser [Abdallah and Lesser, 2005], have developed MDP based algorithms that can
perform such an allocation. Allocation of tasks among physical robots have also been
studied by Gerkey et al. [Gerkey and Matari¢, 2002] and Esben et al. [Esben et al., 2002]
using auction principles.

As shown on Figure 2, a mission can be represented by an acyclic graph. This ex-
ample describes a mission involving three planetary rovers. Edges stand for precedence
constraints and nodes represent the tasks.

Move to m m Data
analysis
Ag1

site A site A data

Ag1 Ag1

Dig a hole
on site A

2nd ground
analysis of A

Ag3

st ground
analysis of A
Ags3

Figure 2: Mission graph

Aga

Each task ¢; € T is characterized by :

e an agent Ag; that has to execute the task.

o different possible durations §°. P;(5%) is the probability the execution of ¢;
takes &' time units.



e different possible resource consumptions A’. P.(A%) is the probability the
execution of ¢; consumes A’. resources.

e temporal constraints: each task ¢; is assigned a temporal window TC; =
[EST;, LET;] during which it should be executed. EST; is the Earliest Start
Time of the task and LET; is its Latest End Time.

e precedence constraints: each task ¢; has a set of predecessors Pred; which
defines the tasks to be executed before ¢; can start.

Vt, € T,t; €root < 3t; € T :t; € Pred(t;)

where root refers to the first tasks to be executed, i.e. the tasks without pre-
decessors. Coordination constraints similar to our precedence constraints are
described in frameworks such as TAEMS (Task Analysis, Environment Model-
ing and Simulation) [Decker and Lesser, 1993b] which is used to describe task
structures of multiagent systems.

e areward R; which is the reward the agents obtain when ¢; is successfully exe-
cuted (respecting temporal, precedence and resource constraints).

Given a mission X, the agents’ aim consists in maximizing the sum of the cumu-
lative reward they obtain during task execution. Because of the decentralized nature of
the decision process and communication limitations, each agent must be able to decide,
in a cooperative way, which task to execute and when, without communicating (during
task execution) and with respect to constraints.

OC-DEC-MDP model

In order to model large problems, the OC-DEC-MDP model represents the multiagent
decision problem as a set of MDPs where each MDP stands for a single agent decision
problem. The policy of an agent Ag; will therefore be deduced from Ag;’s MDP.
Since each agent observe all the information it needs to make a local decision, MDPs
are defined (not POMDPs) and the framework is referred as OC-DEC-MDPs.

Definition 3 An n-agent OC-DEC-MDP is a set of n MDPs, one for each agent. The
MDP of an agent Ag; is defined as a tuple < S;,T;, P;, R; > where:

e S, is the finite set of states of the agent Ag;,

e T, is the finite set of tasks of the agent Ag;,

o P, is the transition function of the agent Ag;,

o R;:T; = Ris the reward function of the agent Ag;.

Because of interactions between the agents, local MDPs are not independent of
each others. Moreover, the components of the MDPs must be defined so as to represent
constraints on task execution. The remaining of this section details each component of
a local MDP.
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States The state space of an agent (i.e. of its MDP) is composed of three kinds of
states: success states, partial failure states and failure states.

e Success states: Let us consider an agent .Ag; which has just successfully executed
a task ¢; during an interval I and let r be the agent’s remaining resources. At the end of
t;’s execution, the agent Ag; moves to a success state and must decide its next action.
This action depends on the last successfully executed task ¢;, its interval I and the
remaining resources r. Thus, a success state of Ag; is defined as a triplet [t;, I, r].

e Partial failure states: When an agent Ag; starts to execute a task ¢;1 at st but
fails because the predecessors of ¢;,1 are not finished, it moves to a partial failure state
[t;, [st, st + 1], et(I"), r] where t; stands for Ag; last successfully executed task, et(I’)
is the end time of ¢; and r is .Ag;’s remaining resources after it partially fails.

When an agent starts to execute a task ¢;; before the predecessors of ¢;,1 have
finished their execution, the agent immediately realizes that the execution of the task
partially fails. This means that the agent Ag;, at st 4 1, realizes that it fails. As the
agent could retry to execute the task later, this state is called a partial failure state. Thus,
if precedence constraints are respected when the agent retries to execute ¢;1, the task
could be successfully executed.

e Failure states: When an agent Ag; starts to execute a task ¢;;1 and it lacks re-
sources or it violates temporal constraints, it moves to the failure state [ failurey, , , *, *]
associated to ¢; 1.

i1

Tasks - Actions At each decision step, the agent must decide when to start its next
task. The actions to perform thus consist of “Executing the next task t;y, at time st:
E(t;y1,st)”, that is the action to start executing task ¢; 1 at time st where st respects
temporal constraints. Actions are probabilistic since the processing time and the re-
source consumption of the task are uncertain. Precedence and temporal constraints
restrict the possible start times of each task. Consequently, there is a finite set of start
times for each task and a finite action set.

Transition Function The transition function of an agent Ag; gives the probability
that .Ag; moves from a state s; to a state s; when it starts to execute a task ¢;,1 at st.
Since the execution of ¢;; can lead to three different kinds of states, three kinds of
transitions have to be considered: successful transitions, partial failure transitions and
failure transitions. Transition probability computation differs for each kind of transi-
tion. Let us assume that an agent Ag; tries to execute a task ;1 at st.

o Successful transitions: The probability that .Ag; successfully executes ¢;; relies
on: the probability the predecessors of ¢;4; have finished at st (given by the probabili-
ties on the end times of the predecessors), the probability .Ag; has enough resources to
execute the task (given by the probabilities on resource consumptions of ¢; 1), and the
probability Ag; finishes the execution of the task before its deadline (given by proba-
bilities on the durations of ¢;1).

e Partial failure transitions: The probability that .4g; moves to a partial failure
state is the probability that the predecessors of ¢; 1 have not finished at st and .Ag; has
enough resources to be aware of its partial failure. The probability that the predecessors
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have not finished at st is the probability that they will finish later or they will never
finish.

o Failure transitions: An agent fails to execute its task if it lacks resources or tem-
poral constraints are violated. The probability that Ag; lacks of resources is given by
the probability the execution of ¢;,; consumes more resources than available or the
agent partially fails and the necessary resources to be aware of it are not sufficient.

If st > LET; 1 — min(§*T1), the agent starts the execution of ¢;,1 before the
latest end time of t; 1 (LET;;1 — min(§'T1)). Temporal constraints are therefore
violated and the agent fails.

When st < LET; 1 —min(5°T1), the agent may also violate temporal constraints.
Indeed, if the duration §°*! is so long that the deadline is met (st + §'*' > LET; ),
the agent fails. The probability of violating the deadline therefore relies on duration
probabilities.

In order to define transition functions, probabilities on start times and end times of
the tasks must be known. The probability an agent starts to execute a task ¢; 1 at st
relies on the agent’s policy, on its available resources and on the ends times of the pre-
decessors of ¢;4.1. Moreover, the predecessors’ end times depend on the policies of their
agents. Thus, the agents’ policies have to be known to compute probabilities on start
times and end times. Assuming an initial set of policies for the agents (one policy per
agent), a propagation algorithms has been developed [Beynier and Mouaddib, 2005] to
compute such probabilities. This algorithm propagates constraints through the mission
graph from the roots to the leaves. Each time a node (i.e. a task) ¢; is considered, its
temporal probabilities (probabilities on start times and end times) and resource prob-
abilities are computed using temporal and resource probabilities of the predecessors
of ¢; and using the policy of #;. Once all the nodes have been considered, transition
probabilities can be deduced from temporal probabilities and probabilities on resource
consumptions.

Reward function When it successfully executes a task ¢; 1, the agent .Ag; moves to
a success state and obtains the reward associated with ¢; . If the agent partially fails,
no reward is obtained. Finally, if the agent permanently fails the execution of ¢;1, it is
penalized for all the tasks it will not be able to execute due to the failure of ¢; 1.

Complexity Analysis A joint policy for the agents in an OC-DEC-MDP is a set of
individual policies (7 - - - 7,,) where 7; is a local policy for an agent Ag; in the OC-
DEC-MDP.

Theorem 1 Optimally solving an OC-DEC-MDP requires an exponential amount of
computation time.

Proof: Optimally solving an OC-DEC-MDP consists in finding a joint policy that
maximizes the global performance [Bernstein et al., 2002]. From the definition of a
joint policy for an n-agent OC-DEC-MDP, we can deduce that the number of possible
joint policies is exponential in the number of joint states. Evaluating a joint policy can
be done in polynomial time through the use of dynamic programming [Goldman and Zilberstein, 2004].
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In fact, we use standard policy evaluation algorithms for MDPs since the policy to eval-
uate is a mapping from joint states to joint actions: the states of the MDPs are the joint
states s = (s1---s,) where s; is a local state of Ag; in the OC-DEC-MDP and the
actions of the MDP are the joint actions a = {ay, - - - a,,) Where a; is an action of Ag;
in the OC-DEC-MDP. Finding an optimal policy for an n-agent OC-DEC-MDP con-
sists in evaluating all the possible local policies and therefore requires an exponential
amount of computation time.[]

Constraints affect the policy space but have no effect on the worst case complexity.
They reduce the state space and the action space. Thus, the policy space can be reduced.
Nonetheless, the number of policies remains exponential. Consequently, dealing with
constraints does not result in lower complexity.

Due to the high complexity of OC-DEC-MDPs, it is untractable to optimally solve
large size of problems. It is thus better to turn towards an approximate planning ap-
proach that can solve large size of problems and computes a solution that is closed to
the optimum. Indeed, developing an optimal algorithm would limit the size of prob-
lems that can be solved in practice and real-world multi-rover applications could not
be considered.

Decision Problem

During task execution, each agent has a local view of the system and does not know
the other agents’ states nor actions. If the execution of a task ¢; starts before its pre-
decessors finish, it partially fails. Partial failures consume restricted resources and can
lead to insufficient resources. If an agent lacks resources it will be unable to execute
its remaining tasks. Consequently, the agents tend to avoid partial failures. One way
to restrict partial failures consists in delaying the execution of the tasks. As a result,
the likelihood that the predecessors have finished when an agent starts to execute a task
increases and less resources are “wasted” by partial failures. Nonetheless, the more
the execution of a task is delayed, the more the successors are delayed and the higher
the probability of violating temporal constraints. In fact, the probability the deadline is
met and the agent fails permanently executing the task increases.

The problem is to find a local policy for each agent that maximizes the sum of the
rewards of all the agents. Thus, the agents must trade off the probability of partially
failing and consuming resources to no avail against the consequences of delaying the
execution of a task. Indeed, to maximize the sum of the expected rewards, each agent
must consider the consequences of a delay on itself and on its successors.

Opportunity Cost and Expected Value For purposes of coordinating the agents, the

notion of Opportunity Cost has been introduced by Beynier and Mouaddib [Beynier and Mouaddib, 2005,
Beynier and Mouaddib, 2006]. It is borrowed from economics and refers to hidden in-

direct costs associated with a decision. In the OC-DEC-MDP framework, Opportunity

Cost measures the indirect effect of an agent’s decision on the other agents. More

specifically, the Opportunity Cost is the loss of expected value resulting from delaying

the execution of the other agents’ tasks. Taking this cost into account leads to bet-

ter coordination among the agents: it allows each agent to consider how its decisions

influence the other agents.
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Consequently, the policy of an agent Ag; in a state s; is computed using two equa-
tions. The first one is a standard Bellman equation that computes the expected utility
of an agent Ag; and considers the tasks Ag; still has to execute:

Immediate Gain Expected Utility
—~

V(si) = R(si) +maxp,,, sti)stip>t(V(E(tiy1, stiz1),s) (1)

where s; =< t;, [st;,et;],ry, > (and et; = t) or s; =< t;, [t — 1,], et;,ry, >.
If s; is a success state ( s; =< t;, [st;, et;], 7y, >), the agent obtains a reward for
successfully executing task ¢; and R(s;) = R(t;). Otherwise, R(s;) = 0.

V(E(tit+1,8ti+1),8:)) denotes the expected utility of the agent while executing
E(ti+1, sti+1) from state s;. Since the execution of the action can lead to different
types of transitions, V (E(t;41, Sti+1), s;)) is defined as:

V(E(tig1, stig1), i) =Veue(E(tiy1, stiv1), s:) + Veev (E(tiv1, stit1), 5i)
+ Viait (E(tig1, stis1), )

where Vi (E(tiy1, stit1), i) is the expected value of the agent when ¢, 1 is suc-
cessfully executed at st; 1, Vpcoy is the expected value of the agent when the execution
of ¢;11 starts at st;1 and partially fails, and V}; is the expected value if the agent
start executing ;11 at st;; and it lacks resources or temporal constraints are violated.

The second equation computes the best foregone action using a modified Bellman
equation in which an Expected Opportunity Cost (EOC) is introduced. It allows the
agent to select the best action to execute in a state s;, considering its expected utility
and the EOC induced on the other agents:

Expected Utility Expected Opportunity Cost
Ti(8i) = ArgMaT g, stiyy),stigr >ets ( V(E(tit1, stiv1), i) — EOC(tit1, stit1) )
@)

where:

e argmax denotes the operator which returns the action E(t;11,st;y+1) which
maximizes the trade-off between the expected utility V' of the agent and the
expected opportunity cost provoked on the other agents.

e EOC(t;y1,sti+1) is the expected opportunity cost the execution of ¢;11 will
induce if it starts at st;4 1.

Thus, the most valuable foregone action is selected by considering:

e The expected value, computed using a standard Bellman equation (Equation 1).
It takes into account the expected value of executing the agent’s remaining task.

e The expected opportunity cost provoked on the other agents.
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The EOC induced on the other agents when ¢, starts at st is defined as follows:

EOC(ti-‘rla St) = Psuc : Z EOCAgj,tiJrl (eti+1) (3)
Ag; €Ag,j#i
+Pfair Y EOCug, .., (fail) + Ppoy - EOC(tiyy, st')
Ag;EAg,jFi

where et;; is a possible end time of ¢;11, FOC g, ¢, (eti11) is the EOC in-
duced on the agent Ag; when ¢;;1 ends at et;11. It is computed using Equation 4.
EOC(t;41,st') is the OC when the execution of t;; partially fails and the agents
re-tries to execute the task at st (the next start time of the task). Pj,. stands for the
probability to successfully execute the task, Ppcy is the probability to fail partially
because the predecessors have not finished. Py, is the probability to fail permanently.

EOC values can be deduced by considering the delay provoked on the successors.
The Expected Opportunity Cost described in Equation 3 is given by :

EOCAgj7ti+1 ettLJrl ZP 7 Tt OCtj (At,?"tj) (4)

where t; is the nearest task that will be executed by Ag; (the distance between two
tasks ¢; and ¢; is given by the number of nodes that belongs to the shortest path be-
tween ¢; and ¢; in the mission graph). Pf-g(rtj) is the probability that Ag; has 7,
resources when it starts to execute ¢;. At is the delay induced on ¢; when ¢; 1 ends at
ety,,,. This delay is computed by propagating temporal constraints between ¢; 1 and
tj. OCy, (At, 7y, ) is the Opportunity Cost provoked on £; when it is delayed by At. It
stands for a difference in expected value computed as follows:

OCtj (At, th) = VO VvtAt )Tt (®)]

0,7,
where th'”J is the expected value of Ag; if the execution of ¢; is not delayed and

the agent has r;, resources when it starts to execute ¢;. thAt’r” is the expected value of
the agent .Ag; when the execution of ¢; is delayed by At and the agent has r;; resources
when it starts to execute t;.

If the execution of ¢;4 fails, ¢; could not be executed because of violation of
precedence constraints. Then, EOC 4y, +,,, (fail) is given by:

EOC g, t,,, (fail) = OCy, (fail)
ZP% T, ( e V([failuretj,*7*]))

Policy computation Given a state s; of an agent Ag;, Equation 2 allows for the agent
to decide its policy from s;. Beynier and Mouaddib [Beynier and Mouaddib, 2006]
have proposed an iterative revision algorithm which applies this decision method to
each state of each agent and computes an approximate solution to the multiagent deci-
sion problem. The algorithm consists in iteratively improving an initial policy set. At
each iteration step, the agents improve their initial local policy at the same time. Given
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the initial policies that have been used to compute temporal and resource probabilities,
each agent tries to improve its own policy. At each iteration step, each agent Ag; tra-
verses the task graph in the reverse topological order and, revises the execution policy
of each task (node), using Equation 2. While revising the policy of ¢;, Ag; considers
all the states s; from which ¢; can be executed (states associated to the previous task
t;—1 of Ag;). The expected value of s; is then computed and its policy is deduced. This
process is repeated until no changes are made. An equilibrium is then reached.

Experiments

Experiments have been developed to prove the scalability, the efficency and the ap-
plicability of OC-DEC-MDPs. Experiments show that large problems can be solved
using the OC-DEC-MDP framework. Indeed, missions of hundreds of tasks and more
than twenty agents can be considered. The performances obtained at each iteration
step have also been studied by running mission executions. Experiments illustrate that
the performance of the agents increases with the number of iterations. By iterating the
process, the likelihood the agents fail because of partial failure resource consumption
and because of lack of resources, decreases. The resulting policy is safer than policies
of previous iterations and the gain of the agents is steady over executions. A near op-
timal policy is obtained at the end of the first iteration. Second iteration leads to small
improvements but it diminishes the number of partial failures.

Finally, the OC-DEC-MDP framework has been applied to real-world scenarios
using Koala robots. Scenarios derived from Mars rover missions were considered.
Figure 3 represents a scenario involving two robots that have to explore a set of 8
interesting places. The first robot (robot .4g;) can take pictures and the second one
(robot Ags) can take and analyse ground samples. Robot 4g; must take picture of
sites A, B, D, E, F, H and J, and robot Ago must analyse sites C, D, F', H and
1. Sites are ordered so as to minimize travelling resource consumptions. Furthermore,
precedence constraints have to be taken into account. As taking samples of the ground
may change the topology of the site, pictures of a site must be taken before the other
robot starts to analyse it. Moreover, robot .Ag; must have left a site before robot .Ags
can start to analyse it. Thus, robot .4g; must have taken a picture of site D before robot
Ag; enters this site. Temporal constraints have also to be considered: visiting earliest
start times and latest end times are associated with each site.

The mission was represented using a mission graph (Figure 4). Then, the corre-
sponding OC-DEC-MDP was automatically built and solved by the iterative algorithm.
Finally, resulting policies were implemented on Koala robots. During task execution,
robots only have to execute their policies which map each state to an action. Thus,
initial ambitions about the limitation of computational resources needed to make a
decision have been fulfilled. Coordination performs well even if robots cannot com-
municate. Temporal and precedence constraints are respected. As shown on Figure 5
for the crossing point D, while deciding when to start its action, the first robot takes
into account the fact that the other robot waits for him (thanks to the OC). The deci-
sion of the second robot is based on the probability that robot .Ag; has left the site,
the cost of a partial failure, and the robot’s own expected value. Thus, robot 1 enters
site D, completes its task (Picture 2) and leaves the site (Picture 3). Then, robot Ags
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Figure 3: Two-robot exploration scenario

Agent 1

Figure 4: Mission graph of the two-robot exploration scenario

tries to enter the site (Picture 4). As robot 1 does not know the other robot actions, it
may try to enter the site and fails because the other robot has not finished to take the
picture. The second robot realizes that it fails when it tries to enter the site. If prece-
dence constraints are not respected the robot returns to its last position. If temporal
constraints are respected, the robot enters the site (Picture 4). These experiments show
that the OC-DEC-MDP approach can be used by physical robots which are thus able
to successfully and cooperatively complete their mission.

2V-DEC-MDP for flocking and platooning

In [Mouaddib et al., 2007], the Vector-Valued Decentralized Markov Decision Process
(2V-DEC-MDP) framework has been proposed to coordinate locally the actions of a
group of agents. It is based on MDP with an online coordination part. Assuming
without loss of generality that all agents are identical, a 2V-DEC-MDP is a set of 2V-
MDP, one per agent. A 2V-MDP is composed by an off-line part, an MDP, and an
on-line part to adapt its actions with the other agents.
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Figure 5: Execution of the mission (crossing point of site D)

The MDP is a tuple (S, A, P, R), with:

e S aset of states,

e A aset of action,

e P:Sx AxS — |[0;1], the transition function,

e R:S5x AxS — R, the reward function which expresses both positive reward
for goal states and negative reward for hazardous states.

For the optimality criteria, an expected reward is defined on a finite horizon 7'. The
optimal value function V* of a state is defined by:

V*(s) = ?QX(R(S’G) + Z P(s,a,s)-V*(s')),Vs e S

s'eS

A policy is a function 7 : S — A, the optimal policy is a policy 7*, such that:

7*(s) = argmax,(R(s,a) + Z P(s,a,s")-V*(s')),Vs € S
s'eS

The neighborhood for an agent i is defined as the set of states of (detected) agents
who can interact with 7. Until now, it is assumed that all the agents near enough (ac-
cording to a fixed maximum distance d) could be detected and their states could be
known. Taking into account partial observability will be the subject of some future
works. If the neighborhood is too big, it can be restricted to a subset (more the neigh-
borhood will be big and more the policy will be good but more the computation of this
policy will take time).

The on-line part of a 2V-MDP is built with the computation of local social impact,
according to local observations. The functions for computing the value of the impact
on the group are:
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e E'R for the individual reward (the value of the optimal policy of the MDP),
e JER for the group interest,
e JEP for the negative impact on the group.

Using those functions, the agents will use a LexDif f operator to choose the policy
(i.e. the best action) to apply.

LexDif f builds a vector v = (ER(m;), JER(w;), JEP(m;)) for every m; and
normalize each values vector v; = (v}, v?,v?) to a utilities vector v, = (v}, vZ,v3).
LexDif f then permutes those utilities vectors so that each vector (v!, v, ) be such
that v! > v? > v3. The best vector is then founded by a lexicographic order: for two
vectors v, = (vl,v2,v3) and v, = (v}, vi,v3), we choose v, if v} > v} and vy if

a’ ra’ va
vl <} If vl = v}, we compare v2 and v2, and so on.

Thanks to this design, the DEC-MDP is expressed as a set of 2V-MDP, allowing the
coordination problem to be tractable. In [Boussard et al., 2008], ER JER and JEP
have been defined for platoon emergence, but this work does not try to keep the shape
of the platoon.
2V-DEC-MDP-Based approach for flocking

2V-DEC-MDP has been used to formalize the problem, by translating the three criteria
into three formulae (each formula having one or more equations) which will parame-
terize each 2V-MDP. Three functions have been defined: ER as the alignment criterion,
JER as the cohesion criterion and JEP as the separation criterion.

Notations

° SZ is the state 5 of agent ¢ (the environment being reduced to a discrete set of
possible positions, a state is one position of this set and one orientation),

e ¥ = (s1,...,5n) is the joint state vector,

e face(s) gives all the agents the are closer to the objective than s,

e distance(s!, s?) gives the number of actions needed to go from s! to 52,

e angle(st, s%) gives the angle between the orientation of s! and the one of s2:

angle(st, s?) = |lorientations: — orientation,:||

anglemaz

e back(s) gives the next place available behind s (if s!, the location just behind s
according to the orientation of s, is available, st is returned. If it is not available,
back(s')) is returned.

So now, using those definitions, the formulae for ER, JER and JE P can be written
in the platooning context:
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Alignment
ER(s,a) = Z p(s,a,8)ER;, i=1,2,3
s'eS
Depending on the situation, E'R; are defined by:

ER1 = V*(S/)
le(s'
ERy=— min (distance(s’, sp1) + angle(s’, su) ’sbl))
s;Eface(s’) anglemax

l /
ER3 = —(distance(s’, sp2) + angle(s', sv2)
anglemaz

where sp1 = back(s;), sp2 = back(leader) and V*(s) a function of the expected
distance between s and the objective of the platoon. distance(s!,s?) gives the cost
of going from a state s* to a state s? and angle(s*, s?) gives the cost of rotating from
the orientation of s! to the one of s2. Thus, it has been added to those equations two
costs: the cost of going from a state s* to a state s, wich means the cost of reaching
the position of s> AND rotating to the good orientation. The angle is divided by the
maximum angle to be sure that the cost of the distance will always be bigger than the
cost of the angle, so the agent will not choose to stay on a distant place for saving the
cost of a rotation. In F Ry and E R3, back(target) is used instead of target, because
the agent wants to go behind its target.

An agent does not have the same objectives whether it is on a leader position or
inside a platoon. Indeed, a leader will move in the direction of its objective, while a
non-leader agent will follow the one in front of it. Hence, an agent have to choose
which equation to follow before resolving its 2V-MDP.

So, if the agent is a leader, or if it is out of range of any platoon, it chooses ER;. If
it is inside a platoon but it knows that the leader is behind it, it chooses £ R3. Finally,
if it is inside a platoon and have no leader behind it, it chooses E'Rs.

Separation
|4,
JEP(s,a) = Z[p(s,a,s’) . Z ( Z p(sj,af,sl) -]
s’'esS SjED a;?7k:1

Where D is the set of states of detected agents in neighborhood and C a constant
equal to the cost of a collision between two agents.

Cohesion
JER(s,a) = ) (p(s,a,5") - K(s))
s’es
Where K (s) is the function which estimate the gain of a given situation for the
group. K (s) gives a reward if at least one agent is behind s.

After choosing an equation for the ER criteria, the agent has to fix the weight of
ER, JER and JEP. For a leader, it is set w g p to 0 since the criterion is with no
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sense for it and, typically, wgr to 0.49 and w;gg to 0.51. For a non-leader, wygp =
0.35, wgr = 0.32 and wygr = 0.33 (except if a leader is detected behind the agent,
in which case wypr = wypp = 0, and wgr = 1). Finally, for any agent, wygr = 0
as soon as it is near to the objective of the platoon. Experimentations proved that
values of those weights do not change anything on the behavior of the agents. The only
important thing is the order of those weights: the most important criteria has to have
the biggest weight, the second criteria has to have the second weight, etc., so values for
those weights could be chosen arbitrary.

Experiments with real robots

After testing the approach on a simulator, tests on real robots (Koalas) have been devel-
opped. Those robots know the “map” of the environment they are evolving in and have
local visibility, so they know the position and orientation of the agents around them.
A 2V-DEC-MDP, parameterized as described before, is running on them. An example
with 3 robots is shown on Figure 6. Robots are placed on a same line, and an objective
in front of them is given (the door on the right side). Figure 7, Figure 8 and Figure 9
are captions of those tests.

P TGP

Figure 7: Initial situation Figure 8: After few moves Figure 9: Platoon is formed

When the test starts, the closest robot to the objective chooses the £ R1 function and
goes toward its objective. Because of the JE R function, it waits for the other agents.
In the same time, the two other agents follow the first one: according to the ER2
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function, one of them chooses to follow the first agent, while the other one chooses to
take the third place.

The platoon then emerges from those interactions: we can see the robots in their
initial position in Figure 7, and their position after a few moves in Figure 8. Then, in
Figure 9, we can see the fully shaped platoon.

Many other initial configurations were considered and we can see that, for each
configuration, robots fully form a platoon after some moves.

Conclusion

Decentralized decision making is an appropriate approach for multi-robot applications
since they are able to support uncertainty, partial observability and decentralized con-
trol. Even if Decentralized Markov Decision Processes suffer from a high complexity,
the structure of multi-robot decision problems such as constraints on task execution
(exploration mission) or locality of interactions (platooning) can be exploited to reduce
the complexity. This chapter presented two approaches based on DEC-MDPs that have
been proved to solve efficiently multi-robot cooperative problems. These approaches
allow us to derive individual cooperative policies for the robots such that a global utility
is maximized. The coordination in those approaches is considered during the compu-
tation of the policies by evaluating the effect of a local decision on the other robots. In
the opposite to that, classical multiagent planning techniques address the problem of
coordination in two steps: computing plans and then coordinating them. The second
step requires in general a costly communication between the robots that limits their
applicability in real-world applications (communication not always available, costly
and time consuming). Another drawback of classical approaches is when the execu-
tion deviates from the expected behavior and thus re-planification and re-coordination
are required that can reduce the performance of the system during the execution. An-
other contribution of decentralized decision models is to better formalize the flocking
techniques by improving their robustness, supporting the uncertainty and assessing the
quality of the global behavior.

Markov Decision Processes have also been successfully used to solve decentralized
decision problems in non Artificial Intelligence domains. For instance, decision prob-
lems of search and storage in peer-to-peer server networks have been solved using a set
of Interactive Markov Decision Processes [Beynier and Mouaddib, 2009].

Future works in multi-robot domain should concern the extension of the DEC-
MDPs to deal with problems involving human and robot interactions such as mixed
initiative techniques [Weld, 1994b, Sidner and Lee, 2005, Freedy et al., 2008]. These
systems can operate mostly autonomously, but may need supervision or help in partic-
ular situations. Examples include mobile robots or intelligent vehicles navigating in a
narrow corridor or heavy traffic, or avoiding risky areas that could cause costly failures.
Similarly, robots performing complex surgical operations may require supervision and
intervention of the specialist. In these applications, a supervision unit, often a human
operator, can take over control when the situation is too complex for the autonomous
system [Crandall and Goddrich, 2005]. While the supervision unit (e.g., a driver, a
surgeon, or a control center operator) may be able to perform each task by manually
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controlling the system, this would normally result in a time-consuming, costly oper-
ation. The problem is therefore to develop a general framework for supervision unit
- autonomous unit teaming, to optimize performance and reduce the supervision unit
work-load, costs, fatigue-driven errors and risks [Green et al., 2008].
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