N

N
N

HAL

open science

On Finite Domains in First-Order Linear Temporal Logic

Denis Kuperberg, Julien Brunel, David Chemouil

» To cite this version:

Denis Kuperberg, Julien Brunel, David Chemouil. On Finite Domains in First-Order Linear Temporal
Logic. 14th International Symposium on Automated Technology for Verification and Analysis, Oct

2016, Chiba, Japan. 10.1007/978-3-319-46520-3_14 . hal-01343197

HAL Id: hal-01343197
https://hal.science/hal-01343197
Submitted on 7 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01343197
https://hal.archives-ouvertes.fr

On Finite Domains in
First-Order Linear Temporal Logic*

Denis Kuperberg', Julien Brunel?, and David Chemouil?

! TU Munich, Germany
2 DTIM, Université fédérale de Toulouse, ONERA, France

Abstract. We consider First-Order Linear Temporal Logic (FO-LTL)
over linear time. Inspired by the success of formal approaches based upon
finite-model finders, such as Alloy, we focus on finding models with finite
first-order domains for FO-LTL formulas, while retaining an infinite time
domain. More precisely, we investigate the complexity of the following
problem: given a formula ¢ and an integer n, is there a model of ¢ with
domain of cardinality at most n? We show that depending on the logic
considered (FO or FO-LTL) and on the precise encoding of the problem,
the problem is either NP-complete, NEXPTIME-complete, PSPACE-
complete or EXPSPACE-complete. In a second part, we exhibit cases
where the Finite Model Property can be lifted from fragments of FO to
their FO-LTL extension.

Keywords: FO, LTL, Finite model property, Bounded satisfiability,
Fragments

Extended version of a paper presented at ATVA 2016. The final publication is
available at 1ink.springer. com.

1 Introduction

1.1 Context

First-Order Logic (FO) has proven to be useful in numerous applications in
computer science such as formal specification, databases, ontology languages,
etc. It is particularly well-suited to reason about objects of a domain, their
relations and the properties they satisfy. However, since “full” FO is undecidable,
the formal wverification of properties implies a relaxation of the problem e.g.
considering less expressive fragments. Thus, one can restrict the specification
language (e.g. Prolog) or impose some form of interaction for verification (e.g.
theorem provers, proof assistants).

Another form of trade-off is to keep the whole logic and full automation but
to rely on a sound but incomplete decision procedure. For instance, the Alloy

* Research partly funded by ANR/DGA project Cz (ref. ANR-13-ASTR-0006) and
by fondation STAE project BRIefcaSE.

Analyzer? for the Alloy [Jac06] language (based upon relational first-order logic)
implements a bounded-satisfiability decision procedure. That is, the tool relies
on a finite-model finder: it first bounds the number of objects in the domain and
then runs a classical propositional SAT procedure [TJ07]. Thanks to the per-
formance of modern SAT engines, this approach has shown to be very efficient
in practice to find counterexamples quickly when assessing specifications. This
is one of the reasons for the success of Alloy, in the formal methods commu-
nity [Zav12, NRZ*15, BKMJ15].

However, in most software and systems specifications, one needs to represent
the evolution of modeled entities along time. In Alloy, the common way to do
so is to model time by adding a specific set of time instants [Jac06], by giving
axioms describing its structure (as traces for instance) and by adding an extra
time parameter to every dynamic predicate. This is tedious and cumbersome, if
not error-prone.

This shortcoming has long been identified and several propositions [FGPAO05,
NJ10, VD12| have been made to extend Alloy with facilities for fancier modeling
of behavior. Still, in all these approaches, the verification remains bounded (be-
cause the set of instants is, for instance). [Cunl4| makes a step further by im-
plementing a bounded model-checking approach in Alloy allowing time loops.
However, up to our knowledge, no Alloy extension leverages a temporal logic,
such as LTL for instance, that enjoys a complete decision procedure. The idea of
adding temporal logic to FO has been implemented in the tool TLAT [Lam02],
where the FO signature is that of ZFC, instead of the arbitrary signatures al-
lowed in Alloy. These remarks led us to study the combination of FO and LTL,
in particular to draw questions about the relation between the satisfiability of a
FO-LTL formula and the fact that the first-order part of the model is finite. In
the literature, the logic FO-LTL has drawn a lot of interest, for decidability ques-
tions as well as in database theory [AHdB96]. For instance [HWZ00, HKK* 03|
study decidable fragments, while [Kam68, Mer92| give incompleteness results.

1.2 Contributions

The first question we address here is that of the complexity of satisfiability for
FO and FO-LTL when the FO part of the model is bounded (we call this prob-
lem BSAT(N) for a given bound N). We are interested in the cost in terms of
algorithmic complexity of adding an LTL component to the FO specification lan-
guage. In Sect. 3, we consider BSAT for FO and FO-LTL depending on whether
the quantifier rank (i.e. the maximum number of nested quantifiers) of formulas
is bounded and whether the bound on the domain is given in unary or binary
encoding.

— For pure FO, BSAT(N) is NP-complete if the rank is bounded and if N is
given in unary; NEXPTIME-complete otherwise. This case can admittedly
be considered folklore but it seems it has not been published formally, so we

3 Available at http://alloy.mit.edu/alloy.

detail it in the paper for the sake of completeness. We also provide detailed
results, showing that formulas of rank 2 with unary predicates are sufficient
for NEXPTIME-completeness.

— For FO-LTL, which has been less studied from the point of view of BSAT,
we show that this division goes the same except that BSAT is PSPACE-
complete in the first case and EXPSPACE-complete otherwise (recall that
satisfiability for LTL alone is PSPACE-complete [SC85, LP85]). Again, rank
2 formulas with unary predicates are sufficient.

Secondly, since we are only interested in finite models of FO-LTL formulas,
it is natural to study which fragments of FO-LTL enjoy the finite model prop-
erty (FMP). Recall that a formula has the FMP if the existence of a model
implies the existence of a finite one. Many fragments of FO have been shown to
enjoy the FMP in the past decades [BGG97, ARS07].

— In Sect. 4.1, we show that any fragment of FO enjoying the FMP (as well
as a mild assumption often met in practice) can be “lifted” as a fragment
of FO-LTL using also X and F and still enjoying the FMP (provided the
removal of the temporal operators leads back to the original FO fragment).

— We finally show in Sect. 4.2 that with temporal operators U or G, the FMP
is lost, even with strong constraints on the way temporal operators interact
with first-order quantifiers.

All these results provide a theoretical insight on the combination of LTL
with bounded FO which may be useful in the context of decision procedures
based upon SAT or SMT, or in formal methods such as extensions of Alloy or
TLAT. Another possible application may be in the analysis of software prod-
uct lines [CHST10] where various, related transition systems (which may be
described using FO) represent a product family.

2 The Logic FO-LTL

In this section, we define precisely the logic FO-LTL and provide some elements
on its expressiveness.

2.1 Syntax

Definition 1 (FO-LTL syntax). We define the syntaz of FO-LTL in the stan-
dard way from the following elements (function symbols will also be considered
in Sect. 4):

— a tuple of predicates P = (Py, ..., Py) (each of which is of any arity) which
define relations, between elements of the system, that can vary in time,

— equality = is considered as a particular binary predicate which is static, i.e.,
its value does not depend on time,

— an infinite countable set Var of variables,

a finite set Const of constants, representing elements of the system,
— the Boolean connectives =, V,

the existential quantifier 3x for each variable x € Var,

— the temporal operators X (next) and U (until).

We also add the usual syntactic sugar: T, L, A\,V,=, G, F, R, where
Fo=TUgp, Gy = =(F(~¢)), YR =(-pU-).

Ezample 1. Let us consider P = {OK, fail}, where OK is a nullary predicate,
i.€., an atomic proposition, and fail is an unary predicate. We can define the
following formula: G(3z.fail(x) = F G -OK). Intuitively, it expresses that a
local bug endangers the whole system and no recovery is possible: if one element
of the system fails at some point, then later the system must enter a state where
it is not OK and remain in this state forever.

2.2 Semantics

Variables and constants (and more generally terms if we consider functions) are
interpreted over a domain D. We consider that the domain and the interpreta-
tion of variables and constants do not vary in time. Only the interpretation of
predicates can change. The time domain considered throughout the paper is N.

Definition 2 (FO-LTL Structure). An interpretation structure of FO-LTL
is a tuple M = (D, 0 const, p) where:

— D is the domain,

— Oconst - Const — D is a valuation for constants,

—p=(P},... ,P,i)ieN gives the semantics of each predicate in P at each instant
1 € N. If P; is a l-ary predicate, then Pji C D! for each instant i € N.

We now define the satisfaction of a formula in a structure, in which case the
latter is called a model of the former.

Definition 3 (Satisfaction Relation). Given a structure M, we inductively
define the satisfaction relation M, o,i |= ¢, where o maps free variables of ¢ to
elements in D, and © € N s the current point in time.

For ease of reading, x and y stand for both variables and constants in this
definition. Moreover, we use @ to denote the interpretation of both variables and
constants: o(x) = o(x) if x € Var and 5(x) = 0const(z) if © € Const.

- M,oiEr=yifo(x)=0(y)

- M,o,i [Pj(x1,...,7,) if (@(21),...,0(zn)) € P}

- M,o,il=—p if M,o,ilE @

- M,o,ilE eV if MjoilEp or M,o,i =9

— M, 0,i = Jz.p if there exists a € D such that M, o[z — a],i = ¢

- M,O'7i ':XQO ZfM7071+1 ':(P

— M,0,i = o U if there exists j > i such that M,o,j = 1, and for all p
such that i < p < j, we have M,c,p |E ¢

A formula ¢ without free variables is satisfiable if and only if there exists a
structure M such that M, 0,0 = ¢, and in this case we just note M = ¢. (The
semantics with function symbols is defined in a similar straightforward way.)

Notice that FO-LTL can be viewed as a fragment of a first-order logic called
2FO, where quantifiers can range either over D or over time. It was shown in
[Kam68] that FO-LTL is strictly less expressive than 2FO, as opposed to the clas-
sical result that LTL and FO have the same expressive power over discrete time.
Detailed definitions and examples regarding 2FO are provided in Appendix A.

3 Complexity of Bounded Satisfiability

We are interested in a problem occurring in practice, where a formula ¢ of FO
or FO-LTL is given together with a bound N, and we want to check the exis-
tence of a model of ¢ with domain of size at most N. This problem is decidable,
but its complexity is an interesting question that, as far as we know, has been
overlooked (though the FO case can be considered unpublished folklore). We
call this problem BSAT and we investigate its complexity for several variants.
As explained earlier, this question is of practical interest given the success of for-
mal methods based upon finite model-finding and considering possible temporal
extensions of these.

To analyze the complexity of this problem in different settings, we first recall
the usual notion of (quantifier) rank [Lib04].

Definition 4 (Quantifier Rank). The (quantifier) rank of a FO-LTL formula
18 defined by structural recursion as follows:

— rk(x =y) =1k(P(x1,...,2)) =0
— tk(=p) = k(X p) =1k(p)

k(v) = rk(p U) = max(rk(p), tk(¥))
rk(3z,) = 1+ 1rk(y).

We are interested in settings where the rank of formulas is bounded, or on the
contrary any formula is allowed as input. Restricting rank to a certain bound is a
natural assumption in practice, and allows a finer analysis of the parameterized
complexity of the BSAT problem. As is standard practice, we write FO[k] (resp.
FO-LTL[k]) for all FO (resp. FO-LTL) formulae of quantifier rank up to k.

This rank is not to be confused with the alternation depth, which increases
only with alternations between V and 3 quantifiers (or in our case between 3
and —). We chose here to use quantifier rank to reflect the limited number of
variables specified in real-life examples by users, for instance using tools such as
Alloy. Notice that bounding the quantifier rank does not trivialize the problem,
because we allow arbitrary signatures (again, similarly to the Alloy syntax). We
recall that most complexity results on logical formalisms in the literature are
relative to fixed signatures.

The following theorem classifies the complexity of BSAT according to three
parameters: FO alone versus FO-LTL, N given in unary or binary, and rk(yp)

bounded or unbounded. Some of these results regarding FO may be part of
folklore, but we reproduce them here for completeness.

Theorem 1. We consider BSAT for three parameters: logic, encoding, bound
on 1k(p) (ranked). The corresponding complexities are given in the following
table (N is the bound on the model size, k the bound on rk(yp)):

N unary N binary
FO[k] NP-complete NEXPTIME-complete
FO NEXPTIME-complete (even N = 2) NEXPTIME-complete
FO-LTL[k] PSPACE-complete EXPSPACE-complete

FO-LTL EXPSPACE-complete (even N = 2) EXPSPACE-complete

Proofs are given in the remaining of this very Sect. 3.

3.1 First-Order Logic
Lemma 1. The BSAT(N) problem for FO[k] with N in unary is NP-complete.

Proof.

Membership in NP We show membership in NP by polynomially reducing the
problem to SAT. The reduction is informally described here, see Appendix B.1
for the formal construction.

The input formula ¢ is turned into a quantifier-free formula ¢’ where quanti-
fiers have been expanded: Va (resp. 3z) is replaced by A\ c; nj (resp. Ve n)-
Constants are turned into integers in the same way, using an initial disjunction
on their possible values.

We then turn ¢’ into a SAT instance ¢” by replacing every occurrence of
predicate R(d@), where @ is an integer vector, by a Boolean variable zy ;.

This reduction is polynomial because of the unary encoding of N and the
bound on rk(y), and preserves satisfiability.

NP-hardness We now show that BSAT for unary FOIk] is NP-hard.

We perform a reduction from SAT: given a SAT instance with variables
Z1,-.. Ty, we build an instance of BSAT where x4, ..., are predicates of arity
0. We can then ask for the existence of a structure of size 0 (or 1), and this will
answer the SAT problem. Since we do not need any quantifier to reduce to SAT,
we obtain NP-hardness even if the bound on the rank is 0. a

Lemma 2. The BSAT(N) problem for FO[k] with N in binary is NEXPTIME-
complete if k > 2, even restricted to unary predicates. It is NP-complete for
kE=1.

Proof. The proof is only sketched here, the detailed version can be found in
Appendix B.2. The idea is to reduce directly from a non-deterministic Turing
Machine running in exponential time.

Given such a machine M together with an input word u, we want to build
a formula ¢ of FO[2] describing the run of M over u, such that ¢ has a model
of size at most N if and only if M accepts u in at most N steps. Variables in ¢
will be used to describe positions of the tape of M as well as time instants in the
computation of M. For this, we use unary predicates to encode the bits of the
cell position p(z) and time instant t(x) described by an element x of the domain.
We additionally use predicates a(x) for a in the alphabet of the machine, and
q(zx) for ¢ in the state space of the machine to specify the content of the cell p(x)
at time ¢(z). To avoid using formulas of rank 3, we also introduce a predicate
a'(x) to say that cell p(z) is labelled a at time t(x) + 1. We can express that this
encoding is sound, and specify the existence of an accepting run of the machine
using a formula ¢ of rank 2. Since N can be specified in binary, and since || is
polynomial in the size of M, we can show that ¢ has a model of size N if and
only if M has an accepting run of size exponential (2"k) in its input of size n.

The fact that the problem is in NEXPTIME is proven similarly as in Lem-
ma 1, and is shown for a more general version of the problem in Lemma 4.

On the contrary, if k = 1, we show that any satisfiable formula ¢ of rank 1
has a model of size at most |¢|, therefore it is in NP to verify the existence of
such a model. NP-hardness follows from Lemma 1. O

Lemma 3. The BSAT(N) problem for unranked FO with N in unary is NEXP-
TIME-hard, even for N = 2.

Proof. We show that this case is also NEXPTIME-hard.

As before, let M be a non-deterministic Turing machine running in exponen-
tial time 27"

This time, we will use predicates of unbounded arity, and encode positions
in the tape using binary code. We will actually need only two elements in the
structure, named 0 and 1.

To state that a position of binary encoding Z is labelled by a letter a (resp.
a state ¢), we will use a predicate a(Z) (resp. q(Z)) of arity n¥, where each
coordinate of & is given as a distinct argument.

To mimic the previous proof, we need to be able to compare 2 positions, using
a predicate T < ¢ of arity 2n¥. Once this order is axiomatized, the reduction can
be done as in the previous case.

Therefore, we will only give the relevant new material here, i.e. the axioms
for < of arity 2n* being a total order. These axioms must all be of polynomial
length in n, in order to keep the overall reduction polynomial.

We use V& as a shorthand for Vaq,Vxs,...,Vx,+. In this way, it suffices to
rewrite the axioms of total order using vectors instead of elements. This keeps
the size of axioms polynomial, making it grow only by a factor n*. Note that
this does not guarantee that < describes the lexicographic order on vectors, in
particular the first position could be any vector, but this is not a problem.

Replacing all variables by vectors in the previous proof yields the required
reduction. O

The membership in NEXPTIME will be shown in the proof of Lemma 4.

Lemma 4. The BSAT(N) problem for unranked FO with N in binary is in
NEXPTIME.

Proof. This result implies NEXPTIME-completeness for 3 variants of the First-
Order BSAT problem.

Let ¢, € be the input of the problem, where € is a binary encoding of N, so
N = O(29). Let n = |¢| + |e] be the size of the input, and r = rk(y). The
algorithm from the proof of Lemma 1 can be adapted as follows:

— Guess a structure and write it on the tape: a predicate of arity k takes up
to N¥ cells, so the operation uses time (and space) O(2"%).

— Unfold quantifiers of the formula and check predicates. This operation takes
time O(|p|N") = O(2"").

Overall, the time complexity is in O(2"*+7)) = O(2""), since both k and r
are bounded by n.

This ends the proof that the most “difficult” FO case of BSAT still has NEX-
PTIME complexity. Hardness (even for N = 2) follows from Lemma 2. O

3.2 An Algorithm for the BSAT Problem for FO-LTL

We now turn to the BSAT problem for FO-LTL, and describe a generic algorithm
that we will use for various settings of the problem.

Lemma 5. The BSAT(N) problem for FO-LTL is in PSPACE if the rank is
bounded and N is given in unary, and in EXPSPACE all three other cases.

The algorithm consists in trying all sizes up to N, and for each of them
expand the formula ¢ into a LTL formula, then use a PSPACE algorithm for
LTL satisfiability.

Definition 5 (Expansion of an FO-LTL Formula). Let us consider a finite
domain D, a finite set of constants Const, a valuation oconst : Const — D,
a closed FO-LTL formula @ with constants in Const and predicate symbols
Py, ..., Py, of arities a1, ...,ay respectively. We define the expansion exp(p)
of ¢ given the domain D as an LTL formula, using alphabet A = {A;(@) | 1 <
i < k,a € D“} by induction on p. We assume that ¢ can use elements of D as
constants, and o const S extended to these new constants in the natural way.
exp(a =0) =T if 0const(@) = 0const(b) and L otherwise

exp(Pi(ah “ee ’ak)) == Ai(UCOnst(al)a sy JConst(ak))

exp(—p) = —exp(yp) exp(p V) = exp(p) V exp(v))
exp(X) = Xexp(p) exp(p U y) = exp(p) U exp(y)
exp(3z,) = V,ep exp(plz al)

It is easy to show by induction that for any ¢ and D, we have

|exp(p)| = (|| - | D[™9).

We can now adapt the algorithm from Lemma 1 to this new setting. In
the case where the rank is bounded, we rewrite the formula to bound arity of
predicates if the rank is bounded, and guess a structure of size D of size at most
N together with oconst, using space polynomial in |D]| (so exponential in the
input N is in binary). We then expand ¢ into exp(y), of size O(|p| - N*k(#)),

It remains to decide whether the LTL formula exp(y) is satisfiable, which can
be done using space polynomial in | exp(¢)| [SC85]. Therefore this algorithm uses
space O(|| - N™8(#)). Tt is in PSPACE if the rank is bounded and N is in unary,
and EXPSPACE in the other three cases.

3.3 Completeness Results for FO-LTL BSAT

We now show that this algorithm is optimal, by showing that BSAT for FO-LTL
is either PSPACE-hard or EXPSPACE-hard depending on the setting.

Lemma 6. The BSAT(N) problem for ranked and unranked FO-LTL with N in
binary is EXPSPACE-complete, even for N = 2. In the ranked case, the bound
must be at least 2. The BSAT(N) problem for FO-LTL[k] with N in unary is
PSPACE-complete.

Proof. The main idea of the proof is to directly encode the run of a Turing
machine using exponential space (polynomial space in the ranked case with N
in unary), similarly as in the proof of Lemma 2. The main difference is that we
now have additional LTL operators, that allow us to encode computation steps
without any bound on the number of time instants. Therefore, the first-order
domain D will only be used to encode positions of the tape via unary predicates
specifying the bits of the position, and that is why we can now encode runs of
machines using exponentially more time than space. The detailed reduction can
be found in Appendix B.3. ad

Finally, the last case is treated in the following lemma.

Lemma 7. The BSAT(N) problem for unranked FO-LTL with N in unary is
EXPSPACE-complete.

Proof. We will show that this case is also EXPSPACE-hard, although we can
no longer use an element of the structure for each cell of the Turing machine.
We can reuse ideas from Lemma 3, and encode positions using vectors of bits
with predicates of unbounded arities. This time, only positions will be encoded
this way, as time can be taken care of by LTL. Thus we can start from a machine
where only space is exponentially bounded, and time can be doubly exponential.
The construction is then similar to the one from Lemma 3, and yields a
reduction showing that this variant of BSAT is also EXPSPACE-complete, even
for structures with only 2 elements. a

Other examples of EXPSPACE-complete problems related to deciding small
fragments of FO-LTL can be found in [HKK™03].

4 Finite Model Property

Since we are only interested in finite models of FO-LTL formulas, it is natural
to study which fragments of FO-LTL enjoy the finite model property (FMP).
We say that a formula has the FMP if the existence of a model implies the
existence of a finite model (i.e., with finite first-order domain but still infinite
time structure). We also say that a fragment Frag of some logic has the FMP
if all the formulas from Frag have the FMP. Many such fragments of FO were
exhibited in the past decades.

Function Symbols In this Section we will enrich the syntax of FO-LTL with
function symbols. Each function has an arbitrary arity like a predicate, but yields
a term, which will be interpreted as an element of the domain, as variables and
constants. In this case, the parameters of the predicates (including equality) can
be arbitrary terms, built by composing variables and constants with functions.
For instance, if x and y are variables, a is a constant, f and g are functions, then

f(z,g(x),a) = g(y) is a formula.

Ezample 2. [BGG97, ARS07] The following fragments of FFO, named following
the notation of [BGG97], have the FMP:

— [3*V*, all]l= (Ramsey 1930) the class of all sentences with quantifier prefix
3*V* over arbitrary relational vocabulary with equality.

— [3*V3*, all]l= (Ackermann 1928) the class of all sentences with quantifier
prefix 3*V3* over arbitrary relational vocabulary with equality.

— [3*V23*, all] (Godel 1932, Kalmar 1933, Schiitte 1934) the class of all sen-
tences with quantifier prefix 3*V23* over arbitrary relational vocabulary
without equality.

— [3*, all, all]= (Gurevich 1976) the class of all sentences with quantifier prefix
3* over arbitrary vocabulary with equality.

— [3*V, all, (1)]= (Gridel 1996) the class of all sentences with quantifier prefix
3*V over vocabulary that contains one unary function and arbitrary predicate
symbols with equality.

— [all, (w), (w)] (Gurevich 1969, Lob 1967) the class of all sentences with arbi-
trary quantifier prefix over vocabulary that contains an arbitrary number of
unary predicates and unary functions without equality

— FO; (Mortimer 1975) the class of all sentences of relational vocabulary that
contains two variables and equality.

4.1 Lifting FMP from FO to FO-LTL

In this section, we first present general results that allow to lift the finite model
property from FO fragments to their temporal extension with operators X and F.
Then, we focus on two particular fragments: the well known Ramsey fragment,
for which the extension can be generalized to full LTL, and a fragment that
does not fulfill the hypotheses of our general result, but for which the temporal
extension with operators X and F still has the FMP.

Remark 1. In the following, we will only consider formulas in negation normal
form (NNF), i.e. where negations have been pushed to the leaves. This means
negations can only be applied to predicates. Notice that the syntactic sugar
mentioned in Sect. 2.1, in particular the operator R (dual of U) now becomes
necessary to retain full expressiveness.

Definition 6. If Frag is a fragment of FO, and OP C {X,F,G,U,R} is a
set of temporal operators, we define the fragment Frag + OP of FO-LTL as the
formulas with temporal operators from OP, where the formula(s) obtained by
removing unary temporal operators and replacing binary ones by V or A (indif-
ferently), is in Frag.

A General Extension Result for Fragments with the FMP

Definition 7 ((Plus-)Replacement of a Formula). If ¢, 1 are FO-formulas,
we say that v is a replacement of ¢ if ¥ can be obtained from ¢ by replacing
predicates and functions, i.e., by allowing different occurrences of the same pred-
icate (resp. function) of p to become distinct predicates (resp. functions) of same
arity in v, but distinct predicates (resp. functions) in ¢ are always mapped to
distinct predicates (resp. functions) in .

Additionally, we define the notion of plus-replacement where the new predi-
cates and functions can have increased arity.

For instance Vz.3y.P(z) V Q(y) is a replacement of Va.3y.P(x) V P(y). Like-
wise, the formula Vz.3y. P(x)VQ(y, x) is a plus-replacement of Va.3y. P(x)V P(y).

Definition 8 (Stability under (Plus-)Replacement). We say that a frag-
ment Frag of FO with FMP is stable under replacement (resp. plus-replacement)
if for all ¢ € Frag and for all replacement (resp. plus-replacement) ¢ of ¢, we
have that ¢ has the FMP.

In practice, many fragments with FMP considered in the literature are stable
under (plus-)replacement. This is for example the case for most of the fragments
from Example 2 (see Corollary 1).

Theorem 2 (Frag + X). Let Frag be a fragment of FO with the FMP, stable
under replacement. Then the fragment Frag + X of FO-LTL has the FMP.

The proof of this theorem is presented in Appendix C.2. The following theo-
rem, along the same lines, allows more temporal operators but has the stronger
assumption of plus-replacement.

Theorem 3 (Frag + {X,F}). Let Frag be a fragment of FO with FMP, stable
under plus-replacement. Then Frag + {X,F} also has the FMP.

Proof. Let ¢ be a satisfiable formula of Frag + {X,F}. Let V be the set of
variables used in ¢ and {F;,j € J} be the set of F-operators in ¢, for some
finite labeling set J = {1,2,...,|J|} such that if F; is under the scope of F;
then i < j.

For Z a list of variables from V', j € JU {0}, k € N, and 6 a subformula of
¢, we define [A]% inductively as follows:

[[P(g’)]]%k P, (¥, %) variables can appear in both ¢ and ¥
[[f(gj)ﬂé. = fix(¥, %) variables can appear in both § and '
B0 = 2@ V=0 = V=[0I
[0z)AG(:J’)H” [0y)]]J’ AE'()ﬂ]k

[6(7)\/9(5’]} = [0@IE" v [0 (7)))
[X 0L = ﬂe(?f)]]]’kH [F; 61" = [0(5)]%°

To sum up, we index predicates and functions by the label j of the innermost
occurrence of F that has it in its scope, as well as the number k of nested X since
this occurrence. We also add all universally quantified variables as arguments.
We additionally remove F and X operators in the process.

Let ¢ = [[4,0]]8’0. We show that v is satisfiable. Let M = (D, p) be a model of
. This means that for each subformula F; 6(%) of ¢ under universally quantified
variables #, there is a function ¢; : DI¥l — N such that 6(¢) is true at time

t;(£). We build a model of ¢ by settmg the value of P; (¥, %) to P(y) at time
t;(Z) + k, where & is the list of new arguments of P; (and same with functions).
It is straightforward to verify that this is indeed a model of 9.

Let ¢’ be ¢ where the F’s and X’s have been removed, by definition we
have ¢’ € Frag. Since v is a plus-replacement of ¢’ and Frag is stable under
plus-replacement, we have ¢ has the FMP. Since v is satisfiable, there exists
a finite model My of %. Finally, we build from M/ a finite model of ¢. For
this, we have to choose new values for the ¢;(Z), so that no conflicts occur: if
(4, k, %) # (', k', &), then t;(Z) + k # t,; () +k’ Let K be the maximal number
of nested X (not interleaved with F), and (Z:)o<icr be an ordering of all possible
vectors £. We choose t;(%) = (K +1) x (R 41), in order to satisfy the injectivity
condition: for all j,j’ € [0,|J|],k, k" € [0, K], and &, & € {#;|0 < i < R}, we
have ¢;(Z) + k =t; (&) + k' if and only if (j,k,Z) = (5', k', &"). Notice moreover
that we respect the condition that if F; ¢; is a subformula of F; ¢;, then j > 4
and thus for any value of Z, ¥, we have ¢;(Z) > t;(9).

Finally, we build a finite model of ¢ by setting the value of P(%) (resp. f(¥))
at time 7 to Pj (¥, Z) (resp. f;x(¥,2)) if ¢ = t;(&) + k for some j, k, &, and
choosing any values for other time instants.

So ¢ has a finite model and therefore Frag + {X,F} has the FMP. O

7
7

Remark 2. Tt is enough to consider plus-replacement where new arguments are
only quantified universally, which is a weaker condition.

Corollary 1. The following FO-LTL fragments, extending FO fragments men-
tioned in Fxample 2, have the FMP:

3V, all]_ + {X,F) 33, all]_ + {X,F)
[3*V23*, all] + {X,F} [3*, all, all]= + {X,F}
FO, + {X,F}

Specific Extensions for Two Fragments In this section, we focus on two
fragments of FO: a fragment for which our general result (Theorem 3) does not
apply and a fragment for which our general result can be extended to full LTL.
The FMP of the following fragment, even if it is not stable under plus-
replacement, can be lifted to its temporal extension with X and F.

Theorem 4. [all, (w), (w)] + {X,F} has the FMP.

Proof. We show that any formula of this fragment has the FMP. We proceed
by induction on the number of nested F. The induction hypothesis is actually
stronger than the FMP: we show by induction that for such a formula ¢, if there
is a model then there is a model M with finite domain D and a finite set of time
instants 7" such that M only “looks at T, i.e. changing the values of predicates
and functions outside of T" does not change the truth value of .

We start with the base case where there is no F. By Theorem 2 (and its
proof), and since [all, (w), (w)] is stable under replacement (even though it is
not stable under plus-replacement), if ¢ has a model it has a finite one where
only the values on a finite set of instants matter.

We now turn to the induction step, and consider a formula ¢ with n 4+ 1
nested F. By considering the outermost occurrences of F, the formula ¢ can
be written ¢'(F 1, F@a,...,Fpy), where ¢’ contains no F but may contain
quantifiers, and for every i € [1, k], ¢; has at most n nested F and may contain
free variables.

We assume that ¢ has a model M, and without loss of generality we note j
the index in [1, k] such that F ¢; is true in M (for at least one valuation of its
free variables) if and only if ¢ < j. This means in particular that for all ¢ < j, ¢;
has a model. By the induction hypothesis, for all i < j, ¢; can be set to true in a
model M; with a finite domain D; and that only looks at a finite set of instants
T;.

Moreover, ¢” = ¢'(T,...,T,L,..., 1) (with j times T) is satisfiable, and
by the base case has a model M’ with a finite domain D’ that only looks at a
finite set of instants 7" (that will be used as the first instants of the model).

We now build a model M/ for ¢ with a finite domain D, that we define as a
set of cardinality max(|D’|, |D1|, |D2l,...,|Djl).

We define a sequence of time instants (¢;)1<i<; such that at time ¢; the
formula ¢; is true for a particular valuation of its free variables, and at t; +
|T;], it is true for another valuation of its free variables that are universally
quantified, and so on, until we have considered all the possible values in D for
these universally quantified variables. So we define the ¢; inductively as follows :
t1 = |T'| and t; = t;—1 +|Ti—1| X | D|", where r is the number of nested universal
quantifiers in .

We now describe the predicates and function values in My. At times ¢ €
[0,; — 1], we mimic the model M’. This gives the value of predicates and func-
tions for |D’| elements of D. All the remaining elements can be set to behave
as any element of D’, for instance the first one. Since equality cannot be tested,
and predicates and functions are monadic, the truth value of ¢ is preserved.

For all ¢ € [1, j], we use M; to fix the valuation of predicates and functions at
times [t;, t;+|T;|—1]. Then, from ¢;4|T;|, we consider another possible assignment
of universally quantified variables and define the valuation of predicates and
functions accordingly. This way, we obtain a model of ¢; starting at time ¢;, and
therefore a model of F ¢; starting at time 0.

Since ¢’ is monotonous in its arguments (no F can be under a negation), and
we preserved the value T for all F ¢; with ¢ < j, the truth value of ¢ on My is
that of ¢’, which is true thanks to the valuations on [0, to].

We have therefore built a model My of ¢ with finite domain, and only looking
at a finite number of time instants. a

The result of Ramsey that the 3*V* fragment has the FMP is generalized in
the following theorem. See Appendix C.1 for a proof, omitted here due to space
constraints.

Theorem 5. We consider here FO-LTL without function symbols. Let ¢ =
Jzy ... Fxn (21, ..., 2n), where ¢ is a FO-LTL formula without any 3 quan-
tifiers. Then if ¢ is satisfiable, it has a model with domain of size at most n+ c,
where ¢ is the number of constants in the vocabulary.

4.2 Axioms of Infinity using LTL

We now give examples showing that adding LTL to fragments of FO with the
FMP allows to write axioms of infinity, therefore losing the FMP. This holds
even when strong restrictions are enforced on the way LTL operators interact
with first-order quantifiers.

Extending the Ramsey Fragment. First, let us remark that the constraint
from Theorem 5 that existential quantifiers are not under the scope of tem-
poral operators is necessary, as showed by the following formula which is only
satisfiable by infinite models, using a unary predicate P:

G(3z.P(x) N X G—P(x)).

Indeed, it is straightforward to show that a different z,, is needed to satisfy the
formula at each different time instant n € N, as the condition on the predicate
P guarantees that the same x can never be used twice.

Separating Quantifiers and LTL. We now give examples where a fragment
of FO loses the FMP when extended with LTL, even without nesting quantifiers
under temporal operators.

The following FO-LTL formula is an axiom of infinity with a V3 quantifier
prefix, and where no first-order quantifiers are under the scope of LTL operators.
It uses one constant ¢ and one unary predicate P:

Va3y.P(c) A G(P(z) = X(P(y) A G —~P(z))).

This sentence only has infinite models, as the predicate P must be true on a
different element at each instant of time. However, as recalled in Example 2, in
FO without LTL, if only one quantifier V is used the FMP is guaranteed (or
alternatively, formulas with two variables also have the FMP).

This example can actually be replaced using U instead of G, showing that it
suffices to be able to refer to an “unbounded” (as opposed to “infinite”) number of
time instants to force models to be infinite, as showed by the following example:

VaJy.P(c) A ((P(z) A P(y)) U (=P (z) A P(y)))-

This time, we used values of the predicate P in the past instead of the future to
guarantee that the same x cannot be used twice.

5 Conclusion

Motivated by the possible extension of formal methods based upon finite model
finding (such as Alloy or various decision procedures based upon SAT or SMT
techniques) with temporal reasoning, we have investigated FO-LTL with finite
FO domains in two ways: (1) we studied the complexity of the satisfiability for
FO-LTL (and FO alone) when the FO part of the model is bounded; (2) we
studied cases where we can lift the FMP of FO fragments to their temporal
extensions.

Several question are still open. On the complexity side, it remains to settle
the case of FO-LTL[1] with N in binary. Related to the FMP, even if we showed
in Sect. 4.1 that for a particular FO fragment that is not stable under plus-
replacement, the FMP can still be lifted to its temporal extension with operators
X and F, it is not clear whether this assumption can be dropped in Theorem 3.
Another open question is whether we can find a reasonable condition under which
we can extend an FO fragment with temporal operators G or U without losing
the FMP. Indeed, these operators bring an expressiveness that is very useful in
practice but we showed in Sect. 4.2 that they behave badly with respect to the
FMP.

References

[AHdB96] Serge Abiteboul, Laurent Herr, and Jan Van den Bussche. Temporal ver-
sus first-order logic to query temporal databases. In Proceedings of the
Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, 1996, Montreal, Canada, pages 49-57, 1996.

[ARSO7] Aharon Abadi, Alexander Moshe Rabinovich, and Mooly Sagiv. Decid-
able fragments of many-sorted logic. In 14th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
2007), pages 17-31, 2007.

[BGG97] Egon Borger, Erich Gridel, and Yuri Gurevich. The Classical Decision
Problem. Perspectives in Mathematical Logic. Springer, 1997.

[BKMJ15]

[CHS™10]

[Cun14]

[FGPAOS)

[HKK™* 03]

[Hod99)]

[HWZ00]

[Jac06]
[Kam68]
[Lam02]
[Lib04]

[LP85]

[Mer92]

[NJ10]

[NRZ*15]

[SC85]
[TJO7]
[VD12]

[Zav12]

Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. Detec-
tion of design flaws in the Android permission protocol through bounded
verification. In FM 2015, 2015.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
and Jean-Francois Raskin. Model checking lots of systems: efficient veri-
fication of temporal properties in software product lines. In ICSE 2010,
pages 335-344. ACM, 2010.

Alcino Cunha. Bounded model checking of temporal formulas with alloy.
In ABZ 2014, volume 8477 of Lecture Notes in Computer Science, pages
303-308. Springer Berlin Heidelberg, 2014.

Marcelo F. Frias, Juan P. Galeotti, Carlos Lépez Pombo, and Nazareno
Aguirre. DynAlloy: upgrading Alloy with actions. In ICSE 2005, pages
442-451, 2005.

Tan M. Hodkinson, Roman Kontchakov, Agi Kurucz, Frank Wolter, and
Michael Zakharyaschev. On the computational complexity of decidable
fragments of first-order linear temporal logics. In TIME-ICTL 20083, pages
91-98, 2003.

Tan M. Hodkinson. Note on games in temporal logics, 1999. Lecture notes
for LUATCS meting, Johannesburg.

Tan M. Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable
fragments of first-order temporal logics. Annals of Pure and Applied Logic,
106(1-3):85 — 134, 2000.

Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

Hans W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis,
University of Warsaw, 1968.

Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

Leonid Libkin. FElements of Finite Model Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2004.

Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 97-107. ACM, 1985.

Stephan Merz. Decidability and incompleteness results for first-order
temporal logics of linear time. Journal of Applied Non-Classical Logics,
2(2):139-156, 1992.

Joseph P. Near and Daniel Jackson. An imperative extension to Alloy. In
ABZ 2010, pages 118-131, 2010.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How Amazon Web Services uses formal
methods. Commun. ACM, 58(4):66-73, 2015.

A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional
linear temporal logics. J. ACM, 32(3):733-749, 1985.

Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
TACAS 2007, volume 4424 of LNCS, pages 632-647. Springer, 2007.
Amirhossein Vakili and Nancy A. Day. Temporal logic model checking in
Alloy. In ABZ 2012, pages 150-163, 2012.

Pamela Zave. Using lightweight modeling to understand Chord. SIG-
COMM Comput. Commun. Rev., 42(2):49-57, 2012.

Appendix

A Expressiveness of FO-LTL

FO-LTL allows to express properties of evolving systems. But this could also be
done using FO with two types of variables: one type ranging over the domain
(the domain variables) and one ranging over time (the temporal variables).

Definition 9 (Syntax of 2FO). The syntaz of 2FO (for 2-sorted FO) is de-
fined in the standard way from the following elements:

— a finite set of predicates. Each predicate takes as arguments an arbitrary
number of domain variables and one temporal variable specifying at which
instant we want to evaluate the predicate.

— the equality predicate =, which is a binary predicate on domain variables

— the ordering predicate <, which is a binary predicate on temporal variables

— the boolean connectives —,V,

— the existential quantifier 3 over domain variables

— the existential quantifier 37 over temporal variables

Lemma 8. [Kam68] Every FO-LTL formula can be translated into an equivalent
2FO0 formula.

Proof. Straightforward, by induction on the FO-LTL formula, expressing tem-
poral operators with first-order formula. ad

Kamp showed [Kam68] that 2FO and FO-LTL do not have same expressive
power, even if there is only one unary predicate P. Namely the 2FO formula

3Tttt < t' AVx.P(x,t) < P(x,t)

cannot be expressed in FO-LTL. This formula expresses that the truth value of
predicate P is exactly identical at two different instants of time.

Remark 3. This counter-example requires an infinite first-order domain (i.e. rel-
ative to x), as it trivializes to true on finite domains with infinite time structure.
We can adapt it to make it work even if the semantics is restricted to finite
first-order domains (using +1 as syntactic sugar):

3Tttt <t AVz.P(x,t) & P(x,t') & Pz, t' +1).

However, it is showed in [Hod99] that FO-LTL is complete for the “simple”
fragment of 2FO where every subformula of the form Jx.¢ has at most one free
time variable.

B Complexity of BSAT

B.1 NP Membership for Lemma 1

We want to show that given a FO-formula ¢ of arity at most R, and an integer
N € N given in unary, it is in NP to decide whether there exists a model of ¢
of size at most V.

We will first convert the formula ¢ to a formula ¢’ without quantifiers, and
where predicates of arity k range over [1, N]*.

We first remove constants by replacing them with existentially quantified
variables, and use the formula dJe;,3cs. ... 3¢y where cq,...,c, are the con-
stants used in ¢.

We compute a SAT instance ¢’ from this formula, with Boolean variables of
the form x; 7 where P; is a relation symbol of arity k used in ¢, and @ is a vector
of k integers from [1, N].

This is done inductively via the operator sat defined as follows:

V) = sat(9) V sat(y),
— sat(p Np) = sat(d) A sat(y),

— sat(3z, 9) =V e vy S0t (d[z al).
— sat(Va,) = N\ ep, v sat(lz al).

It is straightforward to show that satisfiability by a model of size IV is pre-
served by this translation, by interpreting the value of z; z as P;(a).

Moreover, the bound on rk(y) as well as the unary encoding of N guaran-
tees that the size of sat(y) is polynomial in |p|. Therefore, it suffices compute
the SAT-instance sat(p) in polynomial time, and decide in NP whether it is
satisfiable. This yields a NP algorithm for this variant of BSAT.

B.2 Proof of Lemma 2

NEXPTIME-Hardness Proof of Lemma 2 We show NEXPTIME-hardness
by reducing directly from a non-deterministic Turing machine M running in
exponential time 2"k, for a certain k, where n is the size of the input of M. Notice
that a tape of size 27" is enough for all computations. In order to simplify a bit
the construction, we assume that the tape of M is infinite in only one direction,
and is labeled by N. Given M and a word u of size n, we want to determine
whether u € L(M), by reducing it polynomially to an instance of this variant of
BSAT.

Let A be the alphabet of the Turing Machine M including a special blank
letter B € A, @ its set of states, and A its transition table. Let ginit, ¢fin be the
initial and final states of M, respectively.

Elements of the domain D will serve to encode both time instant and posi-
tions on the tape. This is done via 2n* unary predicates Ty, ..., Ty, P, ..., Py:

for an element x € D, using the convention that false stands for 0 and true for
1, the binary number T} (z)T5(x) ... T, (x) is the time instant ¢(z) represented
by « and P (x)Py(x) ... P, (z) is the cell position p(x) represented by z.

We will encode configurations of M via predicates a(x) for all a € A (re-
spectively ¢(z) for all ¢ € @), meaning that the cell p(x) at time t(z) is labelled
with the letter a (respectively contains the head of the machine in state ¢). In
order to achieve the reduction with only formulas of rank 2, we also add for each
a € A a predicate a/(z), meaning that p(x) is labelled by @ at instant ¢(z + 1)

We will use the following quantifier-free auxiliary formulas to manipulate
binary encodings:

= ¢i=(2,y) = Nicicnr Ti(2) & T;(y), meaning t(z) = t(y).
~ ey =\ (FL@ATE)

AN G@ATE) A N (D) @ Tw),
i<j<nk 1<j<i

meaning t(z) + 1 = t(y).
— p=(z,y) and @p41(x,y) are defined similarly, by replacing T;’s with P,’s.
first,(z) = /\1<i<nk —Ti(z).
first, (), lasti(x), last,(x) are defined in the same way.

— Q) = Vyeq a(@)

We include the following axioms describing the encoding, gathered as a con-
junction in a formula ¢,;:

— First element: Jx.first,(x) A first,(x).
— Each element (but the last) has a successor on one component while pre-
serving the other:
V. /\{a,/g}:{p,t}(laﬂa(m) V (Fy-pat1(z,y) A ps=(z,9))).
— At most one state at any time: Vz.Vy.(Q(z) A Q(y) A pr=(z,y)) = = = y.
— At least one state at any time: V. 3y (2,) A Q(y).
— At most one state on each cell: Va. A\, .o —p(z) V —q(z).
— One letter on each cell:
Ve Ve a al@) A Ngspe s —alz) V —b(z).
— Consistency of a’: Va.Vy.oi1(z,y) = N,cad'(2) & aly).

Notice that all these formulas have rank at most 2, therefore rk(p4,) = 2

The initial configuration must start with u = aga; ...a,_1, with the machine
in the initial state on the first position. We write ¢,—;(x) the formula making
explicit that p(z) =4 and t(z) = 0 by listing all values of the predicates T; and
P;, and ¢y, is defined similarly, for p(z) > n and ¢(x) = 0. These formulas are
quantifier-free.

The initial configuration is specified by the rank 1 formula.

Pin = (Elx'ﬁopzo(x) A Qim't(x))/\
(vz-(/\ogign_1 Sﬁp:i(x)) = ai(x)) A vx-(‘ﬂp)n(x) = B("”))

The fact that the machine eventually halts and accepts is described with g, =
3z.qfin ().

Finally, let A C Q x A x {+, =} x A x @ be the transition table of M, we
use the following rank 2 formula to describe the temporal evolution according
to A:

Otrans = Va.(lasty(z)) V

A {ql(m) = 3y.[pr1(2,9)

1€Q

A \/ (a(z) AV (2) A g2(y) A ppia(y, @)

(g1,a,4,b,g2)€A

v \/ (a(z) A (2) A ga(y) A opra(z,y))
(q1,a,—,b,g2)€A

A (Yy-(pi= (2, 9) A —~gp=(2,9)) = \/ aly) A a’(y))} }

a€A

Finally, let ¢ = @az A Qin A ©fin A Qtrans-

It is straightforward to verify that ¢ has a model of size (at most) N = on’
if and only if w is accepted by M. In this binary version of BSAT, N can be
specified using only n* bits, so polynomially with respect to | M|+ |u|. Since |1}]
is polynomial in wu, uses only unary predicates, and rk(¢)) = 2, this shows that
the ranked FO-fragment of BSAT with N in binary is NEXPTIME-hard even if
limited to unary predicates (provided the bound for the rank is at least 2).

NP-completeness Proof of Lemma 2 for rank 1 We now turn to the case
where we are limited to rank 1 formulas, and show that it is NP-complete.

NP-hardness is directly obtained by reduction from SAT: a SAT instance can
be rewritten as a rank 0 formula with one constant and n unary predicates (or
no constant and a rank 1 formula).

We now show NP membership. We first remark that it is useless to have
predicates with arity more than one, since they can only be called with several
occurrences of the same variable, and possibly constants, so it is equivalent to
a list of unary predicates. For instance if we have a binary predicate R and a
constant a, we need three binary predicates: Ry(z) = R(z,z), Re(z) = R(z,a),
and Rs(x) = R(a,x) and axioms guaranteeing consistency: Ri(a) = Ra(a) =
R3 ((l)

A formula 1 of rank 1 is therefore equivalent to a positive Boolean combi-
nation of formulas of the form Vz.¢(x) and Jx.p(x) where the ¢ are Boolean
combinations of unary predicates. Assume there is a model M of v, we show
there is a model M’ of size at most |¢|. Indeed, consider the existential formulas
w; from the Boolean combination that are true in M, for each of them there is
an element x; witnessing it. It suffices to take M’ to be the restriction of M to
the union of these x;. Due to the structure of the formula, each component of the

positive Boolean combination that was true in M is still true in M’, therefore
M’ is a model of 1.

This shows that it is enough to verify the existence of a linear-size model for
1, thus the problem is in NP.

B.3 Proof of Lemma 6

We will show EXPSPACE-hardness for the cases where N is given in binary.
As in the FO case, we reduce directly from a Turing machine M running in
exponential space Z”k, with unidirectional tape. Given M and a word u of size
n, we want to determine whether u € L(M), by reducing it polynomially to an
instance of BSAT for FO-LTL with NV binary.

Let A be the alphabet of the Turing Machine M including a special blank
letter B € A, Q its set of states, and A its transition table. Let ¢; and g5 be the
initial and final states of M, respectively.

The FO structure we will work with is the tape of the machine, of size
N =2 (it takes only n* bits to specify N), with a unary predicate for each
element of A and @, as well as a list of unary predicates Py, ... P,r specifying
the bits of the position on the tape. A difference with the proof of Lemma 2 is
that now an element z represents only a position p(z). We will use the implicit
time of LTL to describe the evolution of the computation. As a consequence we
do not need predicates a’(x) of the previous proof, as they can be expressed with
X a(x) instead.

We use auxiliary formulas @,—, p,11(,y), first,(z), last,(z) and Q(X) iden-
tical to the one in the proof of Lemma 2.

We define a formula ¢, as in the proof of Lemma 2, to enforce the semantics
of the predicates. We now have to manage time with LTL instead of a binary
encoding, which gives the following list of conjuncts for ¢,,:

— Predicates P; do not change over time: Vz. G(/\1gi<nk(Pi($) & X Py(z))).
— First element: Jz.first, ().

— Each element (but the last) has a successor:

Vi (1asty(2) V (y-ppi1 (2,9)))-

At most one state at any time: G(Vz.Vy.(Q(z) A Q(y)) = = =y).

— At least one state at any time: G(3z.Q(z)).

At most one state on each cell: G(Vz. Nprgeq ~P(@) V —q(z)).

— One letter on each cell:

G (Va. V, e a(z) A Nazpea ma(z) V —b(x)).

The initial configuration is specified as in the proof of Lemma 2, omitting
the specification t = 0.

The final configuration is described with ¢z, = 32.¢fin ().

LTL formulas can be used to described the evolution of the tape: we can
say in FO-LTL that at most two positions can change between two consecutive
instants, and they have to do it according to the transition table A C @ x A x
{+-, =} x AxQ of M.

This is done in the following formula:

prans =32 [(N Flepn(y,2) Ap(e) Aala) AX(b() A gw)))

(p,a,4,b,q)€A

vV 3neea(ay) Ap@) Aa@) A X(b() Aq(y))))
(p,a,—,b,q)€A

Ay ((y =) v\ aly) AX(a(w))) |

a€A

Finally, let ¢ = @az A@in A (Ptrans U @fin). It is straightforward to verify that
¥ has a model of size (at most) N if and only if u is accepted by M. Since || is
polynomial in |¢| + logy(IV), and has rank 2, this shows both the ranked (with
bound at least 2) and unranked variants of BSAT for FO-LTL with binary N
given are EXPSPACE-hard, and therefore EXPSPACE-complete by Lemma 5.

The same proof gives PSPACE-hardness if N is in unary, and therefore
PSPACE-completeness for the ranked unary version. Indeed, the exact same
construction works, except now N must remain polynomial in the size of the
input, and therefore we must start with a machine running in polynomial space
in order to be able to reduce it to BSAT.

C Finite Model Property

C.1 Proof of Theorem 5

Let ¢ be a subformula of FO-LTL using constants Const, free variables V and
without 3 quantifiers. Let M = (D, o, p) be a model of ¢ where o : ConstUV —
D. We also assume that negations have been pushed to the leaves of ¢, and that
there is no functional symbol. This means that we need the dual connectives A
of V and R of U in the syntax.

We show by induction on ¢ that restricting the domain D to D' = o(ConstU
V') and p accordingly by restricting predicates to D’ yields another model of .

— If p is atomic (equality or predicate), then only free variables and constants,
referring to elements from D’ are used.

— If p =1 Vs or ¢ = 1 A 2, we conclude by induction on ¢ and @s.

— If ¢ = Vz.b(z), we use the induction hypothesis over ¢: for any a € D we
can restrict the domain to o(Const U V) U {a} and make ¢ (a) true. This
means that if we restrict the domain to D’ = o(Const UV), it makes ¢ true,
since the V quantifier will only constrain the a € D’.

— =Xy, ¢ =p1 Ups, or p = ;1 U py, we can conclude by induction on
1, w2 and by the definition of the semantics of FO-LTL that restricting the
domain to D’ at all times yields a valid model.

C.2 Proof of Theorem 2

Let ¢ be a satisfiable formula of Frag + X, and n be the number of nested X
operators in . We build ¢ by replacing in ¢ every occurrence of predicate P
by P;, where i € [0,n] is the number of X operators having this occurrence of
P in their scope; and by removing all X operators. Notice that ¢ is satisfiable,
because any model of ¢ can be turned into a model of 1, by setting the value of
P; and f; to the value of P, f at time 1.

Let ¢’ be ¢ where the X’s have been removed: by definition we have ¢’ €
Frag. Since 1) is a replacement of ¢’ and Frag is stable under replacement, we
have that v enjoys the FMP. Since 1) is satisfiable, there exists a finite model
M of v. Finally, we can turn M into a finite model of ¢, by setting the value of
P (resp. f) at time i to P; (resp. f;), and choosing any values for time instants
strictly larger than n, that do not affect the formula. We conclude that ¢ has a
finite model, and therefore Frag + X has the FMP. a

