On Finite Domains in First-Order Linear Temporal Logic

Abstract : We consider First-Order Linear Temporal Logic (FO-LTL) over linear time. Inspired by the success of formal approaches based upon finite-model finders, such as Alloy, we focus on finding models with finite first-order domains for FO-LTL formulas, while retaining an infinite time domain. More precisely, we investigate the complexity of the following problem: given a formula ϕ and an integer n, is there a model of ϕ with domain of cardinality at most n? We show that depending on the logic considered (FO or FO-LTL) and on the precise encoding of the problem, the problem is either NP-complete, NEXPTIME-complete, PSPACE-complete or EXPSPACE-complete. In a second part, we exhibit cases where the Finite Model Property can be lifted from fragments of FO to their FO-LTL extension.
Type de document :
Communication dans un congrès
14th International Symposium on Automated Technology for Verification and Analysis, Oct 2016, Chiba, Japan. 〈10.1007/978-3-319-46520-3_14〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01343197
Contributeur : David Chemouil <>
Soumis le : jeudi 7 juillet 2016 - 17:08:44
Dernière modification le : jeudi 15 novembre 2018 - 08:38:02

Fichier

atva16-long.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Denis Kuperberg, Julien Brunel, David Chemouil. On Finite Domains in First-Order Linear Temporal Logic. 14th International Symposium on Automated Technology for Verification and Analysis, Oct 2016, Chiba, Japan. 〈10.1007/978-3-319-46520-3_14〉. 〈hal-01343197〉

Partager

Métriques

Consultations de la notice

91

Téléchargements de fichiers

213