
HAL Id: hal-01343031
https://hal.science/hal-01343031

Submitted on 7 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elastic Message Queues
Ahmed El Rheddane, Noël de Palma, Alain Tchana, Daniel Hagimont

To cite this version:
Ahmed El Rheddane, Noël de Palma, Alain Tchana, Daniel Hagimont. Elastic Message Queues.
7th IEEE International Conference on Cloud Computing (CLOUD 2014), Jun 2014, Anchorage, AK,
United States. pp. 17-23. �hal-01343031�

https://hal.science/hal-01343031
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15385

The contribution was presented at CLOUD 2014 :
http://www.thecloudcomputing.org/2014/

To cite this version : El Rheddane, Ahmed and Depalma, Noel and Tchana, Alain and
Hagimont, Daniel Elastic Message Queues. (2014) In: 7th IEEE International
Conference on Cloud Computing (CLOUD 2014), 27 June 2014 - 2 July 2014
(Anchorage, AK, United States).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Elastic Message Queues

Ahmed El Rheddane∗, Noël de Palma∗, Alain Tchana†, Daniel Hagimont†

∗LIG/UJF — Grenoble, France

{ahmed.elrheddane, noel.depalma}@imag.fr
†IRIT/ENSEEIHT — Toulouse, France

{alain.tchana, daniel.hagimont}@enseeiht.fr

Abstract—Today’s systems are often distributed, and con-
necting their different components can be challenging.
Message-Oriented-Middleware (MOM) is a popular tool to
insure simple and reliable communication. With the ever
growing loads of today’s applications, MOMs needs to be
scalable. But as the load changes, static scalability often
underuses the resources it requires. This paper presents an
elastic message queuing system leveraging cloud’s on-demand
resource provisioning, which allows the use of just enough
resources to handle the current load. We will detail when and
how provisioning decisions are made, and show the result of our
system’s evaluation on Amazon EC2 public cloud. This work
is based on Joram, an open-source JMS compliant MOM and
is now part of its distribution on OW2 consortium’s website.

Keywords-JMS; message queues; elasticity; cloud computing

I. INTRODUCTION

In today’s interconnected world, distributed systems are

ubiquitous. These systems often run on heterogeneous de-

vices and connecting them in a simple and reliable manner

is challenging. Message-Oriented Middleware (MOM) is an

established solution to this concern. It relies on exchanging

messages as the only means for the distributed components

to communicate, synchronize or coordinate. MOMs gen-

erally offer two communication paradigms: one-to-one, in

which each produced message is consumed once and only

once, this is done by message queuing; and one-to-many or

publish-subscribe where each message is guaranteed to be

received by all subscribed consumers via topics. MOMs have

been standardized first in the Java world by the Java Message

Service (JMS) API [1] and more recently by Advanced

Message Queuing Protocol (AMQP) [2] that goes beyond

the API level to specify the transport protocol. This work is

based on Joram [3], an open-source JMS compliant MOM

written in Java.

As distributed applications rely on MOMs, the latters

should be scalable enough to support the formers’ loads. One

way of scaling MOMs is to allocate once and for all a large

enough amount of resources to insure that wort case scenario

loads can be handled. However, real life applications have

variable and often bursty loads. Thus the statically allocated

resources will be most of the time underused, which will

reflect badly on the cost of the infrastructure. With the out-

burst of cloud computing, on-demand resource provisioning

can be used to scale in a much greener way: if the load

increases, extra resources can be allocated almost instantly;

if the load decreases, we can get rid of no longer necessary

resources.

In this work, we focus on enhancing the scalability of

the one-to-one paradigm of our JMS compliant MOM, i.e.,

message queues. We particularly deal with the common case

in which queues and consumers are stressed by the produced

messages’ load, and try to scale queues along with con-

sumers depending on load variation. This should naturally

be done while (i) maintaining the JMS compatibility as well

as the cornerstones of MOMs that are (ii) asynchrony, i.e.,

the decoupling between producers and consumers and (iii)

reliability, which basically makes sure that no message is

ever lost. We first present a scalable solution which allows

to statically scale the number of queues and manages load

balancing between them. This solution is then enhanced to

achieve elasticity, i.e., automatically scale the number of

queues. We discuss when scaling decisions are made and the

metrics they are based on. We also detail our provisioning

policy, i.e., how scaling is carried out, which includes

pre-provisioning virtual machine instances (VMs) and co-

provisioning multiple queues on the same VM. Finally, we

evaluate our elastic messaging solution and show the effect

of each of our provisioning enhancements.

The rest of this paper is organized as follows: Section II

presents a static setup of our scalability solution; Section III

discusses the different aspects of our elasticity approach; in

Section IV we evaluate the proposed solution; the related

work is presented in Section V before concluding this work

in Section VI.

II. LOAD-BALANCED QUEUES

In Message-Oriented Middleware, a queue is used to store

the produced messages until a message consumer retrieves

them. Since the consumers often process the messages they

receive, they cannot always cope with the production speeds

imposed by the message producers, and messages soon

begin to pend on the message queue. In this section, we

propose a scalability mechanism that allows producers to

seemlessly send messages to a pool of queues along with

their consumers and distributes the messages between them.

We first detail the scalability mechanism, then study its

scalability and finally present our flow control based load

balancing policy.

A. Scalability mechanism

In order to achieve queues’ scalability, we introduced

the alias queue. An alias queue is a special queue on the

producer’s side, that automatically forwards the messages it

is sent to another, generally distant, queue on the consumers’

side, see Figure 1. It is set to write-only mode as the “real”

destination, on which the messages are to be consumed,

is the queue to whom the messages are forwarded. Thus,

once a producer connects to our alias queue, we will be

able to internally change the destination while maintaining

the producer’s connection to the same queue. We can also

add or remove destinations, i.e., queues, and notify the alias

queue to take our modification into consideration. The alias

queue mechanism does not only insure JMS compatibility,

it also guarantees a total decoupling between the producer

and the consumers as it completely isolates the producer

from the consumption system: the producer will always be

able to send messages to its alias queue without taking

into consideration any changes in the consumption rate or

availability of consumer queues. The system’s reliability

is also increased as the alias queue includes a fail-over

mechanism and can resend a given message to another queue

if its initial destination is unavailable.

� ��� ��

��� ��

���

���

���

���

��

���

Figure 1: Alias queue principle

We will now compare the scalability of this load-balanced

queues setup to that of a single queue.

B. Scalability Study

In this sub-section, we define the parameters that affect

the performance of our system, first in the simple case of a

single queue, before generalizing the results to the case of

load-balanced queues.

1) Single Queue: Let p be the production rate on the

queue and c the consumption rate. l being the length of the

queue, i.e. the number of waiting messages, we have:

∆l = p− c

Depending on the result, three cases can be identified:

• ∆l > 0: This means that the queue receives more

messages than it is asked to deliver. The number of

pending messages grows and we say that the queue

is unstable and flooded. This will eventually cause the

unavailability of the queue since it is allocated a finite

memory.

• ∆l < 0: In this case, the consumption rate is higher

than the potential reception rate. The queue is still

unstable and we say that it is draining. This means

that the resources linked to this queue are not optimally

utilized.

• ∆l = 0: Here, the consumption rate matches the

reception rate and the queue is stable. This is the ideal

case that we aim to achieve.

The stability of a queue is thus defined by the equilibrium

between the messages’ production and consumption.

2) Load-Balanced Queues: In this case, the alias queues,

to which the messages are sent, are wired to n queues, on

which the messages are received. Let P be the total produc-

tion rate on all the alias queues, ci the consumption rates

on each of the consumers’ queues, and li their respective

lengths. The scalability of our distributed system can be

discussed on two different levels:

• Global scalability: Let L be the total number of waiting

messages in all the consumers’ queues. We have:

L =

n∑

i=1

li

and:

∆L = P −
n∑

i=1

ci

The overall stability of our system is given by: ∆L = 0.

This shows that, globally, our system can handle the

global production load. However, it does not guarantee

that on each consumer queue, the forwarded load is

properly handled. This will be guaranteed by local

scalability.

• Local scalability: Depending on how we distribute the

messages between the different queues, each would

receive a ratio ri of the total messages produced on

the alias queues. Thus, for each i ∈ {1..n} we have:

∆li = ri.P − ci

Local scalability is then given by:

∀i ∈ {1..n}; ∆li = 0

Note that local scalability implies global scalability as:

∀i ∈ {1..n}; ∆li = 0⇒ ∆L = ∆

n∑

i=1

li =

n∑

i=1

∆li = 0

This shows that, ideally, the forwarding rates (ri) of

each queue should adapt to its consumers’ consumption rate

(ci). Note that we didn’t discuss the alias queue’s load as,

if our system works properly, it shouldn’t have any. As

explained earlier, the alias queue automatically forwards all

the messages it is received.

C. Flow Control Policy

Our load balancing policy is flow control based. It is

a consumption-aware policy that aims at forwarding more

messages to the queues with the highest consumption rates.

Practically, a controller periodically retrieves the consump-

tion rates on the different load-balanced queues, and com-

putes the new forwarding rates as the ratio between a queue’s

consumption to the total consumption of our system during

the last round. Since this is a reactive policy, a significant

change in the consumption rates might result in the overload

of some queues. Our policy tries to distribute the overload

over all the queues by artificially subtracting the difference

between the queue’s load and the average load from the

number of messages it has consumed: if the queue’s load

is greater than average, it is forwarded less messages than

it can handle so as it can consume some of its pending

messages, otherwise, it is forwarded more messages, which

would increase its load, and we’d have eventually the same

load on all of our queues. This reduces the latency of our

system as it minimizes the maximum load per queue, thus

reducing the amount of messages that should be consumed

before the last pending message can be consumed. If we

take up the parameters defined earlier, the forwarding rates

based on the values monitored on round k can be expressed

as follows, ∀i ∈ {1..n}:

ri(k + 1) =
1

C
max(ci(k)− (l − lavg), 0)

where:

C =
n∑

i=1

ci(k) ; lavg =
1

n

n∑

i=1

li

This load balancing policy has two key assets: (i) it adapts

to the changing consumption rates of the different load-

balanced queues, and (ii) it distributes the overload over all

the queues. Provided that our static system can handle the

production load (global scalability), our flow control based

policy guarantees, eventually, the local stability of each

of the load-balanced queues. However, if the global load

of our system increases beyond its maximum consumption

capacity, all what our load balancing policy can do is cause

the loads on the load-balanced queues to grow uniformly.

Thus the need for a dynamic provisioning of resources to

automatically cope with a global load change.

III. ELASTIC MESSAGING

In this section, we present the different elements of our

elastic messaging solution. We first describe when does our

elasticity algorithm provision new queues (scaling out) and

remove unnecessary ones (scaling in), then we detail our

provisioning approach.

A. Scaling decision

In order to guarantee the scalability of our messaging

system with regard to a change in the global load, we have

implemented an elasticity controller that periodically: (i)

monitors the different loads on the different queues of our

system, (ii) potentially adds or removes queues based on the

monitored values. Note that we base our decision solely on

the queues’ loads, since the consumption capacity on each

queue may vary, particularly in the dynamic context of a

cloud infrastructure.

1) Scaling up: This is achieved when we monitor that the

average load of the system’s queues is beyond an acceptable

limit maxLoad. This guarantees that our system’s scalability

is beyond the scope of the flow control mechanism as the

latter can only bring the queues’ loads to this average load,

whereas what is needed is to reduce the average load itself,

which can only be done by provisioning more resources.

2) Scaling down: This should be triggered when we see

that the system is using too many resources than it actually

needs. We can suspect our system to be underloaded when

all its queues are underloaded, i.e., almost empty, practically

when the average load is below a threshold minLoad). This

means that we have enough resources for the messages to

be consumed as soon as they are produced, possibly just

enough resources, in which case we shouldn’t proceed with

the removal of any of the queues. Thus, the scaling down

decision can not be made at once.

To make sure that our system is effectively underloaded,

when the elasticity controller suspects the system’s overload,

it elects a queue to be removed, and starts decreasing the

amount of messages it is forwarded gradually. If, doing

so, the average load goes above the specified limit, the

scaling down plan is canceled and the elected queue receives

messages normally, as specified by our flow control policy.

Otherwise, if the elected queue is no longer forwarded any

messages without the average load exceeding minLoad,

then we can safely assume that this queue is no longer

needed and it is effectively removed from our system.

Figure 2 outlines our elasticity algorithm.

Now that we have presented when scaling should be done,

the next section details how it is actually achieved.

B. Provisioning

One a scaling decision is made, fast execution is of

great importance to the proper working of our solution. Or,

provisioning a virtual machine instance (VM) is relatively

slow, for instance, it takes about a minute to provision a

while(TRUE) {

sleep(period);

monitorQueues();

/* Scaling down */

if (avgLoad > minLoad) {

// Cancel scaling down plan

toRemove = NULL;

}

if (avgLoad < minLoad && !toRemove) {

// Start a new scaling down plan

toRemove =

queues.electQueueToRemove();

}

if (toRemove) {

// Continue scaling down plan

toRemove.reduceRate()

if (toRemove.rate == 0) {

queues.remove(toRemove);

toRemove = NULL;

}

}

/* Scaling down */

if (avgLoad > maxLoad) {

queues.addNewQueue();

}

/* General case */

queues.applyFlowControlPolicy();

}

Figure 2: Elasticity algorithm outlines

small Ubuntu instance on Amazon EC2 [4]. To deal with our

solution relies on co-provisioning queues on a same instance

and pre-provisioning a pool of VMs.

1) Co-Provisioning: Since we are using a cloud com-

puting infrastructure, where the resource unit is a virtual

machine instance, an intuitive approach would be to add

each queue on a separate VM instance. However, Joram’s

evaluation shows that due to the internal functioning of

Joram, and depending on the size of the VMs, two or

more queues can coexist on the same VM instance and still

have comparable performance as with a configuration where

each runs on a separate VM instance. Figure 3, shows the

maximum throughput that can be achieved on a small EC2

VM on queues in different setups with regard to persistency

of the messages, connection type and co-locality, with a

message size of 100B. We can see that in a persistent setup,

which is the most reliable, we can fairly co-provision up to

Persistent Transient

Setup localCF tcpCF localCF tcpCF

1 queue 25 309 13 862 41 726 19 669

2 queues 25 052 13 456 33 971 16 828

4 queues 22 318 13 338 25 741 28 450

Figure 3: MQPerf

2 queues without significant performance decrease.

Thus, the resource unit is no longer the VM instance,

but the available slots that we can provision queues on. Co-

provisioning allows us to diversify our provisioning policies:

if our main concern is performance, we might want to have

each queue on a new VM instance, and provided we are

using a private cloud, we might even want to create this VM

instance on the least loaded physical machine. Other policies

might have energy efficiency as the main concern. This is

the case for the basic policy that we have implemented.

However, co-provisioning only reduces the impact of VM

provisioning lag, for once all the slots on an instance are

filled we still have to provision a new VM. Pre-provisioning

deals with this issue once and for all.

2) Pre-provisioning: In order to optimize our solution

even more, we have looked into reducing the time needed to

add new queues, particularly when it involves provisioning

a new virtual machine instance. The solution we propose

is pre-provisioning a certain number of unneeded VM in-

stances, which will be maintained as long as our cloud

messaging system runs. This means that when a new node

is needed, we use a pre-existing node, which renders our

system more reactive, the used VM is then asynchronously

replaced, which means that the creation of the new VM

instance will not affect the latency of our system, thus

improving its performance.

In order to evaluate the number of necessary pre-

provisioned VMs, we need the Service Level Agreement

to specify not only the maximum tolerated latency, which

defines our maxLoad, but also the maximum supported

increase of the production rate during a unit of time.

Considering the following parameters:

• SLA.delta: The maximum increase of the production’s

rate in 1s (msg/s2).

• VM.startup: The average startup time of virtual ma-

chines (s).

• VM.capacity: The maximum consumption capacity

of a virtual machine, provided all its slots are filled

(msg/s).

The number of virtual machines to be pre-provisioned

NPP is given by:

NPP = ceil(
SLA.delta× VM.startup

VM.capacity
)

The numerator expresses, in the worst case, the extra

production load that might occur during the startup of a

virtual machine. This should be handled by our pool of

pre-provisioned VMs, thus, it should be equal to NPP ×
VM.capacity, hence the formula above.

Next, we present the implemented provisioning policy.

3) Provisioning policy: Our provisioning policy is

energy-efficiency-driven and aims at having an automati-

cally consolidated park of queues. Should we have control

over the cloud infrastructure as well, this consolidation is

achieved on both levels: (i) having our virtual machines on

the minimum possible number of physical machines (PM)

and (ii) having the provisioned queues on the minimum

number of VMs.

This is achieved on scaling up, by always trying to provi-

sion the new queue on an available slot in an existing VM

instance, and only create a new instance if all the available

slots on the last created VM instance are filled; and when

creating the new VM instance always try to use the current

physical machine and only use another if the first cannot

host the new instance. This automatically minimizes both

the numbers of utilized PMs an VM instances. On scaling

down, in order to maintain the automatic consolidation, we

always remove the last added queue, if it was the last one on

its VM instance, than we can destroy one pre-provisioned

VM and if this VM was the last one on its corresponding

PM, the latter can be put into an energy-saving mode.

The next section studies the performance of our elastic

cloud messaging system and shows the specific improvement

due to each optimization.

IV. EVALUATION

In this section, we validate our elastic messaging system

and discuss its performance. We will not only validate

our implementation as a whole, but also highlight the

performance gain provided by each optimization, i.e., co-

provisioning and pre-provisioning. All the following exper-

iments have been done on Amazon EC2, using m1.small

instances.

A. Effect of co-provisioning

In these two first experiments, the system is subjected to

a production rate that gradually goes up to 750msg/s, a

single worker is configured to consume at most 100msg/s,

our elasticity algorithm’s minLoad and maxLoad are re-

spectively 50msg/s and 200msg/s.

Figure 4 shows the results of allowing at most one

worker per VM, whereas Figure 5 shows the results with

provisioning up to two workers on the same VM. In both

cases, no VM has been pre-provisioned.

As expected, the latency of VM provisioning results in

overload pikes that might require the provisioning of extra

workers to be handled, even though our algorithm has a

safety interval in which he awaits the scaling decision to

take effect. We can see comparing both Figures 4 and 5 that

the overload pikes have been halved, as half the times in the

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Time (s)

Production
Maximum Load

Number of Workers

Figure 4: 1 worker per VM, no provisioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Time (s)

Production
Maximum Load

Number of Workers

Figure 5: 2 workers per VM, no provisioning

second experiment, a worker doesn’t have to wait for the

provisioning of a new VM but can directly be provisioned

on an existing VM. It is as well worth mentioning that in

the second case, we only use half the number of virtual

machines, which is a significant improvement in terms of

energy efficiency.

B. Effect of pre-provisioning

Using the same parameters as above, we made a third

experiment, where, in addition to provisioning two workers

on the same VM, we pre-provision a VM. The results are

depicted by Figure 6.

The pre-provisioned VM completely removed the impact

of VM startup latency on our system, as we no longer need

to wait for a VM to start: we always have an available VM

to use and we replace it asynchronously.

C. Size of the pre-provisioning pool

In the previous experiment, one VM was enough for our

system to work properly, as the production rate’s accelera-

tion was not very high. In the following two experiments, we

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000 3500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Time (s)

Production
Maximum Load

Number of Workers

Figure 6: 2 workers per VM, 1 pre-provisioned VM

multiply this acceleration by eight. Figures 7 and 8 show the

results with respectively one and two pre-provisioned VMs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Time (s)

Production
Maximum Load

Number of Workers

Figure 7: 1 worker per VM, no provisioning

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500
 0

 5

 10

 15

 20

 25

 30

N
u
m

b
e
r

o
f
M

e
s
s
a
g
e
s

N
u
m

b
e
r

o
f
W

o
rk

e
rs

Time (s)

Production
Maximum Load

Number of Workers

Figure 8: 2 workers per VM, no provisioning

It is clear from Figure 7 that, in this case, provisioning one

VM isn’t enough, the provisioning of the four first workers

happens normally, since they use the first VM (the first two),

and the pre-provisioned VM (the third and fourth), however,

when a fifth worker is needed, it has to wait for the new pre-

provisioned VM to start up, as it didn’t have enough time

to launch.

This can be expected as, if we take up the formula

expressed in III-B2, the production rate increases by

100msg/s each 25s, which corresponds to an SLA.delta
of 4msg/s2, and given that the mean startup time of an

EC2 linux instance is VM.startup = 96.9s [5], and that

each VM contains 2 workers which consume 100msg/s
each, which means that VM.capacity = 200msg/s, the

minimum number of pre-provisioned VMs should be:

N = ceil(
4× 96.9

200
) = 2

Sure enough, pre-provisioning two VMs results in a

proper functioning of our system as shown by Figure 8.

V. RELATED WORK

This work is part of the general context of elasticity and

dynamic resources provisioning of Internet services. Many

works have previously addressed this matter either using

heuristics to adapt the size of provisioned resources [6]–

[11] or establishing mathematical models to characterize the

systems to scale [12]–[16].

In the case of Oceano [6], the resources are not virtual-

ized and the system only manages the physical resources

allocated to the different applications, which makes the

provisioning delay quite important and forces Oceano to

have the resources for the most reactive parts allocated

statically. OnCall [7], which uses virtualized resources, is

more reactive to load spikes and allows us to have a

100% elastic resources pool. Cataclysm [10], [11] is an-

other hosting platform that responds to overloads by adding

extra resources, moreover, it uses a request classifier, to

dynamically degrade the service during overloads. [8] and

[9] specifically target the elasticity of a databases’ cluster,

the proposed solution involves keeping a set of idle nodes

in order to improve the provisioning latency.

On the model-based approach, [13] for instance, formally

describe the structure of multi-tier internet applications as

a network of queues. This model is then used to achieve

accurate capacity planning. Another example is SmartScale

[16] which uses estimation models to coordinate vertical and

horizontal scaling decisions in order to optimize the system’s

performance.

In the particular case of message queues’ elasticity, be-

sides the proprietary Amazon Simple Queue Service, there is

EQS [17], which proposes an AMQP-based queue that can

be replicated based on the connection loads of consumers

and producers. Unlike our solution, EQS follows the one-

to-many communication paradigm. Finally, [18] is a JMS

compatible solution that introduces clustered queues: on

clients’ admission, the client which connects to a generic

connection to all the queues is forwarded to the least loaded

queue, if all the queues are overloaded, a new queue is added

to the cluster. This differs from our solution as (i) we do not

depend on clients’ connection to scale our system and (ii) the

client-queue connections are not static and can be changed

to achieve for better load balancing.

VI. CONCLUSION

We have presented an elastic message queuing system that

adapts the number of queues and consumers to the load

of messages. Our system has 3 main assets, (i) its flow

control based load balancing makes sure that the provisioned

resources are used to their maximum capacity; (ii) in the

case of overload, our pre-provisioning and co-provisioning

techniques achieve high reactivity while minimizing the cost

and (iii) removal of unnecessary resources is done gradually

in order to minimize the number of wrong decisions which

would affect badly the performance of our system. Our work

has been evaluated on a public cloud and particular care has

been taken to show the benefit of each of our provisioning

techniques. In the future, we intend to study the impact

of different provisioning strategies on the behavior of our

messaging system and generalize our approach to the one-

to-many messaging paradigm.

ACKNOWLEDGEMENT

We would like to thank FSN Datalyse and ANR Ctrl-

Green for supporting this work.

REFERENCES

[1] (2014, January) Java Message Ser-
vice Concepts. [Online]. Available:
http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

[2] (2014, January) AMQP home page. [Online]. Available:
http://www.amqp.org/

[3] (2014, January) JORAM home page. [Online]. Available:
http://joram.ow2.org/

[4] (2014, January) Amazon Elastic Cloud Compute home page.
[Online]. Available: http://aws.amazon.com/ec2/

[5] M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” in Cloud Computing (CLOUD),
2012 IEEE 5th International Conference on, 2012, pp. 423–
430.

[6] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalan-
tar, S. Krishnakumar, D. Pazel, J. Pershing, and B. Rochw-
erger, “Oceano-sla based management of a computing util-
ity,” in Integrated Network Management Proceedings, 2001
IEEE/IFIP International Symposium on, 2001, pp. 855 –868.

[7] J. Norris, K. Coleman, A. Fox, and G. Candea, “Oncall:
Defeating spikes with a free-market application cluster,” in
Proceedings of the First International Conference on Auto-
nomic Computing, ser. ICAC ’04. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 198–205.

[8] G. Soundararajan and C. Amza, “Autonomic provisioning
of backend databases in dynamic content web servers,” in
Proceedings of the 3rd IEEE International Conference on
Autonomic Computing (ICAC.

[9] G. Soundararajan, C. Amza, and A. Goel, “Database repli-
cation policies for dynamic content applications,” in In Eu-
roSys06. ACM, 2006, pp. 89–102.

[10] B. Urgaonkar and P. Shenoy, “Cataclysm: Handling extreme
overloads in internet services,” Department of Computer
Science, University of Massachussetts, Tech. Rep., November
2004.

[11] ——, “Cataclysm: policing extreme overloads in internet
applications,” in Proceedings of the 14th international con-
ference on World Wide Web, ser. WWW ’05, New York, NY,
USA, 2005, pp. 740–749.

[12] B. Urgaonkar and A. Chandra, “Dynamic provisioning of
multi-tier internet applications,” in Proceedings of the Second
International Conference on Automatic Computing, ser. ICAC
’05. Washington, DC, USA: IEEE Computer Society, 2005,
pp. 217–228.

[13] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and
A. Tantawi, “Analytic modeling of multitier internet appli-
cations,” ACM Trans. Web, vol. 1, no. 1, May 2007.

[14] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based
analytic model for dynamic resource provisioning of multi-
tier applications,” in Proceedings of the Fourth International
Conference on Autonomic Computing, ser. ICAC ’07. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 27–.

[15] C. Stewart and K. Shen, “Performance modeling and system
management for multi-component online services,” in Pro-
ceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation - Volume 2, ser. NSDI’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 71–84.

[16] S. Dutta, S. Gera, A. Verma, and B. Viswanathan,
“Smartscale: Automatic application scaling in enterprise
clouds,” in Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, june 2012, pp. 221 –228.

[17] N.-L. Tran, S. Skhiri, and E. Zimányi, “Eqs: An elastic
and scalable message queue for the cloud,” in Proceedings
of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, ser. CLOUDCOM ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp.
391–398.

[18] C. Taton, N. D. Palma, S. Bouchenak, and D. Hagimont,
“Improving the performances of JMS-based applications,” Int.
J. Autonomic Comput., vol. 1, no. 1, pp. 81–102, Apr. 2009.

