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Abstract 

Background 

Already used at the incept of research on event-related potentials (ERP) over half a century ago, 

the arithmetic mean is still the benchmark for ERP estimation. Such estimation, however, requires a 

large number of sweeps and/or a careful rejection of artifacts affecting the electroencephalographic 

recording. 

New Method 

In this article we propose a method for estimating ERPs as they are naturally contaminated by 

biological and instrumental artifacts. The proposed estimator makes use of multivariate spatio-temporal 

filtering to increase the signal-to-noise ratio. This approach integrates a number of relevant advances in 

ERP data analysis, such as single-sweep adaptive estimation of amplitude and latency and the use of 

multivariate regression to account for ERP overlapping in time.  

Results 

We illustrate the effectiveness of the proposed estimator analyzing a dataset comprising 24 subjects 

involving a visual odd-ball paradigm, without performing any artifact rejection.  

Comparison with Existing Method(s) 

As compared to the arithmetic average, a lower number of sweeps is needed. Furthermore, artifact 

rejection can be performed roughly using permissive automatic procedures.  

Conclusion 

The proposed ensemble average estimator yields a reference companion to the arithmetic ensemble 

average estimation, suitable both in clinical and research settings. The method can be applied equally to 

event related fields (ERF) recorded by means of magnetoencephalography. In this article we describe 

all necessary methodological details to promote testing and comparison of this proposed method by 

peers. Furthermore, we release a MATLAB toolbox, a plug-in for the EEGLAB software suite and a 

stand-alone executable application. 

Keywords 

 Event-Related Potential (ERP), Ensemble Average, Multivariate, Adaptive, Overlapping, Artifact. 
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1.1 Introduction 

A substantial amount of studies using electroencephalography (EEG) concerns event-related 

potentials (ERPs). ERPs are electrical potential fluctuations displaying stable time relationship to some 

physical, mental, or physiological occurrence, referred to as the event. They are often described in the 

time-domain as a number of positive and negative waves (peaks) characterized by their polarity, shape, 

amplitude, latency and spatial distribution on the scalp. All these characteristics depend on the type 

(class) of event and constitute the object of the so-called time-domain ERP analysis (Lopes da Silva, 

2010; Picton et al., 2000). Influential discoveries on human cognitive processes have been done within 

this framework starting half a century ago with the pioneering observations of the contingent negative 

variation (Walter et al., 1964), the P300 (Sutton et al., 1965), the readiness potential (or 

Bereitschaspotential: Deecke et al., 1969) and the mismatch negativity (Näätänen et al., 1978). Thanks 

to these discoveries ERPs today are of paramount importance in the EEG research as a whole and find 

highly specific clinical applications.  

For decades ERPs have been conceived as stereotyped fluctuations of electrical potentials time and 

phase-locked to an event. By stereotyped we mean that they have been considered as having fixed 

polarity, shape, latency, amplitude and spatial distribution. According to this view, the ERP is 

considered independent from the ongoing EEG and simply add to the latter (additive model). Recently, 

other generative models for ERP have been proposed. Based on the seminal findings of Sayers and 

Beagley (1974), Sayers et al. (1974) and McClelland and Sayers (1983), it has been proposed that 

evoked activity may consist, at least partially, of an enhanced alignment of phase components (phase 

resetting model) of the ongoing neuronal activity (Jansen et al., 2003; Lopes da Silva, 2006; Makeig et 

al., 2002, 2004). From another perspective, Mazaheri and Jensen (2010) pointed out that ongoing EEG 

activity is commonly non-symmetric around zero, as can be seen clearly in sub-dural recordings of alpha 

rhythms (Lopes da Silva et al., 1997). They proposed that this kind of amplitude asymmetric oscillation 

may be considered as resulting from rhythmic bouts of inhibition constituting non-sinusoidal 

waveforms, specifically in the 8-13Hz frequency band; averaging these waveforms may create evoked 

responses with slow components (amplitude asymmetry model). Along these lines, it has been 

emphasized that EEG oscillations with non-zero mean may cause a baseline shift that remains after 

averaging, and thus may contribute to evoked responses (Nikulin et al., 2010). In an editorial where 

these and other fundamental aspects of the generation of evoked responses are analyzed, de Munck and 

Bijma (2010) stressed the need for a mathematical framework enabling the comparison of different 

models. We may add that a specific understanding of the biophysics underpinning the generation of 

ERPs is an essential prerequisite for the conception of an adequate signal processing method to analyze 

ERP data. In any case, it is necessary to have a comprehensive analysis method to be able to detect and 

characterize ERPs in the time domain. In this paper we present an approach contributing to this general 
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objective, which, while making the working assumption that the evoked ERP components are additive, 

can also be applied if they are generated according to other models, as long as their spatial and temporal 

patterns are prevalently stable across sweeps. 

The amplitude of ERP peaks amounts to a few V, whereas the amplitude of the on-going 

(spontaneous) EEG signal may be as high as several tens of V. Thus, even ignoring the unavoidable 

presence of artifacts in EEG recordings, the signal-to-noise variance ratio (SNR) of a single sweep may 

be extremely low. This is a major challenge in time-domain ERP analysis, which therefore requires 

dedicated filtering and/or ensemble averaging methods (Luck, 2014; Regan, 1989). It should be noted 

that for a given class of ERP, only the polarities of the peaks may be considered consistent for a given 

EEG recording montage; the shape, latency, amplitude and spatial distribution of ERPs are highly 

variable among individuals. Furthermore, even if within an individual the shape may be assumed stable, 

there may be a non-negligible amplitude and latency variability from sweep to sweep. The sweep-to-

sweep latency and amplitude variability of ERPs springs from the combination of several instrumental, 

experimental and biological factors.  

An additional difficulty in ERP analysis arises when we record overlapped ERPs, which causes a 

bias in the usual ensemble average estimations (Ruchkin, 1965; Smith and Kutas, 2015; Woldorff, 1988, 

1993). ERP are non-overlapping if the minimum inter-stimulus interval (ISI) is longer than the length 

of the latest recordable ERP. There is today increasing interest in paradigms eliciting overlapping ERPs, 

such as some odd-ball paradigms (Congedo et al., 2011) and rapid image triage (Yu et al., 2012), which 

are heavily employed in brain-computer interfaces for increasing the information transfer rate (Wolpaw 

and Wolpaw, 2012), and in the study of eye-fixation potentials, where the event is the time of an eye-

fixation in between saccades and the fixations rapidly follow each other (Sereno and Rayner, 2003).  

Despite the fact that the literature on ERP estimation is extensive, still today in the community there 

is no consensus on a standard methodology for addressing the estimation of the ensemble average (Lopes 

da Silva, 2010; Picton et al., 2000). As a matter of fact, only a few proposed techniques have enjoyed a 

long-lasting and widespread popularity. This is the case of Woody’s adaptive latency correction 

(Cabasson and Meste, 2008, Gasser et al., 2003; Picton et al., 2000; Souloumiac and Rivet, 2013; 

Woody, 1967), ERP filtering based on spatial or temporal principal component analysis (Chapman and 

McCrary, 1995; Dien, 2010; Lagerlund et al., 1997) and of the arithmetic ensemble averaging (Lopes 

da Silva, 2010). Indeed, an efficient way to increase the SNR of ERPs is to apply a spatio-temporal 

filter. In this spirit, principal component analysis (PCA, see Cichocki and Amari, 2002) has been applied 

in ERP analysis since half a century to improve the arithmetic average (Donchin, 1966; John et al. 1964). 

Given an estimation of the average ERP response, one may seek a linear combination of the derivations 

(spatial PCA) or a linear combination of the samples (temporal PCA), discarding those spatial or 

temporal components that are irrelevant for the estimation (noise). A long-lasting debate has concerned 
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the choice of the spatial or temporal PCA (Dien, 2010; Picton et al, 2010). Actually, in the case of ERPs 

the debate is pointless since one can perform a spatial and temporal PCA at the same time. However, 

PCA in general is not very effective in suppressing ERP noise. This is due to the fact that PCA neglects 

the spatio-temporal structure of the noise, which in ERP data is far from being white (uncorrelated), 

neither spatially, nor temporally. Furthermore, PCA is sensitive to high-amplitude artifacts such as eye-

movements and some instrumental artifacts. A much sharper filter can be obtained by first pre-whitening 

the data and thereafter applying a spatio-temporal (bilinear) PCA. This is what we obtain by adapting to 

ERPs the popular common spatial pattern (CSP) filter and extending it to a bilinear setting.  

First introduced in the EEG literature by Koles (1991), Koles and Soong (1998) and Ramoser et al. 

(2000), the CSP has since enjoyed a widespread popularity and has been extended in several ways (e.g., 

Dornhege et al., 2006; Lemm et al., 2005; Lotte et al., 2010; Townsend et al., 2006; Wang and Zheng, 

2008). The CSP is commonly used for optimal separation of two classes of data. This is achieved finding 

the spatial filters that maximize the variance of one class with respect to the other (whereas the PCA 

maximizes the signal variance). None of these early works, however, has addressed the use of CSP for 

ERP data. The adaptation of the CSP to ERP data must be specifically designed in order to maximize 

the SNR between the estimated ensemble average ERP and the background noise, including all electrical 

potentials that are not stable (time- and phase-locked) across sweeps. Such a CSP specifically conceived 

for the analysis of ERPs has been proposed by Rivet et al. (2009), who also formalized an appropriate 

ensemble average estimation for overlapping ERPs introducing the use of a multivariate regression 

model. A later extension of this method accounted for latency variability as well (Souloumiac and Rivet, 

2013). Yu et al. (2012) extended the idea to the spatio-temporal filtering setting (CSTP). However, their 

approach does not treat the overlapping case and does not consider the latency variability, left alone the 

amplitude variability of ERP peaks. Also, these latter authors resort to an iterative solution, whereas, as 

we will show, a closed-form algebraic solution exists also for the bilinear case. Accordingly, in this 

article we provide a closed-form solution to the common spatio-temporal pattern (CSTP) for ERPs, 

accounting at the same time for both amplitude and latency variability and treating appropriately the 

case of overlap between ERPs. Moreover, in contrast to previous attempts, we provide a heuristic 

procedure to estimate the optimal number of spatio-temporal components, yielding an automatic 

algorithm. Our method effectively combines and extends a number of previous propositions in an 

integrated framework. Since the algorithm is fully adaptive (data-driven), it automatically adjusts to the 

data set of interest. For instance, it is able to automatically remove outliers and common sources of 

artifacts, even if they are large and tend to be time-locked to the stimulus, which is sometimes the case 

of eye movements and blinks (Picton, 2000). However, when the data are clean of such artifacts, the 

CSTP estimation is very close to the arithmetic average (Fig. 2), as we require. Conceptually, our 

approach remains rather simple, albeit sharp from a signal processing perspective; it amounts to perform 

a spatio-temporal PCA on data that have been spatio-temporally pre-whitened, estimating adaptively 



6 

optimal time-shifts (latency) and weights (amplitude) for each sweep. As far as computational 

complexity is concerned, it is moderate. Thanks to these characteristics, we are confident that the 

proposed framework may provide a useful companion method for ERP analysis in the time domain, 

complementing the arithmetic mean. To encourage the testing of our proposition we provide a 

MATLAB toolbox (available at : http://louis-korczowski.org/) a stand-alone executable application 

(available at https://sites.google.com/site/marcocongedo) and a plug-in for the widespread suite for EEG 

data analysis EEGLAB (Delorme and Makeig, 2004). 

 

1.2 Material and Methods 

The case of overlapping ERPs leads to a general formulation, which reduces to a simpler one for the 

non-overlapping case. For clarity of exposition we present first the simplification engendered by the 

non-overlapping nature of the recorded ERPs and the general case thereafter; the first is simpler to 

understand, the second is what needs to be implemented using a multivariate regression framework. In 

the sequel we denote matrices by upper case italic characters (A), vectors, variables and integer indices 

by lower case italic characters (a) and constants by upper case characters (A). A set of objects is enclosed 

in curly brackets such as for index n{1,…,N}. For the sake of notation simplicity, the column vectors 

of matrix A and its elements are both indicated by the same letter used for the matrix, but in lower case, 

i.e., A=[a1 a2 …], and aij is the (i,j) element of A. For a diagonal matrix D, the nth diagonal element will 

be denoted simply as dn. The same symbol will be used for indices and for the upper bound in 

summation, the latter being omitted if there is no possible confusion, thus n will always indicate a 

summation over all elements in the set n{1,…,N}. We denote by ()T, tr(), ()-1, ||||F and n() the 

transpose of a matrix, its trace, inverse, Frobenius norm and nth eigenvalue, respectively. The identity 

matrix of dimension PP is denoted by IP. The rest of the notation should be clear from the context. 

1.2.1 Data Model 

In this article we treat the analysis of ERP at the single-subject level, thus we will not introduce an 

index for the subjects. In the sequel we will denote by z{1,…,Z} the index of Z ERP recorded classes 

(for example, in an odd-ball P300-based experiment we have Z=2 because we have a target and a non-

target class of ERP) and by k{1,…, Kz} the index of the Kz sweeps recorded for class z.  

1.2.2 Model for non-overlapping ERPs 

In the case of non-overlapping ERPs we employ an additive multivariate ERP generation model 

taking into account the single-sweep amplitude and latency variability, such as 
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  zk zk z zk zkX s Q t N  . (1.1) 

In the model above, N T
zkX   is the kth  observed sweep belonging to the zth class, comprised of N 

derivations (non-reference electrodes) and T>N samples, N T
zkN   holds the residual EEG signal, 

modeled here as additive noise and 
z

Q  is a stereotyped ERP response for a given class, which amplitude 

zk
s  and latency zk

t  are continuously modulated across sweeps by instrumental, experimental and 

biological factors. Notice that the ‘noise’ term here includes background EEG signal plus instrumental, 

environmental and biological artifacts (Congedo et al., 2008), which explains the overwhelming 

majority of the observed single-sweep variance. According to this model, the single-sweep SNR (signal-

to-noise ratio) is the ratio between the variance of  zk z zks Q t  and the variance of zk
N .  

1.2.3 Model for overlapping ERPs 

It is known since a long time that model (1.1) is no more adequate in the case of overlapping ERPs 

(Ruchkin, 1965; Woldorff, 1988). Following Souloumiac and Rivet (2013), instead we use the more 

generic model formulation 

 1 1 Z ZX Q T Q T N    ,  (1.2) 

where 
N L

X


  is the matrix holding the entire EEG recording of the session, with L the total number 

of samples, matrices 
N T

1 Z,...,Q Q   hold the fixed stereotyped ERP response for the Z classes as in 

model (1.1), matrices 
T L

1 Z,...,T T   are Toeplitz matrices and 
N×L

N   holds the residual additive 

noise, as in model (1.1), but now altogether for the whole recording. The elements of the Toeplitz 

matrices 
T L

1 Z,...,T T   are zero everywhere, except on the diagonals starting at the Kz columns 

corresponding to the ERP events for the corresponding class, shifted by zkt  samples, diagonals on which 

their element is zks . Hence, the Toeplitz matrices have as many non-zero diagonals as many sweeps 

there are in their class. Their role in (1.2) is just to extract the sweeps from the stream of data with the 

appropriate time shifts and weights. As we will see, they allow a least-square ensemble average 

estimation based on multivariate regression of the sweeps even if they overlap; this overlap may be of 

any form, that is, any overlapping of ERPs can be accounted for, either of the same as well as of different 

classes. This model can be written in compact form as (Souloumiac and River, 2013) 

 X QT N  , (1.3) 
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 where   N ZT
1 ZQ Q Q    is obtained stacking horizontally the Qz matrices and 

ZT L
1

T
T T

ZT T T    
, named the design matrix (for instance, in fMRI studies), is obtained stacking 

vertically the Tz matrices. 

Note that both models (1.1) and (1.3) assume the knowledge of latencies zkt  and amplitudes zks , but 

these are unknown. We will consider then the adaptive estimation of corresponding time shifts and 

weights coefficients, which we will indicate by zk  and zk , respectively. We precede initializing the 

time shifts to zero and the weights to 1 zk F
X , then adaptively estimating them2. This yields a tractable 

model, yet, it ensures that both the time shifts and weights are appropriately estimated from the data. 

Hereafter let 

  '
zk zk zk zkX X   (1.4) 

be the kth sweep belonging to class z, weighted by zk  and time-shifted by zk , where the weight is a 

strictly positive real number and the time-shift is an integer in EEG sample units. 

 

1.2.4 Spatio-Temporal Sweep Filtering 

For any given subject our objective is to find bilinear transformations of the sweeps maximizing the 

SNR of the ERP, that is, to find for a given class z, a pair of matrices 
N Pz

zB   and 
T Pz

zD   

transforming the sweeps such as 

 
P P' z zT

zk z zk zY B X D   . (1.5) 

In the above expression zB  is a collection of Pz spatial filters, i.e., acting as a linear combination of the 

data across derivations, while zD  is a collection of Pz temporal filters, i.e., acting as a linear 

combination of the data across samples. They act together in pairs, constituted by the corresponding 

columns of zB  and zD , seeking spatio-temporal combinations of the data. The integer Pz≤N is named 

the subspace dimension, where the subscript z reminds that the optimal value Pz is possibly different in 

different classes (1.5). Note that we may require the temporal subspace dimension to be superior to the 

spatial subspace dimension, or vice versa. In this article, however, we require them being equal. 

                                                           
2 Such initialization for the weights exploits the fact that the noise part of Xzk is much larger than the ERP part. 
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Together with spatial and temporal filters we also obtain the corresponding spatial and temporal patterns 

N Pz

zA   and 
T Pz

zE  , which are found by (pseudo-) inverting the filters, i.e., so as to verify  

 
Pz

T T
z z z zB A D E I   . (1.6) 

These patterns can be plotted to visualize the time course and scalp map of the components, respectively. 

Everything we have said about spatial and temporal filters in the case of non-overlapping ERPs applies 

as well in the case of overlapping ERPs. In this case however, we need to subtract from (1.5) the other 

ERPs overlapping within the time window of sweep Xzk.  

 

1.2.5 Single-Sweep Estimation 

The filtered sweep in the original data space, that is, the single-sweep estimation, is given by 

 
N Tˆ T

zk z zk zX A Y E   , (1.7) 

where zkY  is estimated using (1.5). The role of pattern matrices Az and Ez  (1.6) is to project the filtered 

components zkY  back in the original sensor space. 

 

1.2.6 Unfiltered Ensemble Average Estimations 

1.2.6.1 For non-overlapping ERPs 

For any given subject  

 
K

1

' ' N T1
z

kk

z zkk
X X




 


  (1.8) 

is the weighted and aligned3 arithmetic mean (arithmetic ensemble average: AEA) of observed sweeps 

for class z. This is a least-squares estimation of zQ  in (1.1)4. Using equal weights, estimator (1.8) is 

unbiased if the noise term is zero-mean, uncorrelated to the signal, spatially and temporally uncorrelated 

and stationary. It is actually optimal if the noise is also Gaussian (Lęski, 2002). However these 

conditions are never matched, since EEG data is both spatially and temporally correlated and contains 

large outliers and artifacts. In practice, it is well known that the arithmetic mean is an acceptable 

                                                           
3 that is, computed from weighted and time-shifted sweeps as per (1.4). 

4 We say “least-squares” because 
'
zX  is the data matrix solving optimization problem 

'

2K ' '

1
arg min  

z

z

zk zk F
X

X X


 .
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ensemble average estimator only if sweeps with low SNR are removed and/or a large number of sweeps 

is available. The estimator we propose overcomes this limitation. Notice that a sweep features low SNR 

if the noise part of the signal is high (for example, in the case of large artifacts superimposed to the 

sweep), but also if the ERP amplitude is low for whatever instrumental, experimental or biological 

reason affecting that sweep.  

1.2.6.2 For overlapping ERPs 

In the case of overlapping ERPs the least-square estimation of the ensemble average ERP can be 

obtained using multivariate regression techniques. Extending the result of Souloumiac and Rivet (2013) 

in order to allow the estimation of weighted and aligned arithmetic means, this is obtained by 

  
1 1 T

' '
1 Z

T

         0
         
  0          

T T N ZT

Z

j I
X X XT TT

j I




 
     

  

, (1.9) 

where, 
K K2

1 1

z z

z zk zkk k
j  

 
   and X, T have been defined in (1.3). The estimation of the ensemble 

average for each class is obtained as the corresponding partition of 
' '
1 ZX X 

   (see Appendix A). 

 

1.2.7 Filtered Ensemble Average Estimations 

Using the spatio-temporal filtering proposed in this article, the filtered, weighted and aligned 

ensemble average provides an estimation of the average stereotyped response zQ  and will be given by 

 'ˆ T T
z z z z z zQ A B X D E   (1.10) 

no matter if we employ ensemble average estimation (1.8) or (1.9). 

 

1.2.8 Bilinear Common Pattern (Common Spatio-Temporal pattern) 

For class z let 

        ' N N ' T T,    T
z z z zS T

C COV X C COV X      (1.11) 

be the spatial (left-hand side) and temporal (right-hand side) sample covariance matrices of the ensemble 

average ERP estimation (1.8) or (1.9), depending on whether we are working with overlapping or non-

overlapping ERPs, respectively, and let 
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       

K KN N T T1 1

K K1 1
,     

z zz z

z z T
zk zkS Tz k z k

C COV X C COV X 

 
   
      (1.12) 

be an estimation of the spatial (left-hand side) and temporal (right-hand side) sample covariance matrix 

of the data in all classes. Note that in (1.11) we compute the covariance matrices of the sweep average, 

whereas in (1.12) we are averaging the covariance matrices of the sweeps. Thus the estimations in (1.11) 

and in (1.12) are not at all equivalent, even if the data comprise one class only and regardless of the use 

of weights and time-shifts. In particular, because of sweep averaging, the variance in (1.11) can be 

decomposed as the variance of the ERP response plus the variance of the noise reduced proportionally 

to the number of sweeps by averaging. On the other hand, the variance in (1.12) can be decomposed as 

the variance of the ERP response plus the total variance of the noise. Thus, the variance in (1.11) 

concerns mostly phase-locked (evoked) potentials, since the non-phase locked potentials are reduced by 

averaging, while the variance in (1.12) concerns all processes, regardless whether they are phase-locked 

or not, i.e., it concerns both evoked and induced activity (see Tallon-Baudry et al., 1996 and Başar-

Eroglu et al., 1992) as well as ongoing EEG and artifacts. Accordingly, the relevant definition of SNR 

for the average, phase-locked ERP to the event of class z is 

 
 

 

'

K
1

K 1

z

zz

z

z

zkz k

var X
SNR X

var X




  
,        (1.13) 

where the sum in the denominator is carried out over all sweeps of all classes and where var indicates 

the total variance of the data matrix argument, e.g.,    
2T

F
var X tr XX X  . Our objective here is 

to find a bilinear transformation of the data maximizing this ratio, i.e., to find two matrices 
N Pz

zB   

and 
T Pz

zD   solving, for a given subspace dimension Pz  and given latency and time-shift correction, 

the following optimization problem 

 
 

'

K
1, |P , ,

K 1

argmax
z

z z z zk zk

zz

T
z z z

TB D
z zk zz k

var B X D

var B X D 
  

.       (1.14) 

This problem is an extension to the weighted and aligned spatio-temporal setting of the aligned common 

spatial pattern problem addressed in Souloumiac and Rivet (2013). Note that these authors include in 

the denominator the spatial covariance matrix of the whole EEG recording, while here, in concordance 

with the bilinear setting, we include in the denominator only ERP data segments. It is also an extension 

of the problem addressed by Yu et al. (2012) regarding the weighted, time-shifted and overlapping ERPs 

setting. These latter authors have proposed an iterative algorithm alternating between the update of zB  

and of zD  using the relation between the SVD (singular-value decomposition) and the EVD 
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(eigenvalue-eigenvector decomposition). With such an approach the computational cost is much higher 

as compared to an analytic solution. In appendix B we show that an algebraic solution to the bilinear 

common pattern is possible with a two-step procedure. Accordingly, the CSTP algorithm is summarized 

here below: 

CSTP Algorithm 

Input:   For class z,  

               -  a set of weights zk  summing to Kz (optional, they may be all equal to one) 

               -  a set of time shifts zk  (optional, they may be all zero).  

               -  a set of Kz sweeps {Xz1,…, XzKz}  

               -  the ensemble average ERP estimation '
zX NT, obtained by (1.8) or (1.9),  

                    depending whether we are in the non-overlapping or overlapping case, respectively, with   

                    N the number of electrodes and T>N the number of samples. 

   -  matrices        
K K

1 1

K K1 1
,       

z zz z

z z T

zk zkS Tz k z k
C COV X C COV X

 
 
      

   -  the subspace dimension Pz<N. 

      

Output:  For class z, a spatial and temporal filter (Bz, Az)NPz and pattern (Dz, Ez)TPz  

 

Algorithm: 

Let    
TUΦU  and TV ΨV  be the EVD of 

 S
C  and 

 T
C , respectively.   (1.17) 

Define         
1 1 1 1

2 2 2 2N Q T R

1 1 Q Q 1 1 R R
,       

S T
F u u F v v   

    
    and   (1.18) 

        
1 1 1 1

2 2 2 2N Q T R

1 1 Q Q 1 1 R R
   ,           

S T
G u u G v v   

 
    ,   (1.19) 

    where QN and RN are the largest indices verifying Q , R  >   6
1

110 S
C , respectively.   

Let   T
z z zΠ W Ξ  be the SVD of    

' 'T
z zS T

Z F X F .      (1.22) 

                    z z z z z z z zS T S T
B F Π ,  D F Ξ ,  A G Π ,  E G Ξ ,       (1.23) 

                 where zΠ  and zΞ  hold in columns the first Pz<N column vectors of zΠ  and zΞ ,    

                 respectively. 

 

In the CSTP algorithm above, the weights zk  and the time-shifts zk  are provided by the user along 

with the subspace dimension Pz. Next, we show how all these quantities can be estimated adaptively 

from the data to achieve a fully adaptive and fully unsupervised algorithm. 

 

1.2.9 Estimating the Optimal Subspace Dimension 

The subspace dimension Pz should be large enough to include all spatio-temporal components 

describing the ERP for class z and small enough to effectively suppress noise. Note that if a temporal 
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filter is employed, even setting Pz=N we filter out some noise, specifically, the noise explained by the 

T-Pz temporal components not included to construct the temporal filter Ez in (1.23). Still, we will require 

Pz<N, i.e., the algorithm should always remove at least one spatio-temporal component. The 

unsupervised estimation of the optimal subspace dimension is known to be a difficult task (Cichocki 

and Amari. 2002). Hereby we propose a solution by injecting some a-priori information, as an educated 

guess, about where in space and time the ERP under analysis produces noticeable potentials. For doing 

so, let us consider a subset of derivations and time samples in the ERP data. We name such a subset a 

mask. For example, if we aim at estimating a visual P300 ERP, the mask will typically include time 

samples around 300-500 ms post stimulus. The locations, typically including mid-central, parietal and 

occipital derivations, are highly subject-dependent. The filtered estimation of the ensemble average ˆ
zQ  

is given by (1.10). Let  ˆ
z z

Q  be the matrix ˆ
zQ  with all elements that do not belong to the mask set 

to zero. We can then look for a value of Pz   maximizing locally 

    
2 2

ˆ ˆ ˆ
z z z z z

FF
SNR Q Q Q    ,       (1.15) 

which is the ratio between the variance of the ensemble average within the mask (the spatio-temporal 

window of interest) and the variance in the whole ensemble average. First, we smooth the estimates 

(1.15) by a 3-point moving average, then we estimate the optimal Pz  as the highest value corresponding 

to a local maximum of the SNR (1.15) not inferior to 66% of its global maximum, in the set {2,…, N-

1}. Please note that here and hereafter for whatever function, by “valid local maximum” we will refer 

to local maxima found by this procedure.  

 

1.2.10 Amplitude Estimation and Sweep Adaptive Weighting 

For a given class z, the amplitude variability can be addressed adaptively using an appropriate 

measure of the signal-to-noise ratio (SNR) for each sweep. Given the estimation of the spatio-temporal 

filters, such a measure is 

   T T T T

zk z z zk z z zk z z zk z zF F
SNR X A B X D E X A B X D E   . (1.16) 

Referring to model (1.1), the closer is T T

z z zk z zA B X D E  to  zk z zks Q t , the higher (1.16) will be. Also, 

ratio (1.16) drops if the sweep contains large artifacts or outliers, since artifacts and outliers (and in 

general, the noise part of the data) is present in the denominator, but is reduced in the nominator, due to 

filtering. Thus, ratio (1.16) is a comprehensive and adaptive choice for weighting the individual sweeps 

and the ensuing weighted ensemble average estimation. It is particularly effective to suppress artifacts 
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and outliers. Although not necessary, in this article the weights are always normalized so that their 

average is 1.0 (see step (B) here below). The algorithm for estimating the weights is described below: 

 

WEIGHTS ESTIMATION 

Input: For class z, 

            - the Kz raw sweeps Xkz 

            - the spatio-temporal filters and patterns Az, Bz, Dz, Ez estimated by the CSTP. 

 

Output:  For class z, the set of weights σzk, for k{1,…,Kz} 

 

Algorithm: 

(A) - For every sweep do (for k:=1 to Kz) 
T T T T

zk z z zk z z zk z z zk z zF F
A B X D E X A B X D E    

(B) - For every sweep do (for k:=1 to Kz)  
K

1
K

z

zk z zk zkk
  


   

 

1.2.11 Sweep Adaptive Latency Correction 

In order to account for the latency variability we use an improved version of the classical Woody’s 

adaptive filtering method (Woody, 1967). The original method iteratively estimates a time shift zk for 

each sweep Xzk, attempting to align the sweeps as much as possible to improve the SNR of the sweeps 

ensemble average estimation. At each iteration, the sweeps average is estimated and the shift for each 

sweep is updated as the shift resulting in the maximal correlation between the sweep and the average. 

The iterations are repeated until the shifts become negligible. Woody’s method has been used 

extensively and is known to perform fairly well provided that the SNR of the sweeps is high enough.  

Three relevant improvements have been proposed since the classical proposition of Woody (1967) 

and have proved effective: the first is to use the maximum covariance instead of the maximum 

correlation for estimating the shift (Jaśkowski and Verleger, 1999). The second consists in applying the 

method on spatially filtered data instead of on raw data, so as to place the method in a more favorable 

SNR condition (Souloumiac and Rivet, 2013). The third, springing from a maximum likelihood analysis, 

improves the shift estimation for each sweep by computing the covariance between the current sweep 

and the ensemble average estimated eliminating the current sweep (Cabasson and Meste, 2008). Here 

we combine all these improvements and we extend the method to the bivariate filtering case. 

Furthermore, we can refine the sweep alignment by using the mask operator ϒz already introduced for 

estimating the optimal subspace dimension (1.15). Yet, the use of the mask here is optional and can be 

omitted. The algorithm for estimating adaptively the time shifts is described here below: 
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TIME SHIFTS ESTIMATION 

Input: - a set of integers  {-E-1,…,0,…,E+1}, where E is the maximum allowed time-shift in       

                sample units 

            - the maximum number of iterations allowed i (typically, i=2E is sufficient) 

             

            For class z, 

            -  the Kz raw sweeps Xkz  

            -  the spatio-temporal filters and patterns Az, Bz, Dz, Ez estimated by the CSTP 

            -  an optional set of Kz weights zk  (optional, they may be all equal to 1) 

            -  an optional mask operator ϒz  (may just have no effect acting as the identity matrix) 

 

Output:  For class z, the set of time shifts τzk, for k{1,…,Kz} 

 

Algorithm: 

 REPEAT  

     For every sweep do (for k=1…Kz) 

    A) - Get a filtered (and optionally masked) ensemble average excluding the current sweep, as     

           
    1

K 1zz

T
z z zi zi zk i k

Y B X D
 

   

    B) - Get a set of lagged (and optionally masked) filtered single-sweep estimations for sweep k, as  

                T
z z zk zk zzk

Y B X D


    , for all  . 

    C) - Compute the covariance between matrices  zk
Y

 and  z k
Y , as 

    T

zzk k
Ytr Y


, for all  .  

    D) – If it exists at least one valid local maximum (see section 1.2.9) of the covariance in the range  

             {-E,…,0,…,E}, then set zk  to the valid local maximum corresponding to the smallest absolute  

              time-shift, otherwise set zk  to zero. 

 UNTIL Ezkk
    OR the number of iterations = i 

 

The time shift estimation algorithm has two free parameters, i and E. The maximum number of iterations 

(i) can be blindly set as indicated without affecting much the result. On the other hand, the maximum 

allowed time-shift (E) should be chosen taking into consideration the specific characteristics of the data, 

namely the instrumental jitter and the class of ERPs to be estimated. We will come back to this in the 

discussion section. 

 

1.2.12 The ACSTP Algorithm 

Having described all necessary building blocks, we can finally present the fully adaptive ERP 

estimation algorithm as a whole. We name the fully adaptive algorithm ACSTP, which stands for 

Adaptive Common Spatio-Temporal Pattern. An estimation of the weights and time shifts will improve 

the ensemble average estimation, hence the CSTP estimation of the filters, which depends on those 
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estimates (note that the SVD in (1.22) depends on the weighted and aligned ensemble average estimation 

in (1.21)). In addition, the time-shift estimation will depend upon the weights, but not vice versa, so we 

always search for the time-shift after estimating the weights. For a given Pz (subspace dimension), the 

elementary deterministic sequence of operations in our algorithm is then  

I) the estimation of the CSTP filters (initialized with all zk   set to zero and all 1/zk zk F
X  ) 

II) the estimation of the weights zk   

III) the estimation of the time shifts zk   (using the zk  just estimated and, optionally, the mask) 

IV) a final estimation of the CSTP filters (using time shift zk  and weights zk  as just estimated)  

 

We shall run simply this sequence if Pz is selected by the researcher. If an unsupervised estimation 

of the optimal subspace dimension Pz is sought by using the a mask (1.15), the ACSTP algorithm is as 

follows: 

ACSTP Algorithm (using a mask) 

Input:     the input of algorithms CSTP, WEIGHT ESTIMATION and TIME SHIFT ESTIMATION,     

                    initialized and updated as indicated below. 

  

Output:   a spatial filter and pattern (Bz, Az)NPz, a temporal filter and pattern (Dz,  Ez )TPz ,  

                   the set of weights zk  and time-shifts zk  estimated on the data,  

                   the automatically chosen subspace dimension Pz. 

 

Algorithm: 

FOR p : 2 TO N DO 
{ 

    1) CSTP (with Pz=p, all time-shifts zk set to zero and weights initialized as 1
zk zk F

X  ) 

    2) WEIGHTS ESTIMATION  

    3)TIME SHIFTS ESTIMATION (using the mask operator ϒz, and the weights zk  as just estimated) 

    4) CSTP (with Pz=p, time-shifts zk  and weights zk  as just estimated) 

    SNR(p)   
2 2

ˆ ˆ
z z z FF

Q Q  , using (1.10) to estimate ˆ
zQ  

} 

Smooth the SNR(p) value by a 3-point moving average. Let max and min be the maximum and minimum 

of the SNR(p) so obtained. Normalize the SNRs in the interval [0…1], as SNR(p)  (SNR(p) - min)/max, 

for p: 2 to N.  If it exists at least one valid local maximum of the normalized SNR(p) (see Section 1.2.9) 

in the range p{3,…,N-1}, then set Pz to the highest value of p corresponding to such a valid local 

maximum, otherwise set Pz=N-1. Set the ACSTP output to the “4) CSTP”   output obtained with such 

Pz. 
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Notice that if one does not wish to use weights it is sufficient to omit the corresponding weights 

estimation step, while if one does not wish to apply latency correction it suffices to omit the time-shift 

estimation step. If one does not wish to apply neither latency nor amplitude correction, it suffices to 

omit both steps and to call the CSTP algorithm only once within the For loop. 

 

1.2.13 Experimental Data 

We have tested the algorithm on a data set comprised of 24 subjects. The data set concerns an 

experiment carried out at GIPSA-lab in Grenoble using the Brain Invaders P300-based brain-computer 

interface (Congedo et al., 2011). The experiment has been carried out in accordance with the code of 

ethics of the World Medical Association (Declaration of Helsinki). Participants signed an informed 

consent form prior to participating to the experiment. The experimental procedure was approved by the 

ethical committee of the University of Grenoble Alpes (CERNI). The data we use here concerns only 

the training sessions of this experiment, which is a typical visual odd-ball paradigm. Each training 

session consisted of five trials comprising eight repetitions of a sequence of 12 flashes. The subjects 

looked at thirty-six aliens arranged in a 6x6 regular grid slowly moving together from one side of the 

screen to the other as in the original video game Space Invaders (1978, Saito, Japan).  A sequence of 

flashes consisted of 12 flashes of groups of six aliens (Fig. 1B) chosen in such a way that after a sequence 

of 12 flashes each alien had flashed two times. At each trial the subjects focused on a target alien chosen 

at random by the computer among the 36 aliens. The target was indicated by a red circle at the beginning 

of each sequence of flashes. The subject was instructed to mentally count the number of times the target 

had flashed in each trial (attended deviant odd-ball paradigm, see Kotchoubey, 2015). The screen 

background color was black. Aliens were all displayed in dark grey color except the target alien, which 

was always displayed in red color. During a flash, the color of non-target aliens was switched to light 

grey and the color of the target alien to cyan (the opposite of red on the color circle). Each flash lasted 

60 ms. The inter-stimulus interval (ISI), i.e., the interval between two flashes, was randomly drawn from 

an exponential distribution with mean 1.0, multiplied by 100 to obtain a mean ISI of 100 ms. and 

bounded in the range {20…500} ms by drawing a random number until it fell in this range. An 

exponential ISI minimizes the distortion due to the overlap (Ruchkin, 1965). Since there were 40 

repetitions of 12 flash sequences in total, the training session resulted in the recording of 400 non-target 

ERPs and 80 target ERPs. No artifact rejection whatsoever was performed on the data before entering 

the analysis. 

Data were acquired using the Porti TMSi EEG amplification unit (Twente Medical Systems 

International B.V., Enschede, the Netherlands) by means of 16 silver/silver-chloride electrodes 

positioned at location  FP1, FP2, F5, AFz, F6, T7, Cz, T8, P7, P3, Pz, P4, P8, O1, Oz, O2 according to 
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the 10/20 international system,  using as reference the left ear-lobe (Jasper, 1958). After acquisition, a 

IIR notch filter to suppress 50Hz power-line contamination and a non-causal forward-backward FIR 

Butterworth band-pass filter (4th order) with zero phase distortion in the band-pass region 1-20 Hz were 

applied. Then data were down-sampled from 512 (the original sampling rate during acquisition) to 128 

samples per second using a standard filtering/moving average method. The common-mode rejection of 

the Porti EEG machine enforces a hardware common-average reference to the EEG potentials. The 

maximum number of time-shift samples allowed was ±4. As mask ϒz  for the P300 target ERP, five 

masks accommodated all 24 subjects, as established upon inspection of the arithmetic ensemble average 

of each subject (table 1). We report our considerations about the choice of a mask in the discussion 

section. 

 

Table 1. Masks used to estimate the optimal subspace dimension Pz. The AEA (ensemble average estimation) 

for subjects indicated using bold number characters, which has guided the mask assignment, is shown in Fig. 2. 

 

 

 

 

Figure 1. Screen Shots of the “Brain Invaders”. Two screen shots of the Brain Invaders in training mode, used 

to run the experiment. A): at the beginning of each trial the target alien is circled in red; B): random flashing of six 

aliens (shown in white), in this case, not including the target (hence producing a non-target ERP).   

Subject Electrode Time Interval 

1, 8, 9, 10, 13, 15, 19, 

20, 21 Cz, P7, P3, Pz, P4,  P8, O1, Oz, O2 50, 550 

6, 7, 22, 23 FP1, FP2, Afz, F3, F4, Cz, P7, P3, Pz, P4, P8 50, 550 

2, 3, 5, 11, 14, 17, 18 FP1, FP2, Afz, F3, F4, Cz, P7, P3, Pz, P4, P8, 01, 0z, 02 50, 550 

4, 12, 16 Cz, P7, P3, Pz, P4, P8 50, 550 

24 T7, Cz, T8, P7, P3, Pz, P4, P8 50, 550 
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1.3 Results 

We first consider the estimation of the target (TA) and non-ratget (NT) class ERP ensemble 

average. Figure 2 shows the arithmetic ensemble average (AEA: white panels) and the estimation given 

by the proposed ACSTP algorithm (ACSTP: grey panels) for four representative subjects (ss 8, 10, 7 

and 11). Note that for the AEA we do not apply amplitude and latency correction. The subspace 

dimension chosen by the ACSTP algorithm (Pz) is reported within parenthesis. Concerning the target 

class, for all four subjects the filtering process preserves or only slightly attenuates the P300. Subjects 7 

and 11 are representative of subject featuring a clean AEA; in this case the ACSTP estimation is very 

close to the AEA estimation, as one would expect. This is reflected in a similar global field power profile 

for the AEA and ACSTP estimation5. Subjects 8 and 10 present with large eye-related artifacts surviving 

the arithmetic averaging process, better visible at frontal pole locations FP1 and FP2. For these subjects 

the ACSTP successfully removes the artifacts with good specificity. This can be appreciated, for 

instance, for ss 10, where the ACSTP estimation at frontal electrodes before 500 ms. has preserved early 

peaks that one can see at electrodes Cz as well, demonstrating that they are of cerebral origin and as 

such should not be removed.  

The way the automatic choice of the subspace dimension Pz is carried out is illustrated in Fig. 3. 

The plots show for ss 8, 10, 7 and 11 the smoothed SNR (1.15), the threshold fixed at 66% of the 

normalized SNR, the global maximum in the range [2,.., N] (cross) and the chosen local maximum 

estimating Pz found according to the criteria specified in the ACSTP algorithm box section 1.2.12.  

The effect of the ACSTP filter is analyzed in Fig. 4, which shows the 16 CSTP temporal 

components in the form of time-series and the spatial components in the form of topographic maps, 

again for ss. 8, 10, 7 and 11. These components are, respectively, the columns of matrix E and A of the 

CSTP filter (1.10). The subspace dimension chosen by the algorithm for subject 8 is 14 (Fig. 2), thus 

component 15 and 16 have been removed. The temporal maps in Fig. 4 show that these two components 

consist of very slow potential variations unrelated to the ERP of interest. For subject 10 Pz=13, thus 

components 14, 15 and 16 have been removed. The spatial maps suggest that these components receive 

maximal contribution from the frontal pole, thus they are most likely generated by the eyes. A similar 

analysis and similar conclusions can be carried out for ss 7 and 11. Notice that the components produced 

by CSTP should not be interpreted directly in terms of physiological phenomena, as the CSTP is not a 

source separation method. Indeed the components may represent mixtures of physiological sources just 

as scalp data time-series and topography are. Here we show these components only to illustrate the 

relevance of the automatic choice of the subspace dimension obtained by using a mask.  

                                                           
5 The global filed power (Lehmann and Skrandies, 1980) is the average absolute amplitude across derivations at 

each sample. It is very useful to detect phase-locked dipolar fields generating ensemble average estimations. 
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Figure 2. Ensemble Average Estimations. Unweighted and unaligned arithmetic ensemble average (AEA: white 

panels) and weighted and aligned ensemble average estimated by ACSTP (grey panels) of the 80 target sweeps 

(TA, top row) and 400 non-target (NT, bottom row) for four representative subjects (ss 8, 10, 7 and 11). Upward 

deflections with respect to the horizontal lines (zero potential) indicate positive potentials. Each plot comprises 

one second of data starting at target flashing. For each subject the voltage scaling is arbitrary, but it is the same for 

all plots within each subject. The shaded area plot is the global field power (GFP).   
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Figure 3. Smoothed Normalized SNR (1.15) used by the ACSTP algorithm to select automatically the 

optimal subspace dimension Pz. The smoothed and normalized SNR in arbitrary scale obtained for dimensions 

[2…16], the threshold, defined as 66% of the total SNR, the absolute maximum (cercle) and the maximum chosen 

according to criteria specified in the ACSTP algorithm box in section 1.2.12, for subjects 8, 10, 7 and 11. 

 

 

Figure 4. Spatial and Temporal Patterns of the CSTP. The 16 temporal components in the form of time-series 

and spatial components in the form of scalp topographic maps as found by the CSTP algorithm for ss 8, 10, 7 and 

11. Both temporal and spatial maps are displayed on an arbitrary scale. The spatial maps are normalized to the 

maximum. 
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The ACSTP algorithm provides an estimation of the ensemble average, thus, as for any estimator, 

it is important to study its variability. We study this variability as a function of the number of available 

sweeps. For doing so we use a bootstrap procedure: we randomly draw 600 times 5%, 10%, 15%, 20%, 

25% and 50% of the available 80 target and 400 non-target sweeps. This yields a bootstrap sample size 

of 4, 8, 12, 16, 20 and 40 target sweeps and of 20, 40, 60, 80, 100 and 200 non-target sweeps. For each 

sample size we compute the arithmetic average of the 600 bootstraps and the root mean square error 

(RMSE) of each bootstrap ERP vs. the arithmetic average of the 600 bootstrap ERPs. Thus, we obtain 

a mean and standard deviation RMSE across the 600 bootstraps for each subject and for each bootstrap 

sample size. The RMSE is defined as the square root of the mean squared difference, computed at all 

electrodes and all time points; since the RMSE is computed between a bootstrap and the average of the 

600 bootstraps, the higher the RMSE the higher the variability of the estimator. The results for the AEA 

and ACSTP estimators are given for all subjects in Fig. 5. The RMSE is consistently lower for ACSTP 

as compared to the AEA both for the target (TA) and non-target (NT) class. As compared to AEA, the 

RMSE of ACSTP tends to increase slower when decreasing the sample size. For large sample sizes the 

RMSE of the two estimators is very similar. These results show that the ACSTP estimator features a 

significantly lower variability, the more so the smaller the sample size, approaching the AEA estimator 

asymptotically (as the sample size goes to infinity).  

Figure 6 show butterfly ERP plots of the 600 bootstraps at electrodes AFz, Cz and Pz for different 

values of sample size, along with the mean and the 95% confidence interval of the 600 bootstraps for 

subject 8. The abscissa and ordinate of all plots are the same and with the same scaling. For the target 

class (top of the figure) we notice the presence of ocular artefacts peaking at about 500 ms post-stimulus, 

visible in the AEA estimator at frontal electrode AFz (see also Fig. 2). The ACSTP estimator reduces 

them substantially in all cases and even when only 10% of the sweeps are used to obtain the estimate (8 

sweeps only).  
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Figure 5. AEA and ACSTP Estimator Variability. Mean and 3 sd root mean square error (RMSE) of the 600 

bootstraps as a function of the bootstrap sample size (x-axis), for target (TA) and non-target (NT) sweeps and each 

subject separately (s01 to s24). Dark Grey: AEA (Arithmetic Ensemble Average). Light Gray: ACSTP (Adaptive 

Common Spatio-Temporal Pattern). A two-tailed paired student t-test was used to compare the RMSE of the AEA 

and of the ACSTP for each sample size. The p-values obtained were corrected using the false discovery rate 

procedure (with expected proportion of false discovery q=0.05: Benjamini and Hochberg, 1995). Significant p-

values after correction are indicated by an asterisk.  
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Figure 6. Butterfly plot of bootstrapped ERPs for Subject 8. The thin lines are plots of the 600 bootstrap 

ERPs estimated by AEA and ACSTP at electrodes AFz, Cz and Pz for three different values of sample 

size ( a)= 50%, b)=20%, c)=10% of the available sweeps). The mean (thick dark grey line) and the 95% 

confidence interval (grey shaded area) of the 600 bootstraps are also shown. Upward deflections indicate 

positive potentials.  In all plots the horizontal axis represents time, with zero corresponding to the time 

of flashing, and the vertical axis represents voltage in microVolts. The scaling is the same for all plots 

so as to allow comparisons. Top: target (TA) class. Bottom: non-target (NT) class. 

 

 



25 

1.4 Conclusions and Discussion 

The goal of this article was to provide a reference method for the time-domain analysis of ERPs. 

The CSTP algorithm itself has a major free parameter, the subspace dimension (Pz). We have proposed 

one procedure for estimating this parameter automatically, involving the use of a mask. Together with 

adaptive time-shift and amplitude correction this yields the ACSTP algorithm. In the present study, five 

different mask definitions have been necessary to accommodate the principal spatial patterns of the P300 

potentials in a 24-subject sample. According to our experience, a small number of masks, as found here, 

may accommodate the quasi-totality of the adult healthy population working with P300 data. While the 

proposed procedure for selecting the subspace dimension does not guarantee optimality, it provides a 

useful and workable guess, as our real-data analysis witness. For the sake of estimating an ensemble 

average one may be content with the output of the ACSTP algorithm. In addition, one can refine the 

search by running the CSTP algorithm for some values of Pz above and below the one chosen by the 

ACSTP algorithm. Yet, an inappropriate choice of the mask may jeopardize the ensemble average 

estimation and is a supervised step itself. A fully unsupervised method for selecting the optimal subspace 

dimension is possible when the estimated means are to be used for statistical analysis (e.g., contrasting 

the means of two experimental conditions). In this case one may treat the subspace dimension Pz as an 

independent variable, that is, estimate means in a wide range of Pz values such as [4, N-1] and perform 

statistical tests on the means for all values of Pz in the range. Using a p-min permutation test strategy 

(Westfall and Young, 1992) one may take the value of p yielding the strongest evidence against the null 

hypothesis, provided that the omnibus hypothesis is rejected. 

The use of time-shift adaptive estimation has a free parameter, the width of the maximal time-

shift allowed (E), which may affect the result considerably. The width of the maximal time-shift allowed 

should not be set automatically because it strictly depends on the amount of instrumental jitter, the nature 

of the experiment and the class of ERP under analysis. It can be fixed once though for any given 

equipment and experiment. Experimental results on the expected amount of physiological ERP latency 

are available (e.g., Gaspar et al., 2011).  In addition to exploit previous knowledge, one should be aware 

of the necessity to remove any artifacts with a strong periodic character before running any time-shift 

adaptive estimation, since the algorithm may try to align the sweeps based on such oscillations instead 

of on true time-locked responses. Power-line contaminations constitute the most important kind of such 

artifacts. Similarly, ERP containing very low frequencies may result in distorted correlation between 

each sweep and the ensemble average, biasing the time-shift correction. Therefore, both an efficient 

notch filter (at the power-line frequency) and a band-pass filter with a high-pass in between 0.1 Hz and 

1 Hz should be applied to the data if time-shift correction is sought. In addition, the use of a mask for 

time-shift estimation is strongly recommended.  
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Typically, ERP studies estimate the ensemble averages as the arithmetic average of a large 

number of sweeps after removing EEG epochs with excessive artifacts. This procedure, besides being 

time consuming, is problematic in the case of overlapping ERPs, as EEG segments holding all ERPs 

overlapping with the artifact, even if only partially, must be removed (see the discussion in Smith and 

Kutas, 2015). This difficulty is not encountered by artifact filtering methods based on eye-related 

activity regression and blind source separation, although these methods may filter and distort the signal 

in unpredictable ways. Thanks to the combination of a sharp spatio-temporal filtering and single-sweep 

weighting, the method we propose is able to process EEG data contaminated by common artifacts such 

as those related to eye blinks, eye movements, facial muscle contractions, slow head movements, loss 

of electrode contact, etc. In this article we have analyzed a complete data set of 24 subjects without any 

artifact removal or artifact filtering and we have obtained an enhancement of the SNR over the arithmetic 

ensemble average in all cases. The ability to perform analysis without any previous artifact rejection is 

a remarkable advantage of the proposed method over the arithmetic mean and other standard methods 

presented in the literature. Of course, very large artifacts should be removed from the stream of data, 

but this can be done without supervision with an amplitude thresholding method using a rather 

permissive threshold such as ±200V (assuming a high-pass filter has been applied to remove the DC 

offset). Other possible extreme EEG data distortions such as loss of electrode contact can also be easily 

detected and removed automatically using sensitive methods such as the Riemannian Potato (Barachant 

et al., 2013) with a rather permissive threshold. 

The design matrix T introduced in (1.3) and used in (1.9) for computing the ensemble average 

estimations may be a very large matrix, apparently posing problems of numerical efficiency for the 

ensemble average estimations in  (1.9). Suppose an experiment involving the study of ten classes of 

overlapping ERP, lasting 30 minutes total, recording EEG with 128 electrodes at 256 samples per 

seconds and defining ERP windows of one second. The data matrix X would be of dimension 

128x460800, requiring about 472Mb of memory for encoding the data with a double precision. On the 

other hand, the design matrix T would be of size 2560x460800, requiring for the same precision more 

than 9.4Gb of memory. Indeed with long experiments, long ERP windows or many ERP classes the 

efficiency of the computations in  (1.9) may become a matter of concern. Fortunately however, one does 

not need to store in memory matrix T at all. In fact, both products XTT and TTT in (1.9) can be computed 

very efficiently just knowing the vectors of weights and time-shifts, data matrix X and the event times 

for each class. Regarding the inversion of the matrix TTT in (1.9), which in our example would be a 

matrix of dimension 2560x2560, it so happens that this matrix is sparse (i.e., it has many zero entries), 

so efficient sparse matrix inversion routines can be employed; since the last term in (1.9) is just a scaling, 

overall the ensemble average estimations in (1.9) can be obtained very efficiently on standard 

commercial computers. 
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A key factor for the success of CSTP estimations is the goodness of the noise estimation. If only a 

few sweeps are available, the estimation of the spatial and temporal noise covariance matrices (1.12) is 

poor. In this case one can use also random segments of the EEG data (not only actual sweeps) to 

construct these matrices. This is a simple and effective strategy, allowing proper noise estimation as 

soon as about 40 seconds of EEG recording is available. Another possible strategy is to regularize the 

estimation of these matrices by known methods based on statistical estimation theory (Engemann and 

Gramfort, 2015) or transfer learning (Lotte and Guan, 2011). 

It should be stressed here that the CSTP is not a source separation approach; the filter is not designed 

to estimate the waveform and spatial distribution on the scalp of the actual source processes generating 

the ERPs, rather, it only seeks spatio-temporal combinations of the data maximizing the SNR. As a 

consequence, temporal and spatial patterns as those presented in Fig. 4 should not be interpreted as 

representing physiological phenomena. The same is true in general for all methods based on PCA or 

SNR enhancement. The only family of methods that allows such interpretation is waveform-preserving 

source separation (Congedo et al., 2014; Makeig et al., 2002).  

In summary, we have presented a reference companion method for ERP analysis in the time domain 

based on a spatio-temporal multivariate filtering of the ensemble average estimation. Besides 

performing an effective spatio-temporal filtering, this method adaptively estimates weights and time-

shifts for each sweep. Furthermore, the method considers appropriately the case of overlapping ERPs. 

It is in the combination of all these features that the generality of the ACSTP algorithm resides. We have 

proposed a solution to the problem of estimating the optimal subspace dimension for the filter. The 

method can be applied on data where only segments containing very extreme artifacts are discarded; 

common source of artifacts can be analyzed. Given these characteristics, the method proposed here can 

be used routinely to obtain an improved ensemble average estimation to complement and enrich the 

information provided by the standard arithmetic average and to obtain an ensemble average estimation 

with a reduced number of sweeps. It can also be used as a pre-processing step before entering statistical 

analysis, for example by the LIMO EEG Toolbox (Pernet et al., 2011).  The ACSTP algorithm has been 

described in all relevant details, allowing peers to replicate exactly its implementation. Furthermore, a 

MATLAB toolbox (available at : http://louis-korczowski.org/) a stand-alone executable application 

(available at https://sites.google.com/site/marcocongedo) and a plug-in for the EEGLAB suite (Delorme 

and Makeig, 2004) have been made available to the community. 
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Appendix A 

Referring to (1.9), note that if the ERPs do not overlap,  
1

TTT


 reduces to a block diagonal matrix 

equal to 
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     holds the 

weighted sum of the sweeps for each class stacked horizontally one next to the other. In this case each 

average estimation in (1.9) reduces to the weighted arithmetic mean (1.8), for whatever set of non-

negative weights. Furthermore, if all weights are equal to one and the time shifts are equal to zero, (1.9) 

reduces to the arithmetic ensemble average. This way we see precisely why estimation (1.9) is a 

generalization of (1.8). 

 

Appendix B 

Let 

    ,     T T

S T
C UΦU C V ΨV   (1.17) 

be the eigenvalue-eigenvector decompositions of the noise covariance estimations in (1.12), with 
N NU  , 

T TV   orthogonal matrices holding in columns the eigenvectors  1 Nu u ,  1 Tv v   

and 
N NΦ  , 

T TΨ  diagonal matrices holding the (non-negative) eigenvalues in decreasing order 

of magnitude, i.e., such that 1 N    and 1 T    . Let 

        
1 1 1 1

2 2 2 2N Q T R
1 1 Q Q 1 1 R R,      

S T
F u u F v v   

         (1.18) 

which transpose have right-inverses 

        
1 1 1 1

2 2 2 2N Q T R
1 1 Q Q 1 1 R R   ,          

S T
G u u G v v        , (1.19) 

where right-inverse means that these matrices verify 

        Q R,       .T T

S S T T
F G I F G I   (1.20) 

In (1.18)-(1.20) QN and RT are the largest integer indices for which Q  and R  are non-null, 

respectively. In practice (with empirical data), we choose Q and R so that the eigenvalues Q  and R  

are larger than a threshold explaining a very small portion of the variance of the noise (say, one million 

times smaller than the first eigenvalue of the noise term C(S)). In this way the final result will not be 

sensitive at all to the exact choice of Q and R and these parameters can be set automatically without 

affecting the result. Note that we can set Q=N and R=T as long as matrices 
 S

C  and 
 T

C  in (1.12), 

respectively, are positive definite, which for 
 T

C  will be the case in general if several times more than 

T/N sweeps are averaged (remember that without loss of generality we are assuming that T>N). Finally, 
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note that the threshold must be set very low in any case because ERP components may explain very 

little variance as compared to the variance of large EEG artifacts, thus we must make sure we do not 

remove ERP components in the whitening step.  

We can now obtain a bilinear (spatio-temporal) whitening of the data with the pair of matrices 
 S

F  

and 
 T

F ; let us apply the whitening transformation to the ensemble average estimation for class z, such 

as 

    
' ' Q RT
z zS T

Z F X F   , (1.21) 

where we use (1.8) or (1.9) to estimate '
zX  depending whether we are in the non-overlapping or 

overlapping case, respectively. The transformation is a spatio-temporal whitening of the noise term 

since it verifies        Q
T

S S S
F C F I  and       R

T

T T T
F C F I . Now, let 

 
' T
z z z zZ Π W Ξ , (1.22) 

be the SVD of the whitened ERP ensemble average estimation (1.21), with Π  and Ξ  holding in 

columns the left and right singular vectors, respectively, and W holding in the diagonal the singular 

values in decreasing order, as usual. Finally, the bilinear common filters and patterns are given by 

                          z z z z z z z zS T S T
B F Π , D F Ξ , A G Π , E G Ξ ,     (1.23) 

where 1 zz z zPΠ       and 1 zz zPΞ       hold in columns the first PzN column vectors of zΠ  and 

zΞ  (1.22), respectively,  
T

S
F ,  

T

T
F  are given in (1.18) and  S

G ,  T
G  are given in (1.19). What we have 

achieved is that, by construction, zB  and zD  verify 
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,          (1.24) 

where 
P Pz z

zΛ   is a diagonal matrix with diagonal elements sorted by magnitude. These elements 

hold the square root of the SNR variance ratio (1.14) attained by the corresponding vectors of zB  and 

zD . Note that they are just the first Pz elements of diagonal matrix zW  in  (1.22), whereas the remaining 

elements of Wz explain the square root of the variance filtered out by the bilinear transformation. Thus, 

effective SNR enhancement is obtained simply retaining Pz<N vectors to construct the filter (1.23). Note 

that by setting 
    Tz zT T

F G D E I     we obtain the common spatial pattern (CSP), while by setting 

    Nz zS S
F G B A I     we obtain the common temporal pattern (CTP). Also, by setting 

    N
T

S S
F G I   and     T

T

T T
F G I   (i.e., omitting the whitening step) the CSTP reduces to the bilinear 

PCA; in this way the CSTP can be seen as a bilinear PCA applied to whitened data. 
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