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Abstract

We derive some additional results on the Bienyamé-Galton-Watson branch-
ing process with θ−linear fractional branching mechanism, as studied in [16].
This includes: the explicit expression of the limit laws in both the sub-critical
cases and the super-critical cases with finite mean, the long-run behavior of the
population size in the critical case, limit laws in the super-critical cases with
infinite mean when the θ-process is either regular or explosive, results regarding
the time to absorption, an expression of the probability law of the θ-branching
mechanism involving Bell polynomials, the explicit computation of the stochas-
tic transition matrix of the θ−process, together with its powers.

Keywords: Bienyamé-Galton-Watson branching process, θ−linear frac-
tional branching mechanism, population growth, Yaglom limits, powers of prob-
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1 Introduction

Recently, in Sagitov and Lindo (2015), a family of branching mechanisms involving
explosions was introduced: the so-called θ-linear fractional family. It fixes the repro-
duction law of some specific Bienyamé-Galton-Watson branching processes (Harris
(1963)), and it is given in terms of its probability generating function (pgf). This pgf
family has the remarkable invariance under iterated composition property so that in
principle the law of the population size at each generation can be computed. This
family extends the classical linear-fractional model (obtained when θ = 1) whose
study dates back to Schröder, (Harris (1963), p. 9 and Schröder (1871)). This makes
computation of important statistical quantities of great interest quite explicit. In
this construction θ ∈ [−1, 1], with very special properties for the cases θ ∈ {−1, 0, 1}
when θ is an integer. We shall revisit this θ-family and give some additional results,
among which:

- the expression of the limit laws in the subcritical cases and super-critical cases
with finite mean, solving respectively the associated Schröder and Poincaré functional
equations.

- the long-run behavior of the population size in the critical case.
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- limit laws in the super-critical cases with infinite mean when either the θ-process
is regular or explosive.

- information on the time to absorption defined as the infimum of the times to
extinction and explosion.

- an expression of the probability mass distribution of the θ-branching mechanism,
alternative to the one given in Proposition 4 of Sagitov and Lindo (2015), using of
Faa di Bruno formulae and Bell polynomials.

- the explicit computation of the stochastic transition matrix of the associated
Bienyamé-Galton-Watson θ-branching processes, together with its powers. This gives
some access to the resolvent of such processes as a key ingredient to compute passage
time statistics, hitting probabilities,...

We end up this work by a short section of examples where the following problem
of concrete interest is addressed: what is the probability that, given the θ-branching
process has not yet gone extinct at some given generation, its extinction time be
infinite with a large probability close to 1. We do some computations in the special
cases θ ∈ {−1, 0, 1}.

2 Generalities on Bienyamé-Galton-Watson (BGW) branch-
ing processes

We start with generalities on such BGW processes, including the case displaying
finite-time explosion, Sagitov and Lindo (2015).

2.1 The pgf approach

Consider a discrete-time Bienyamé-Galton-Watson branching process (Harris (1963))
whose reproduction law is given by the (sub-)probability law P (M = m) =: π (m),
m ≥ 0 for the number M of offspring per capita. We assume π (0) > 0 so that the
process can go extinct. We let φ (z) = E

(
zM
)

=
∑
m≥0 π (m) zm be the probability

generating function of M and we assume φ (1) ≤ 1.
With Nn (1) the number of individuals alive at generation n given N0 = 1, we

have
E
(
zNn(1)

)
:= E

(
zNn | N0 = 1

)
= φ◦n (z) , (1)

where φ◦n (z) is the n-th composition of φ (z) with itself, 1. Similarly, if Nn (i) is
the number of individuals alive at generation n given there are N0 = i independent
founders, we clearly get

E
(
zNn(i)

)
:= E

(
zNn | N0 = i

)
= φ◦n (z)

i
. (2)

We shall also let
τ i,j = inf (n ≥ 1 : Nn = j | N0 = i) ,

the first hitting time of state j 6= i given N0 = i 6= 0.

- If φ (1) < 1, there is a positive probability 1 − φ (1) =: π (∞) that M = ∞
(explosion is made possible even at the first branching step): following Sagitov and
Lindo (2015), we shall speak of an explosive or non-regular process.

- If φ (1) = 1 (regular case), depending on µ := E (M) ≤ 1 (i.e. the (sub-)critical
case ) or µ > 1 (supercritical case): the process Nn (1) goes extinct with probability

1Throughout this work, a pgf will therefore be a function φ which is absolutely monotone on
(0, 1) with all nonnegative derivatives of any order there, obeying φ (1) ≤ 1.
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1 or goes extinct with probability ρ < 1 where ρ is the smallest fixed point solution
in [0, 1] to φ (ρ) = ρ, respectively. In the latter case, the distribution of the time to
extinction τ1,0 is given by

P (τ1,0 ≤ n) = P (Nn (1) = 0) = φ◦n (0) ,

and the process explodes with probability ρ := 1 − ρ, but not in finite time: only
state {0} is absorbing. Clearly also, if there are i independent founders instead of
simply 1,

P (τ i,0 ≤ n) = P (Nn (i) = 0) = φ◦n (0)
i
.

- If φ (1) < 1 (explosive case), µ := E (M) = ∞ because there is a positive
probability 1− φ (1) that M =∞. Notice that

φ′ (1) = E
(
M · 1{M<∞}

)
=
∑
m≥1

mπ (m) ,

if this quantity exists (is finite). If φ (1) < 1, state {∞} should be added to the
state-space N0 = {0, 1, ...} of Nn (i) and then both states are {0,∞} are absorbing.
In this supercritical case, ρ < 1 always, and both the time to extinction τ1,0 and the
time to explosion τ1,∞ of Nn (1) are finite with positive probability, now with{

P (τ1,0 ≤ n) = P (Nn (1) = 0) = φ◦n (0) →
n→∞

ρ = P (τ1,0 <∞) .

P (τ1,∞ > n) = P (Nn (1) <∞) = φ◦n (1) →
n→∞

ρ = P (τ1,∞ =∞) .
(3)

Thus ρ and ρ are now also the probabilities that τ1,0 <∞ and τ1,∞ <∞, respectively.
We thus have P (n < τ1,0 <∞) = ρ− φ◦n (0) ,

P (n < τ1,∞ <∞) = ρ− (1− φ◦n (1)) = φ◦n (1)− ρ, and,
P (n < τ1 <∞) = P (0 < Nn (1) <∞) = φ◦n (1)− φ◦n (0) ,

(4)

where we defined the global absorption time τ1 := τ1,0 ∧ τ1,∞. Clearly also, with
τ i := τ i,0 ∧ τ i,∞

P (n < τ i,0 <∞) = ρi − φ◦n (0)
i
,

P (n < τ i,∞ <∞) =
(
1− ρi

)
−
(

1− φ◦n (1)
i
)

= φ◦n (1)
i − ρi, and,

P (n < τ i <∞) = P (0 < Nn (i) <∞) = φ◦n (1)
i − φ◦n (0)

i
.

(5)

Suppose a supercritical situation for which the extinction probability of Nn (i) is
smaller than 1 (always the case if φ (1) < 1). Of concrete interest is then the prob-
ability that, given the process Nn (i) has not yet gone extinct at generation n, the
extinction time of the process will be finite, namely

P (τ i,0 <∞ | Nn (i) > 0) = P (τ i,0 <∞ | τ i,0 > n) .

We get

P (τ i,0 <∞ | Nn (i) > 0) =
ρi − φ◦n (0)

i

1− φ◦n (0)
i
,
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and the larger n, the smaller this probability because φ◦n+1 (0) > φ◦n (0). There is
thus a value nc of n for which, with probability c close to 1,

1−P (τ i,0 <∞ | Nnc (i) > 0) =
1− ρi

1− φ◦nc (0)
i

= c ( = say 0.99). (6)

This is the probability that some population with i founders, still alive at generation
nc, will never go extinct.

2.2 The transition matrix approach

A Bienaymé-Galton-Watson process is a time-homogeneous Markov chain with denu-
merable state-space N0 := {0, 1, ...}. Its stochastic transition matrix is P , with entries

P (i, j) =
[
zj
]
φ (z)

i
= P (N1 (i) = j) (with

[
zj
]
φ (z)

i
meaning the zj-coefficient of

the pgf φ (z)
i
). When there is explosion and in the supercritical cases, an interesting

problem arises when conditioning Nn either on extinction or on explosion. This may
be understood as follows:

The harmonic column vector h, solution to Ph = h, is given by its coordinates
h (i) = ρi, i ≥ 0, because

∑
j≥0 P (i, j) ρj = φ (ρ)

i
= ρi. LettingDh :=diag(h (0) , h (1) , ...),

introduce the stochastic matrix Ph given by a Doob transform (Norris (1998) and

Rogers and Williams (1994), p. 327): Ph = D−1h PDh or Ph (i, j) = h (i)
−1
P (i, j)h (j) =

P (i, j) ρj−i, i, j ≥ 0. Note h (Nn (i)) = ρNn(i) is a martingale because E (h (Nn (i))) =

φ◦n (ρ)
i

= ρi = h (i) = h (N0 (i)). Then Ph is the transition matrix of Nn condi-
tioned on almost sure extinction. Equivalently, when conditioning Nn on almost
sure extinction, one is led to a regular subcritical BGW process with new branching
mechanism φ0 (z) = φ (ρz) /ρ, satisfying φ0 (1) = 1 and φ′0 (1) = φ′ (ρ) < 1. Indeed,
φ0 (z) =

∑
j≥0 Ph (1, j) zj . Upon iterating, we get φ◦n0 (z) = φ◦n (ρz) /ρ.

Similarly, when conditioning Nn on almost sure explosion, one is led to an explo-
sive supercritical BGW process with new Harris-Sevastyanov branching mechanism
φ∞ (z) = [φ (ρ+ ρz)− ρ] /ρ, satisfying φ∞ (0) = 0 and φ∞ (1) = (φ (1)− ρ) /ρ < 1.
Upon iterating, we have φ◦n∞ (z) = [φ◦n (ρ+ ρz)− ρ] /ρ.

The second largest eigenvalue of P is γ = φ′ (ρ) < 1. The corresponding eigen-
vector u obeys Pu = γu with u (i) = iρi−1, i ≥ 1, because

∑
j≥1 P (i, j) jρj−1 =

φ′ (ρ) iφ (ρ)
i−1

= γiρi−1. Conditioning Nn on never hitting {0,∞} in the remote
future is given by the Q-process with stochastic transition matrix Q = γ−1D−1u PDu

or Q (i, j) = γ−1u (i)
−1
P (i, j)u (j) = γ−1ρj−ii−1P (i, j) j, i, j ≥ 1 (see Lambert

(2010) and Sagitov and Lindo (2015), Section 6 in the θ-special case).

There are classes of discrete branching processes for which the pgf φ◦n (z) of
Nn (1) is exactly computable, thereby making the above computations concrete and
somehow explicit.
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3 The θ-linear fractional branching mechanism model, Sagitov
and Lindo (2015)

With |θ| ≤ 1, a, b > 0 and zc ≥ 1, we shall consider the θ-linear fractional branching
mechanism model, namely,φ (z) = zc −

(
a (zc − z)−θ + b

)−1/θ
or

(zc − φ (z))
−θ

= a (zc − z)−θ + b,
(7)

and for those values of zc ≥ 1 and a, b > 0 for which φ is a pgf with φ (1) ≤ 1. The
case θ = 0 will be considered in (11).

3.1 The boundary cases θ = ±1

The boundary cases θ = ±1 deserve a special treatment that we shall first evacuate.

• When θ = 1, φ (z) = zc −
(
a (zc − z)−1 + b

)−1
is an homographic map. As-

suming a + b > 1 and introducing the probabilities p0 = 1/ (a+ b), q = a/ (a+ b),
with p0 + q0 = 1 and p+ q = 1, this is also (a = q/p0, b = p/p0)

1

zc − φ (z)
=

q

p0

1

zc − z
+

p

p0
.

Note φ (zc) = zc but zc is not the convergence radius of φ, which is zc + q/p.

- In the particular case zc = 1, we have the two following interpretations for φ (z) :

Proposition 1 (i) When zc = 1, φ (z) = q0 + p0 (qz) / (1− pz), the classical form
of the simple linear fractional model. This pgf is the one of a random variable M

obtained as M
d
= G ·B (equality in law), where B is Bernoulli(p0) distributed, inde-

pendent of G, a geometric(1/q) distributed random variable.
(ii) When zc = 1 and if b < 1, we also have

φ (z) =
1 + (1− z) b−1a
1 + (1− z) ba

,

which can be put in the alternative form

φ (z) =
β (β0 + α0z)

1− α (β0 + α0z)
,

while defining the probabilities α0 = (1− b) /a, α = b and β0 = 1 − α0, β = 1 − α.
This φ (z) is thus the pgf of the random variable

M
d
=

G∑
k=1

Bk,

where G now is geometric(1/β) distributed, independent of the sequence of inde-
pendent and identically distributed (Bk)k≥1, with B1 Bernoulli(α0) distributed. M
is thus a Bernoulli-thinned version of G in the sense of Steutel and van Harn (1979).

5



We have µ := E (M) = φ′ (1) = p0/q = 1/a and{
φ◦n (z) = 1−

(
an (1− z)−1 + bn

)−1
where

an = an and bn = b
(
1 + a+ ...+ an−1

) .

Depending on a > 1, a = 1 or a < 1, the corresponding branching process is subcrit-
ical, critical or supercritical. In the supercritical case a = q/p0 < 1 the extinction
probability is ρ = q0/p < 1.

- If now zc > 1, the additional constraints φ (0) ∈ (0, 1) and φ (1) ≤ 1 impose
p0 < q + pzc ≤ p + p0. This family is of interest because its n-th iterate is explicit,
also homographic, with{

φ◦n (z) = zc −
(
an (zc − z)−1 + bn

)−1
where

an = an and bn = b
(
1 + a+ ...+ an−1

)
.

(8)

Thus for instance, if zc > 1, and q + pzc < p+ p0

P (n < τ1 <∞) = φ◦n (1)− φ◦n (0) =
an

(an + bnzc) (an + bn (zc − 1))
,

with

P (n < τ1 <∞) ∼
n→∞


(a−1)2

(a−1+bzc)(a−1+b(zc−1))a
−1
n if a > 1

(a−1)2
b2zc(zc−1)a

n if a < 1
1

b2zc(zc−1)n
−2 if a = 1

.

When a = 1 (p0 = q and q0 = p), the tails of τ1 are no longer asymptotically geo-
metric, rather they are power-law with tail index 2.

•When θ = −1, φ (z) = az+ zc (1− a)− b is the affine map and, if φ (1) = 1, the
corresponding branching process is the regular death process as each individual can
only either die or survive upon splitting. With π (1) = a, π (0) = zc (1− a) − b =
1−π (1), φ (z) = π (1) z+π (0) and the corresponding branching process is subcritical,
always, with mean µ = π (1) = a < 1. With πn (0) + πn (1) = 1, we have

φ◦n (z) = πn (0) + πn (1) z, where πn (1) = π (1)
n
.

If φ (1) < 1, the corresponding branching process is an explosive process where
each individual can either die, survive or give birth to infinitely many descendants
on splitting. The additional constraints φ (0) ∈ (0, 1) and φ (1) < 1 impose π (1) =
a ∈ (0, 1), π (0) = zc (1− a) − b < 1 − π (1) = 1 − a, thus (zc − 1) (1− a) < b. This
family is of interest because its n-th iterate is again explicit{

φ◦n (z) = zc − (an (zc − z) + bn) with

an = an and bn = b
(
1 + a+ ...+ an−1

)
= b 1−a

n

1−a
(9)

and again in the same class of affine maps. With πn (0) + πn (1) < 1, this is also

φ◦n (z) = πn (0) + πn (1) z, where πn (0) = π (0)
1− an

1− a
and πn (1) = π (1)

n
.

We have

P (Nn (1) <∞) = πn (0) + πn (1) = π (0)
1− an

1− a
+ π (1)

n

→
n→∞

P (N∞ (1) <∞) : = π (0) / (1− a) < 1.
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P (Nn (1) =∞) is an increasing sequence. The relative rate of approach of P (Nn (1) =∞)
to its limiting value decays geometrically with

P (N∞ (1) =∞)−P (Nn (1) =∞)

P (N∞ (1) =∞)
= an.

Note P (n < τ1 <∞) = φ◦n (1)− φ◦n (0) = an, an exact geometric distribution.

3.2 The case θ ∈ (−1, 1)

Although we deal here with the case θ ∈ (−1, 1), we, somehow abusively, extend the
range of the parameter set to its boundary whenever it causes no particular problem.

- With θ ∈ (−1, 1), a, b > 0 and zc = sup (z > 0 : φ (z) <∞) ≥ 1, let us reconsider
φ (z) as defined by (1). Note now φ (zc) ≤ zc (= zc if θ ∈ (0, 1]) and zc > 1 could
produce φ (1) < 1, the explosion opportunity. This family is of interest because its
n-th iterate is also explicit with (if θ 6= 0){

φ◦n (z) = zc −
(
an (zc − z)−θ + bn

)−1/θ
where

an = an and bn = b
(
1 + a+ ...+ an−1

)
,

(10)

and it is in the same class as φ, although for a different set of parameters a, b (an
invariance under iteration property).

The case θ = 0 is defined by continuity from the case θ ∈ (−1, 1) \ {0} while
observing

φ (z) = zc −
(
a (zc − z)−θ + (1− a) (zc − ρ)

−θ
)−1/θ

→
|θ|→0

zc − (zc − ρ)
1−a

(zc − z)a ,

(11)
with φ (1) < 1 if zc > 1. Notice that if zc = 1, φ (1) = 1 and µ =∞ (the only regular
case with infinite mean).

There are three cases, depending on µ := E (M) < 1, = 1 or > 1:

• (A) : subcritical cases:
(i) If θ ∈ (0, 1], zc = 1, a > 1, b > 0, then µ = a−1/θ < 1. Again, if θ = 1,

φ (z) = q0 + p0qz/ (1− pz) with p0 = 1/ (a+ b), p = b/ (a+ b) , the classical form
of the 1-fractional model as the composition of a Bernoulli(p0) pgf with the one of a
geometric(p/q) pgf.

(ii) If θ ∈ (−1, 1], zc > 1, a ∈ (0, 1) and b = (1− a) (zc − 1)
−θ

, then µ = a < 1.
(iii) If θ = −1, zc = 1 and a ∈ (0, 1), then µ = a < 1.

• (B) : critical case (µ = 1): this situation occurs only when θ ∈ (0, 1], zc = 1,
a = 1, b > 0.

• (C) : supercritical case (∞ ≥ µ > 1): θ ∈ (−1, 1], zc ≥ 1, a ∈ (0, 1),

b = (1− a) (zc − ρ)
−θ

where equivalently ρ = zc − ((1− a) /b)
1/θ

is the extinction
probability of the process, as the smallest solution in the interval [0, 1] to φ (ρ) = ρ
with ρ ∈ (0, 1). We have a = φ′ (ρ).

In the supercritical case with zc > 1, then µ =∞ because in this case,

φ (1) = zc −
(
a (zc − 1)

−θ
+ (1− a) (zc − ρ)

−θ
)−1/θ

< 1

7



and M =∞ with a positive probability.

In general, we have φ′ (1) = a
(
a+ b (zc − 1)

θ
)−(θ+1)/θ

= a

(
a+ (1− a)

(
zc−1
zc−ρ

)θ)−(θ+1)/θ

which coincides with µ if zc = 1. We conclude that in the supercritical case with
zc = 1

µ =

{
∞ if θ ∈ (−1, 0] , a ∈ (0, 1)
a−1/θ if θ ∈ (0, 1] , a ∈ (0, 1)

.

In the first case,
- if θ ∈ (−1, 0), a ∈ (0, 1) then µ =∞ as a result of finite-time explosion because

φ (1) = 1−
(

(1− a) (1− ρ)
−θ
)−1/θ

< 1 (explosive case).

- if θ = 0, a ∈ (0, 1), µ = ∞ even though φ (1) = 1 (the only regular case with
infinite mean).

Remarks:
(i) To the subset of models (A) to (B), we have added the special affine case

θ = −1 with zc = 1. If zc > 1, the affine model is supercritical with µ =∞ because
the branching event M = ∞ has a positive probability. The special case θ = 0
is supercritical with µ = ∞ both when zc = 1 and zc > 1. The special case θ = 1
corresponds to the standard linear fractional model and its criticality status has been
included in the above classification.

(ii) Due to the invariance under iterated composition of the θ-family of pgfs,

it holds that [φ◦n]
−1

(z) = φ◦(−n) (z): the inverse function of φ◦n (z) simply is

φ◦(−n) (z), obtained while substituting −n to n in φ◦n (z), (a time-reversal prop-
erty).

4 Limit laws

We shall investigate different limit laws concerning cases (A) to (C).

4.1 Limit laws (subcritical/critical and super-critical with fi-
nite mean cases)

• Subcritical case with µ < 1:
In the subcritical case, considering the population size, given it is positive, gives

rise to a limiting random variable as the generation number goes to infinity. This
limiting random variable is known as the quasi-stationary Yaglom limit, Yaglom
(1947).

In our context, there are three different cases where this situation can occur:

(A) / (i) . In this case, with θ ∈ (0, 1], zc = 1, a > 1, b > 0 and φ (z) = 1 −(
a (1− z)−θ + b

)−1/θ
, Nn | Nn > 0

d→ N∞ where N∞ is a random variable with

value in N0 = {1, 2, ...} whose pgf φ∞ (z) := E
(
zN∞

)
=
∑
l≥1 π∞ (l) zl obeys the

Schröder functional equation

φ∞ (φ (z)) = µφ∞ (z) , φ∞ (z) = 1− φ∞ (z) , µ = a−1/θ. (12)

Note φ (z) = φ
−1
∞
(
µφ∞ (z)

)
and thus φ◦n (z) = φ

−1
∞
(
µnφ∞ (z)

)
.

Proposition 2 With α = a−1
a+b−1 and β = b

a+b−1 (α+ β = 1), we find the pgf of the

8



Yaglom quasi-stationary limit N∞ as

φ∞ (z) = 1− 1− z(
α+ β (1− z)θ

)1/θ , (13)

obeying φ∞ (0) = 0, φ∞ (1) = 1 and with mean µ∞ := φ′∞ (1) = α−1/θ =
(

a−1
a+b−1

)−1/θ
.

If in particular θ = 1,

φ∞ (z) =
z

1 + β
α (1− z)

=
αz

1− βz

is the pgf of a geometric random variable with mean 1 + β/α = 1/α. Thus π∞ (l) =
P (N∞ = l) = αβl−1, l ≥ 1, decays geometrically fast.

Corollary 3 Defining π∞ (k) :=
∑
l>k π∞ (l),

π∞ (k) ∼
k↑∞
− 1

Γ (−θ)
β

θα1+1/θ
k−(1+θ),

displaying power law tails with index 1 + θ if θ ∈ (0, 1) : N∞ only has moments of
order strictly less than 1 + θ.

Proof: If θ ∈ (0, 1), the tail pgf of N∞ is

1− φ∞ (z)

1− z
=
(
α+ β (1− z)θ

)−1/θ
,

and the proof follows from Tauberian theorem, observing(
α+ β (1− z)θ

)−1/θ
∼
z↓1

µ∞

(
1− β

αθ
(1− z)θ

)
. �

(A) / (ii) . In the subcritical case (A) / (ii), with θ ∈ (−1, 1] \ {0}, zc > 1, a ∈
(0, 1), b = (1− a) (zc − 1)

−θ
. Here, with φ (1) = 1 (a regular case)

φ (z) = zc −
(
a (zc − z)−θ + (1− a) (zc − 1)

−θ
)−1/θ

and µ = φ′ (1) = a < 1. (14)

Let h (z) = zc − z = h−1 (z) , g (z) = z−θ and f (z) = g (h (z)) = (zc − z)−θ. The
above equation is also (Hoppe (1980))

f (φ (z)) = af (z) + (1− a) f (1) .

Let us look for an invertible function A (z) with inverse B (x) = A−1 (x) such that
φ (z) = B (µA (z)) = B (aA (z)). Combining the two equations, we should have

f ◦B (aA (z)) = af (z) + (1− a) f (1) or

f ◦B (ax) = af ◦B (x) + (1− a) f (1)

9



leading to an affine solution f ◦B (x) = αx+β with β = f (1) and α left undetermined
so far. We get

B (x) = f−1 (αx+ f (1)) = zc − (αx+ f (1))
−1/θ

A (z) =B−1 (z) =
1

α

(
(zc − z)−θ − (zc − 1)

−θ
)
.

We thus have φ∞ (z) = 1−A (z) = 1− 1
α

(
(zc − z)−θ − (zc − 1)

−θ
)

with φ∞ (1) = 1.

Imposing φ∞ (0) = 0 yields α = z−θc − (zc − 1)
−θ

and so

Proposition 4

φ∞ (z) = 1−

(
(zc − z)−θ − (zc − 1)

−θ

z−θc − (zc − 1)
−θ

)
=

1− (1− z/zc)−θ

1− (1− 1/zc)
−θ (15)

is the searched pgf of the unique Yaglom limit N∞ in this case study. It has finite
mean φ′∞ (1) (and moments) and P (N∞ = k) is asymptotically equivalent to kθ−1z−kc
with both power-law and geometrically decaying factors.

The case θ = 0 is finally obtained by continuity.

Corollary 5 If θ = 0, we get a logarithmic pgf for N∞ as a result of

φ∞ (z) =
1− (1− z/zc)−θ

1− (1− 1/zc)
−θ →
|θ|→0

− log (1− z/zc)
− log (1− 1/zc)

, (16)

with mean φ′∞ (1) = − 1
(zc−1) log(1−1/zc) > 1.

(A) / (iii) . In the subcritical case (A) / (iii) (pure death case with φ (z) = π (0) +

π (1) z and µ = π (1) < 1), Nn | Nn > 0
d→ N∞ where simply N∞ = 1 whose pgf

φ∞ (z) := E
(
zN∞

)
= z clearly obeys the Schröder functional equation

φ∞ (φ (z)) = µφ∞ (z) , φ∞ (z) = 1− z.

Obviously, φ (z) = φ
−1
∞
(
µφ∞ (z)

)
and thus φ◦n (z) = φ

−1
∞
(
µnφ∞ (z)

)
= 1−µn (1− z)

as required.

• Critical case with µ = 1:
This concerns the case (B) when θ ∈ (0, 1], zc = 1, a = 1, b > 0. We have

φ (z) = 1−
(

(1− z)−θ + b
)−1/θ

φ◦n (z) = 1−
(

(1− z)−θ + nb
)−1/θ

.

This is a regular case with φ (1) = 1.

Proposition 6 The process goes extinct with probability 1 but it takes a long time
to do so. Indeed,

P (τ1,0 > n) = 1− φ◦n (0) = (1 + nb)
−1/θ ∼ (nb)

−1/θ
,

P (τ i,0 > n) = 1− φ◦n (0)
i ∼ i (nb)

−1/θ
, for large n,

with persistent heavy tails, non-geometric.

10



The pgf of Nn (1) conditioned on Nn (1) > 0 is

φ◦n (z)− φ◦n (0)

1− φ◦n (0)
,

therefore

E (Nn (1) | Nn (1) > 0) = (1 + nb)
1/θ ∼ b1/θn1/θ,

E (Nn (i) | Nn (i) > 0)∼ ib1/θn1/θ, for large n,

with slow algebraic growth of order n1/θ in n. A direct computation shows that

φ′′ (z) =
b (θ + 1) (1− z)θ−1(
1 + b (1− z)θ

)1/θ+2
.

Because φ′′ (1) = 2b <∞ only when θ = 1, it holds (Harris (1963), Athreya and Ney
(1972)) that, if θ = 1, E (Nn (1) | Nn (1) > 0) ∼ nb and

P

(
Nn (1)

nb
> x | Nn (1) > 0

)
→

n→∞
e−x, x > 0.

• Regular supercritical case with µ <∞.
In the supercritical case (C) for which µ = a−1/θ < ∞ (zc = 1, θ ∈ (0, 1],

a ∈ (0, 1)), µ−nNn
d→W whereW ≥ 0 is a random variable with value in R+ = [0,∞)

whose Laplace-Stieltjes transform φW (λ) := E
(
e−λW

)
, λ ≥ 0, obeys the Poincaré

functional equation
φW (µλ) = φ (φW (λ)) . (17)

Note φ (z) = φW
(
µφ−1W (z)

)
and thus φ◦n (z) = φW

(
µnφ−1W (z)

)
.

Proposition 7 With α = 1−a
a+b−1 > 0 and β = b

a+b−1 > 0 (β − α = 1), if zc = 1, the

Laplace-Stieltjes transform of the asymptotic growth rate W of µ−nNn is

φW (λ) = 1− λα1/θ
(
βλθ + 1

)−1/θ
= ρ+ ρ

(
1−

(
1 + β−1λ−θ

)−1/θ)
. (18)

The extinction probability is φW (∞) = ρ = 1−
(
α
β

)1/θ
and W has an atom at r = 0

with mass ρ. We have φW (0) = 1 and the mean of W is µW := −φ′W (0) = α1/θ.

For general supercritical BGW processes, the limiting W given W > 0 is known
to be infinitely divisible in some but not all cases (Biggins and Shanbhag (1981)).
We don’t know if W |W > 0 here in (18) is infinitely divisible or not.

Corollary 8 If θ = 1,

φW (λ) = 1− λα (βλ+ 1)
−1

=
λ+ 1

βλ+ 1
=

1

β
+

(
1− 1

β

)
1

1 + βλ

is the Laplace-Stieltjes transform of an exponential random variable with an atom at
0 with mass ρ = 1/β and mean ρβ = 1−a

a+b−1 = α. And P (W > r |W > 0) ∼ e−r/β

decays exponentially fast.

11



Furthermore, using Feller (1971), p. 445,

Corollary 9 If θ ∈ (0, 1), φW (λ) ∼ ρ+ρ
(

1− β1/θλ
)

as λ is close to 0, meaning ex-

ponential tails again, now with P (W > r |W > 0) ∼
r→∞

e−r/β
1/θ

. As λ is close to∞,

φW (λ) ∼ ρ+ρ (βθ)
−1
λ−θ, meaning heavy algebraic left tails P (W ≤ r |W > 0) ∼

r→0

(βθ)
−1
rθ/Γ (1 + θ).

4.2 Limit laws (super-critical with infinite mean cases)

There are two different regimes, depending on µ =∞ resulting or not from finite-time
explosion:
• Regular case. If zc = 1, the infinite mean case µ = ∞ occurs when θ = 0,

a ∈ (0, 1). In such a case, φ (z) = 1−(1− ρ)
1−a

(1− z)a and φ (1) = 1 (no finite-time
explosion). With E (1) a standard mean 1 exponential random variable

an log (1 +Nn (1))
a.s.→ W =

{
0 with probability ρ

E (1) with probability ρ
, as n→∞ (19)

and conditionally given Nn (1) does not go extinct, Nn (1) grows at double exponen-
tial speed.

The pgf of Nn (1) given explosion indeed is

φ◦n∞ (z) = 1− (1− z)a
n

,

and the above statement follows from the martingale proof of Hénard (2015), propo-
sition 3.8, adapted to the discrete time context. Similar regular models with infinite
offspring mean were recently studied in Huillet (2016).

Remark: It can be checked that, with loga b = log b/ log a and A (z) = 1 −
log1−ρ (1− z), z < 1,

φ (z) = A−1 (aA (z)) , so that φ◦n (z) = A−1 (anA (z)) . (20)

This is an alternative way to see that such a branching model is ‘integrable’.

• Explosive case. If (i) zc > 1 and θ ∈ (−1, 1], a ∈ (0, 1), b = (1− a) (zc − ρ)
−θ

with ρ ∈ (0, 1) or (ii) if zc = 1 and θ ∈ (−1, 0), a ∈ (0, 1) and b = (1− a) (1− ρ)
−θ

,
where ρ ∈ (0, 1), then Nn (1) can be infinite even in the first iteration step (finite
time explosion). What only matters in this context is the time τ1,∞ to explosion and
also τ1 = τ1,0 ∧ τ1,∞, as well as τ i. We get

Proposition 10 (i) When θ ∈ (−1, 1], zc > 1, a ∈ (0, 1), b = (1− a) (zc − ρ)
−θ

with ρ ∈ (0, 1), leading to µ =∞, we have for instance

P (n < τ1 <∞) = φ◦n (1)− φ◦n (0) ∼
n→∞

(
1− a
b

)1+1/θ (
(zc − 1)

θ − zθc
)
an,

showing that τ1 is tail equivalent to a geometric random variable. Similarly

P (n < τ i <∞) = φ◦n (1)
i − φ◦n (0)

i ∼
n→∞

i

(
1− a
b

)1+i/θ (
(zc − 1)

θ − zθc
)
an.
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(ii) If zc = 1 and θ ∈ (−1, 0), a ∈ (0, 1) and b = (1− a) (1− ρ)
−θ

, where ρ ∈ (0, 1),
we have

P (n < τ i <∞) = φ◦n (1)
i − φ◦n (0)

i ∼
n→∞

−i (1− ρ)
−(1+i/θ)

θ
an,

still with the tail equivalence to a geometric random variable.

5 Powers of the θ-process transition matrix obtained by iter-
ation

So far we dealt with this θ-family of pgfs for the reproduction law. It remains
to compute the probability mass function to which they are associated. A related
question is to compute the stochastic transition matrix of the θ-branching processes
together with its powers in time. We shall now address these points. We shall start
with the cases θ ∈ (−1, 1) \ {0} before addressing the special cases θ ∈ {−1, 0, 1}.

5.1 The case θ ∈ (−1, 1) \ {0}

• We start with the reproduction law. Let φ (z) = zc −
(
a (zc − z)−θ + b

)−1/θ
be a θ-pgf with φ (z) ≤ 1. We first wish to compute the associate probability mass
distribution: π (k) =

[
zk
]
φ (z). Introduce φc (z) := z−1c φ (zcz), so with φc (z) =

1 −
(
a (1− z)−θ + bzθc

)−1/θ
(this operation is meaningful of course only if zc > 1).

φc (z) is a new pgf because φc (1) = z−1c φ (zc) ≤ 1. We have πc (k) =
[
zk
]
φc (z) =

zk−1c π (k), so one can work with φc as well. We also have φc (z) = f ◦ g (z) with

g (z) = 1 − (1− z)−θ and f (z) = 1 −
(
a+ bzθc − az

)−1/θ
. This allows to compute

π (k) by Faa di Bruno formula for the composition of Taylor series. First we have

π (0) = zc

(
1−

(
a+ bzθc

)−1/θ)
. By Faa di Bruno formula (Comtet (1970), Tome 1,

p. 149), then

Proposition 11

π (k) =
1

k!zk−1c

k∑
l=1

flBk,l (g•) , k ≥ 1, (21)

where fl are the Taylor coefficients of f (z) and Bk,l (g•) the Bell polynomials in the
indeterminate g• := (g1, g2, ...), the gks being the Taylor coefficients of g (z). The
Bell polynomials are defined by

Bk,l (g•) =
k!

l!

[
zk
]
g (z)

l
,

with the boundary conditions

Bk,0 (g•) = B0,l (g•) = 0, k, l ≥ 1 and B0,0 (g•) := 1, and,

Bk,1 (g•) = gk and Bk,k (g•) = gk1 .

This computation of π (k) is in agreement with Proposition 4 of Sagitov and Lindo
but our representation and its proof, inspired from Faa di Bruno formulae and making
use of Bell polynomials, are different. We now list some properties concerning the
coefficients fl and Bk,l (g•) . We first recall that (Comtet (1970)),

Bk,l (x•) = k!

∗∑∏
j≥1

1

cj !

(
xj
j!

)cj
,
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the latter star summations running over the integers cj obeying
∑
j≥1 cj = l and∑

j≥1 jcj = k ≥ l.
We note now that, with [a]l = a (a+ 1) ... (a+ l − 1) the ascending factorial

with [a]0 := 1, C =
(
a+ bzθc

)−1/θ
and D =

(
a+ bzθc

)
/a = C−θ/a, f (z) = 1 −

C (1− z/D)
−1/θ

with Taylor coefficients

f0 = 1− C and fl = −C
θ

[1 + 1/θ]l−1D
−l = −CD−l [1/θ]l , l ≥ 1. (22)

For the case g (z) = 1 − (1− z)−θ , it holds g• = −θ [1 + θ]•−1 = − [θ]•. Because
g1 = −θ and gm+1 = gm (m+ θ), m ≥ 1, it follows that the Bell coefficients Bk,l (g•)
for this function g obey a simple 3−term recursion

Bk+1,l (g•) = −θBk,l−1 (g•) + (k + lθ)Bk,l (g•) , k, l ≥ 1. (23)

For instance B1,1 (g•) = −θ leading to π (1) = f1B1,1 (g•) = CD−1, B2,1 (g•) =
(1 + θ)B1,1 (g•) = −θ (1 + θ), leading to π (2) = 1

2zc
(f1B2,1 (g•) + f2B2,2 (g•)) =

1
2zc

(1 + θ)CD−2 (D − 1),...The formulae (21), (22) and (23) completely characterize
the π (k)s. The Bk,l (g•) constitute generalized Stirling numbers studied in Char-
alambides and Singh (1988).

Remark: If θ = −1/L where L > 1 is an integer, f (z) = 1 − C (1− z/D)
L

is
a polynomial of degree L in z so fl = 0 if l > L which largely simplifies (21). Further-

more, in this case, gk = L−k
∏k−1
l=1 (lL− 1). If L = 2, gk = 2−2(k−1) (2k − 3)!/ (k − 2)!.

• The transition matrix and its powers. We now first wish to compute
Pa,b (i, j) =

[
zj
]
φ (z)

i
= zi−jc

[
zj
]
φc (z)

i
, the transition matrix of the θ-branching

process, where its dependence on the parameters (a, b) has been emphasized. We

have φc (z)
i

= fi ◦ g (z), still with g (z) = 1 − (1− z)−θ and now with fi (z) :=[
1−

(
a+ bzθc − az

)−1/θ]i
. So with fi,k, k ≥ 1, the Taylor coefficients of fi (z), we

similarly get

Proposition 12

Pa,b (i, j) =
zi−jc

j!

j∑
k=1

fi,kBj,k (g•) . (24)

We note that fi (z) = hi (f (z)) where hi (z) = (1− C + Cz)
i

and f (z) := 1 −
(1− z/D)

−1/θ
so that with hi,l = i!

(i−l)! (1− C)
i−l

Cl (= 0 if l > i) and with f• given

from (22) as fl = − [1/θ]lD
−l, l ≥ 1, by Faa di Bruno formula again

fi,0 = (1− C)
i

and fi,k =

k∧i∑
l=1

hi,lBk,l (f•) . (25)

Note π (j) = Pa,b (1, j) as required.
To obtain now Pna,b (i, j), the (i, j)-entry of the n-th power of Pa,b, we just need to

substitute
(
an = an, bn = b

(
1 + a+ ...+ an−1

))
to (a, b), so it simply holds

Pna,b (i, j) = Pan,bn (i, j) , (26)

taking advantage of the invariance under iteration of the θ-family when θ ∈ (−1, 1) \ {0}.
We note that the dependence on n in Pan,bn (i, j) is only in the coefficients fi,k in
(24), through C and D. To emphasize this point, we shall also write
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Corollary 13

Pna,b (i, j) = Pan,bn (i, j) =
zi−jc

j!

j∑
k=1

f
(n)
i,k Bj,k (g•) , (27)

where f
(n)
i,k is obtained from fi,k in (25) while substituting

(
an = an, bn = b

(
1 + a+ ...+ an−1

))
to (a, b) in the expressions of C =

(
a+ bzθc

)−1/θ
and D =

(
a+ bzθc

)
/a.

It remains to discuss the special integral cases for θ.

5.2 The case θ = 0

We recall that φ (z) = zc−λ (zc − z)a, where λ = (zc − ρ)
1−a

and ρ obeys φ (ρ) = ρ.
With φc (z) = 1− λza−1c (1− z)a and πc (k) =

[
zk
]
φc (z), π (k) = πc (k) /zk−1c with

πc (k) = −λza−1c [−a]k /k!. Next, with λc := λza−1c

φc (z)
i

= (1− λc (1− z)a)
i

= (1− λc + λc (1− (1− z)a))
i

= hi ◦ g (z) ,

with g (z) = 1 − (1− z)a and hi (z) = (1− λc + λcz)
i
. With g• = − [−a]• and

hi,k = i!
(i−k)! (1− λc)i−k λkc , we thus get similarly

Pa,λ (i, j) =
zi−jc

j!

j∑
k=1

hi,kBj,k (g•) and Pna,λ (i, j) = Pan,λn (i, j) , (28)

where an = an (a ∈ (0, 1)) and λn = λ(1−a
n)/(1−a). The Bj,k (g•) also obey a three

terms recursion of the type (23) with −a substituted to θ. Note π (j) = Pa,λ (1, j) as
required.

5.3 The case θ = 1

With φ (z) = zc −
(
a (zc − z)−1 + b

)−1
we wish to compute π (k) =

[
zk
]
φ (z) with

π (0) = zc (a+ b− 1) / (a+ b) in the first place. Introduce φc (z) = z−1c φ (zcz), so

with φc (z) = 1 −
(
a (1− z)−1 + bzc

)−1
. We have φc (z) = f ◦ g (z) with g (z) :=

(1− z)−1 − 1 and f (z) = 1 − (a+ bzc + az)
−1

= 1 − C (1 + z/D)
−1

where C =

(a+ bzc)
−1

and D = (a+ bzc) /a. Let fl be the Taylor coefficients of f (z) and gk
the Taylor coefficients of g (z). By Faa di Bruno formula

π (k) =
1

k!zk−1c

k∑
l=1

flBk,l (g•) , k ≥ 1,

with gk = k! and f0 = 1 − C and fl = (−1)
l−1

CD−ll!, l ≥ 1. We have Bk,l (•!) =(
k−1
l−1
)
k!
l! , so

π (k) =
C

zk−1c

k∑
l=1

(
k − 1

l − 1

)
(−1)

l−1
D−l = CD−1

(
1−D−1

zc

)k−1
, k ≥ 1. (29)

Next,
Pa,b (i, j) = zi−jc

[
zj
]
φc (z)

i
.
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We have φc (z)
i

= fi ◦ g (z) still with g (z) = (1− z)−1 − 1 and now with fi (z) =[
1− C (1 + z/D)

−1
]i

. So with fi,k, k ≥ 1, the Taylor coefficients of fi (z) and with

Bj,k (•!) =
(
j−1
k−1
)
j!
k! , we get similarly

Pa,b (i, j) =
zi−jc

j!

j∑
k=1

fi,kBj,k (g•) . (30)

It remains to compute the fi,ks. We note that fi (z) = hi (f (z)) where hi (z) =

(1− C − Cz)i and f (z) = (1 + z/D)
−1−1 so that with hi,l = i!

(i−l)! (1− C)
i−l

(−C)
l

and with f• given by fl = (−D)
−l
l!, l ≥ 1, by Faa di Bruno formula again

fi,0 = (1− C)
i

and fi,k =

k∧i∑
l=1

hi,lBk,l (f•) .

Now, Bk,l (f•) = (−D)
−k
Bk,l (•!) = (−D)

−k (k−1
l−1
)
k!
l! and

fi,k = k! (1− C)
i
D−k

k∧i∑
l=1

(−1)
k−l
(
i

l

)(
k − 1

l − 1

)(
C

1− C

)l
. (31)

Exchanging the summation over k and l in (30) and applying the binomial identity
(keeping in mind D−1 = aC)

Pa,b (i, j) = zi−jc (1− C)
i (

1−D−1
)j i∧j∑

l=1

(
i

l

)(
j − 1

l − 1

)(
C

1− C
D−1

1−D−1

)l
. (32)

To obtain now Pna,b (i, j), the (i, j)-entry of the n-th power of Pa,b, we just need

to substitute
(
an = an, bn = b

(
1 + a+ ...+ an−1

))
to (a, b) in (C,D), so it simply

holds
Pna,b (i, j) = Pan,bn (i, j) ,

where Pa,b (i, j) is given by (32). The resulting expression generalizes Proposition
2.2 of Klebaner et al (2007).

5.4 The case θ = −1 (Greenwood model)

Here φ (z) = az + zc (1− a)− b. We get π (1) = a, π (0) = zc (1− a)− b ≤ 1− π (1).
We have

P (i, j) =
[
zj
]
φ (z)

i
=

(
i

j

)
π (0)

i−j
π (1)

j
,

and

Pn (i, j) =
[
zj
]
φ◦n (z)

i
=

(
i

j

)
πn (0)

i−j
πn (1)

j
,

where πn (1) = π (1)
n

and πn (0) = π (0) 1−π(1)n
1−π(1) . Both P and Pn have binomial en-

tries with Pn (i, i) = π (1)
ni

. If π (0)+π (1) = 1 (the regular case), πn (0)+πn (1) = 1
and Pn is stochastic. If π (0)+π (1) < 1 (the explosive case), πn (0)+πn (1) < 1 and
Pn is sub-stochastic. To make it stochastic, we can add state {∞} to the state-space
and assume that it is absorbing. We can thus complete P to make it stochastic
while considering P (i,∞) = 1 −

∑i
j=0

(
i
j

)
π (0)

i−j
π (1)

j
= 1 − (π (0) + π (1))

i
and

P (∞,∞) = 1. If φ (1) = 1, such regular pure death process was recently consid-
ered by Möhle (2016), revisiting the Greenwood model of infectiousness (Greenwood
(1931)).
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5.5 Resolvent of the θ-linear fractional processes

With δi,j the Kronecker delta, for i, j ≥ 1, we also obtain the resolvent of Nn (i) as

gi,j (z) := δi,j +
∑
n≥1

znPn (i, j) . (33)

In particular,

gi,i (z) = 1 +
∑
n≥1

znPn (i, i) .

Note gi,j (1) = δi,j + E
(∑

n≥1 1{Nn(i)=j}

)
, the expected value of the time spent on

state j starting from i, is the Green kernel.

Proposition 14 Using (27), with Fi,k (z) :=
∑
n≥1 z

nf
(n)
i,k , we get the following

tricky expression for the resolvent

gi,j (z) := δi,j +
∑
n≥1

znPan,bn (i, j) = δi,j +
zi−jc

j!

j∑
k=1

Fi,k (z)Bj,k (g•) . (34)

These quantities are fundamental to compute pgfs of important quantities such
as passage times. It holds for example that E (zτ i,j ) = gi,j (z) /gj,j (z) where

τ i,j = inf (n ≥ 1 : Nn (i) = j) (35)

is the first passage time to state j 6= i of Nn given N0 = i, (Norris (1998), Woess
(2009)). In particular P (τ i,j <∞) = gi,j (1) /gj,j (1) are the hitting probabilities of
state j starting from i. Furthermore, with

τ∗i,i = inf (n ≥ 1 : Nn (i) = i) , (36)

the first return time to state i ofNn (i), it holds by renewal arguments that E
(
zτ
∗
i,i

)
=

1 − 1/gi,i (z) (Norris (1998)). In particular P
(
τ∗i,i <∞

)
= 1 − 1/gi,i (1). Therefore

for example, the mean return time to state i given τ∗i,i <∞ is

E
(
τ∗i,i | τ∗i,i <∞

)
=

g′i,i (1)

gi,i (1) (gi,i (1)− 1)
, (37)

whenever this quantity exists.

Let us briefly sketch what this says for the simplest Greenwood model example
when θ = −1: firstly Pn (i, i) = πn (1)

j
leading to gi,i (z) = 1 +

∑
n≥1 z

nπ (1)
ni

=

1/
(

1− zπ (1)
i
)

. Therefore E
(
zτ
∗
i,i

)
= zπ (1)

i
, translating the fact that τ∗i,i = 1

with probability π (1)
i
, = ∞ with probability 1 − π (1)

i
(the no return to i event if

in the first step one of the i founders moved to one of the absorbing states, 0 or ∞).
In addition, in the regular case π (0) = 1− π (1),

P (τ i,j <∞) = gi,j (1) /gj,j (1) =
(

1− π (1)
j
)1 +

∑
n≥1

(
i

j

)
(1− π (1)

n
)
i−j

π (1)
nj

 ,

which, upon developing (1− π (1)
n
)
i−j

and summing over n is Proposition 1.1 and
Theorem 1.2 of Möhle (2016).
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6 One illustrative example

As an illustrative application of the previous results, let us look for the value of n
for which a supercritical process as in (C) will nearly never (with large probability
c) go extinct as soon as Nn (i) > 0. It is given by (6)

c =
1− ρi

1− φ◦n (0)
i

=: 1− ε.

When ε is small, it leads to

ρ− φ◦n (0) ≈ ε · 1− ρi

iρi−1
. (38)

The condition for this Taylor expansion to be valid is given2 by ρ−φ◦n (0)� ρ/(i−1)
or alternatively

ε� ρi

1− ρi
.

The relation (38) shows that for small ε, having i founders amounts simply to multiply
ε by a factor that only depends on the value of the fixed point ρ and the number i.
Let us now use the explicit form of the supercritical θ-linear fractional pgfs. In that
case, it holds that

an =
(zc − φ◦n (z))

−θ − (zc − ρ)
−θ

(zc − z)−θ − (zc − ρ)
−θ .

A Taylor expansion of (zc − φ◦n (z))
−θ

for small ρ− φ◦n (0) yields

−θρ− φ
◦n (z)

ρ− zc
≈ an

(
1−

(
zc − z
zc − ρ

)−θ)
,

the Taylor expansion validity condition being |ρ− φ◦n (z)| � |(zc − ρ)/θ|. Combined
with the previous result, we get

an ≈ ε · 1− ρi

iρi
· (−θ) 1− α

1− α−θ
,

with α := zc/(zc − ρ) > 1; the validity conditions are

ε� ρi

1− ρi
and ε� iρi

|θ| (α− 1)
. (39)

This shows that the searched value of n for which a supercritical process as in (C)
will nearly never go extinct is approximately the sum of three terms:

• one, related to the required accuracy, that is the logarithm of ε in base a. In
particular, to have a result 10 times more precise, one has to wait |loga(10)|
more steps,

• one, related to the number i of founders, which also depends on the parameters
a and ρ,

2It is assumed here that i > 1. If i = 1, the condition on ρ− φ◦n (0) is no longer valid, but the
one on ε still is.
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• one, related to the model parameters only, which depends on a, θ, and zc and
ρ through α.

For instance, taking a = 0.63 (so that a5 ≈ 0.1), ρ = 0.7, zc = 1, we get:

• when θ = +1 and i = 1, 9 generations are needed if the population is to survive
with a probability 1 − 10−2. 5 more generations will increase this probability
to 1− 10−3, and another 5 to 1− 10−4.

• when θ = +1, with an uncertainty ε = 10−4 and eight founders, the time to
wait decreases to 16 generations. With thirteen founders, it decreases further
to 13 generations. Notice that ρ19 ≈ 0.001, so one has to be careful not to get
out of the range of (39).

• with one founder and an uncertainty 10−4, 19 generations are needed for θ = 1,
20 generations for the limit θ = 0 and 21 for θ = −1.

In all these special cases, we conclude that if extinction is to occur, it occurs
rapidly or nearly never.
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