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Transcriptional analysis of porcine 
intestinal mucosa infected with Salmonella 
Typhimurium revealed a massive inflammatory 
response and disruption of bile acid absorption 
in ileum
Juber Herrera Uribe1†, Melania Collado‑Romero1†, Sara Zaldívar‑López1* , Cristina Arce2, Rocío Bautista3, 
Ana Carvajal4, Susanna Cirera5, M. Gonzalo Claros3,6 and Juan J. Garrido1

Abstract 

Infected pork meat is an important source of non‑typhoidal human salmonellosis. Understanding of molecular 
mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strate‑
gies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella 
Typhimurium, as well as post‑transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally chal‑
lenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) 
were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcrip‑
tional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., 
IL‑1B, IL‑6, IL‑8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down‑regu‑
lated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption 
in ileum. This result was confirmed by decreased high‑density lipoprotein cholesterol in serum of infected pigs. Ileal 
inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis 
of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., 
miR‑374 and miR‑451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were 
down‑regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine 
at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid 
metabolism.

© 2016 Uribe et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Salmonella enterica subsp. enterica serovar, S. Typhimu-
rium are gram-negative flagellated pathogenic bacteria 
that cause gastrointestinal disease in animals and humans 
[1]. Currently, salmonellosis is ranked as the second most 
common zoonotic disease in the European Union, and 

most cases of salmonellosis in humans are associated 
with the consumption of contaminated pork and poul-
try meat [1–3]. S. Typhimurium the most commonly 
non-typhoidal serotype isolated from humans world-
wide, causes clinical (fever, profuse diarrhea and other 
gastrointestinal signs) and subclinical disease in pigs [2, 
3]. Therefore, prevention and control of salmonellosis 
in pigs is crucial not only for animal health, decrease in 
antibiotic use and the reduction of economic losses in the 
swine industry but also for minimizing the risks to public 
health [2, 4].
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Since the gastrointestinal infection by S. Typhimurium 
causes similar clinical signs in humans and pigs, and given 
that the latter have been demonstrated to be a valuable 
animal model for the study of the human gastrointesti-
nal tract [5], in vivo experimental infections of pigs with 
S. Typhimurium will likely reproduce the pathogenesis 
and the molecular mechanisms underlying this disease in 
humans. In naturally infected pigs, S. Typhimurium pref-
erentially colonizes ileum, cecum and colon presumably 
due to pH, not as low in these sections as in the stomach, 
and a more reduced presence of bile salts than in duo-
denum or jejunum. Bile salts have antibacterial effects, 
although it has also been demonstrated that Salmonella 
shows resistance and tolerance to bile acids [2, 6]. To fight 
infection, the host defense mechanisms are activated after 
the adherence of S. Typhimurium to the intestinal epithe-
lial cells. This early pro-inflammatory state can be initi-
ated by the activation of the microbial-specific toll-like 
receptors (TLRs), which activate nuclear factor kappa B 
(NF-κB), mitogen-activated protein kinases (MAPK) and 
caspase-dependent signaling pathways [7, 8]. This induces 
the expression of inflammatory mediators (e.g., cytokines/
chemokines) and antimicrobial peptides (e.g., defensins) 
[9]. Later on, acquired pathogen-specific responses will be 
developed with the aim of clearing bacteria. Nevertheless, 
Salmonella is a very successful enteric pathogen that has 
developed different virulence strategies to evade detection 
by the host immune system [10, 11]. Some S. Typhimu-
rium genes responsible of colonizing porcine intestines 
have been identified and characterized [12].

Recent studies have demonstrated the importance of 
certain miRNAs in the modulation of many physiologi-
cal processes involved in the response to bacterial infec-
tions such as signal transduction pathways, membrane 
trafficking and pro-inflammatory responses [13–15]. 
miRNAs are small noncoding RNAs that regulate post-
transcriptional expression by binding to the 3′ untrans-
lated regions of their target messenger RNAs. It has been 
reported that a dysregulation of miRNAs occurs in intes-
tinal epithelial cells in response to bacterial pathogens 
[10]. Also, S. Typhimurium can alter miRNA expression 
by TLR-independent mechanisms such as secretion of 
effector proteins [16]. Therefore, a more comprehen-
sive view of the miRNA-mediated regulation of mRNA 
expression is needed to better understand the gastroin-
testinal response to invading pathogens [17].

Although some studies have focused on transcriptional 
changes of either a reduced number of genes [18, 19] or 
specific intestinal sections [9, 20], to our knowledge there 
is limited information about the early transcriptional 
response to S. Typhimurium infection at the different 
anatomical portions of the porcine gut. Today, the use of 
whole-genome approaches such as microarray expression 

profiling has allowed an unprecedented look about the 
function of genes and their role in disease [21]. Therefore, 
in order to perform a comprehensive evaluation of the 
porcine intestinal response to S. Typhimurium infection, 
the objective of this work was to investigate the tran-
scriptional profile of different portions of the gut using 
an in vivo model of Salmonella infection. In addition, the 
role of miRNAs as post-transcriptional modulators of 
this immune response was also evaluated.

Materials and methods
Experimental infection and sample processing
Sixteen male and female crossbreed weaned piglets, 
approximately 4  weeks of age, were used in this study. 
All piglets were derived from a Salmonella-negative herd 
and were serologically negative. Pigs were housed in an 
environmentally controlled isolation facility at 25 °C and 
under constant light with ad  libitum access to feed and 
water. After an acclimation period of 5 days, four piglets 
were necropsied (control group), 2 h prior to experimen-
tal infection of the other animals. Then, 12 piglets were 
challenged orally with 108 colony forming units (cfu) 
of a S. Typhimurium phagetype DT104 strain isolated 
from a carrier pig [22]. Fever, lethargy and diarrhea were 
monitored every day. Four randomly chosen infected pigs 
were necropsied at 1, 2 and 6  days post infection (dpi). 
Tissue samples were aseptically collected and stored in 
liquid nitrogen. Fecal samples were collected for bacte-
riological cultures the day of arrival and the day when 
the piglets were necropsied. Fecal sample processing 
and bacteriological analysis was performed following the 
current EN-ISO standard methodology 6579:2002/Amd 
1:2007. Serum samples were obtained from each animal 
before euthanasia: blood was collected and placed into 
non-anticoagulated tubes, letting it clot and centrifug-
ing. Obtained serum samples were sent for analysis to 
an external laboratory (Laboratorio Veterinario Garfia 
S.L., Cordoba, Spain), from where the following meas-
urements were obtained: total proteins, albumin, blood 
urea nitrogen (BUN), creatinine, aspartate aminotrans-
ferase (AST), alanine transaminase (ALT), alkaline 
phosphatase, total cholesterol, high density lipoprotein 
(HDL) cholesterol, low density lipoprotein (LDL) cho-
lesterol, triglycerides, glucose, immunoglobulins (G, A 
and M), complement component C3, and Salmonella 
spp. antibodies. Additional information regarding detec-
tion methods is included in Additional file 1. Descriptive 
statistics and normality tests were followed by ANOVA 
using Dunnet’s post-test.

Sections from jejunum, ileum and colon were collected, 
sectioned into pieces of around 10 cm and immediately 
frozen in liquid nitrogen for mucosa isolation and RNA 
purification. All procedures involving animals were 
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approved by the institutional bioethical committee, and 
performed according to European regulations regarding 
animal welfare and protection of animals used for experi-
mental and other scientific purposes.

RNA isolation
For mucosa isolation and RNA purification, intesti-
nal tissue samples stored at −80  °C were treated with 
RNAlater®-ICE (Ambion, Inc, Austin, TX, USA) and cut 
into 2  cm pieces, according to manufacturer’s instruc-
tions. Ileum mucosa was scraped from the intestinal 
luminal surface with a razor, and was immediately dis-
rupted and homogenized in RLT buffer (RNeasy Mini 
Kit, QIAGEN, Valencia, CA, USA) using a rotor–stator 
homogenizer. Further RNA extraction was done using 
the RNeasy Mini Kit according to manufacturer instruc-
tions. For miRNA studies, RNA from ileum (0 and 
2  dpi) was isolated using mirVana miRNA isolation kit 
(Ambion, Inc, Austin, TX, USA). Eluted RNA was treated 
with DNase using TURBO DNA-free™ Kit (Ambion, Inc, 
Austin, TX, USA). RNA integrity was assessed in the Agi-
lent Bioanalyzer 2100 (Agilent Technologies, Palo Alto, 
CA, USA). Only samples with RNA integrity numbers 
(RIN) ≥7 were used for further analysis.

Microarray hybridization and analysis
Gene expression analysis was carried out using the 
GeneChip Porcine Genome Array (Affymetrix, Inc., 
Santa Clara, CA, USA) at the Unidad Científico-Técnica 
de Apoyo (UCTS) of the Institut de Recerca del Hospi-
tal Universitario Vall d’Hebron (Barcelona, Spain). The 
One-Cycle Eukaryotic Target Labeling Assay (Expres-
sion Analysis Technical Manual, Affymetrix, Inc., Santa 
Clara, CA, USA) was used to obtain biotinylated cRNA 
from individual mucosal mRNA samples. Then, they 
were hybridized to the GeneChip Porcine Genome Array 
and processed using manufacturer’s instructions. Data 
analysis was conducted using in-house algorithms in R 
(v. 2.7.0). Quality control analysis of the mRNA array was 
performed using the robust multi-array analysis (RMA) 
[23] included in the affy library of Bioconductor package 
[24]. Differentially expressed (DE) genes were obtained by 
paired comparisons using the limma package (moderated 
t test of linear models after an empirical Bayes correction 
[25]); three independent comparisons were carried out 
for each combination of control vs. infected samples (i.e., 
0 dpi 1 dpi, 0 dpi 2 dpi and 0 dpi 6 dpi). Only genes with a 
fold-change (FC) >1.5 or <1.5 were considered for further 
investigation. Due to the lack of complete annotation of 
the GeneChip Porcine Genome Array, the entire dataset 
was re-annotated using Blast2GO [26].

Samples for miRNA analysis were hybridized to the 
Human miRNA Microarray (V3) 8  ×  15  K (Agilent 

Technologies, Inc., Santa Clara, CA, USA) and pro-
cessed at the Andalusian Center for Molecular Biol-
ogy and Regenerative Medicine (CABIMER) Genomics 
Core Facility. For the miRNA microarray data, back-
ground correction [27] and quantile normalization [28, 
29] were performed. Differential expression of miR-
NAs was calculated using the RankProd method [30], 
which is a non-parametric method based on the esti-
mated percentage of false predictions (PFP). P values 
were adjusted for multiple testing using the Benjamini 
and Hochberg method for false discovery rate [31], and 
adjusted P < 0.05 were considered to be statistically sig-
nificant. As in the mRNA array, miRNA FC threshold 
was set at 1.5.

Salmonella detection in tissues
Immunohistochemical analysis of intestinal tissue sam-
ples of jejunum, ileum and colon at 0, 1, 2 and 6 dpi was 
performed as previously described, using a S. Typhimu-
rium specific antibody [32].

Systems biology analysis
Functional analysis of DE genes was carried out using 
Ingenuity Pathway Analysis (IPA, Ingenuity Systems® Inc, 
Redwood City, CA, USA). Genes differentially expressed 
in each intestine section/time point were uploaded into 
IPA and analyzed separately. Obtained results included 
biological functions and canonical pathways, which were 
filtered by setting a threshold of P < 0.05.

Quantitative real‑time PCR (qPCR)
For mRNA expression analysis, a panel of 16 selected 
genes involved in bile acid absorption was assayed by 
qPCR as previously reported [18] using gene-specific 
primers (Additional file 2). PCR conditions were: 5 min at 
95 °C followed by 35 cycles of 30 s at 94 °C, 30 s at 57 °C 
and 45 s at 72 °C. Melting curve analyses were performed 
to ensure specificity of each assay. Two reference genes, 
beta-actin and cyclophilin A, were used to normalize 
mRNA expression values.

For the miRNA expression analysis, qPCR of six dif-
ferentially expressed miRNAs was performed. Briefly, 
100 ng of total RNA per animal was reverse transcribed 
to cDNA as previously reported [33, 34] and diluted 1:8 
times. The 10 µL final PCR reaction mix contained 1 µL 
of cDNA, 5  µL of PerfeCTa™ SYBR® Green Supermix 
for iQ™ (Quanta BioSciences, Inc.), and 10  µM of each 
primer. Cycling conditions were 10  min at 95  °C fol-
lowed by 40 cycles of 5  s at 95  °C, and 60  s at 60  °C; a 
final melting curve analysis was performed (60–99  °C). 
The miRNA-specific primers were designed according 
to guidelines set by Balcells et al. [33], and using publicly 
available software miRprimer [35] (Additional file  2). 
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After evaluation of its stability by geNorm v3.5 algorithm 
[36], five miRNAs (ssc-miR-26a, ssc-let-7a, ssc-miR-103, 
ssc-miR-17-5p and ssc-miR-16-5p) were used as refer-
ence to normalize expression [37]. Relative gene expres-
sion was measured in controls and infected pigs at the 
three times post infection, and expression ratios were 
calculated according to the 2−ΔΔCt method [38]. Also, 
miRNA relative expression at 2 dpi (versus control, 0 dpi) 
was calculated using the same method.

Statistical differences in expression values among 
groups were assessed using a Kruskal–Wallis test 
(mRNA) or Student’s t test (miRNA) (Graphpad Prism 
6, Graphpad Software Inc, La Jolla, CA, USA). Statistical 
significance was set at P < 0.05.

Results
All infected animals tested positive for S. Typhimurium 
in feces, and developed clinical signs characteristic of the 
disease such as fever (a peak of fever at 2 dpi returning to 
normal values at 6  dpi), lethargy and diarrhea [18]. Con-
trol animals tested negative to S. Typhimurium in feces 
prior to their necropsy. The sera biochemistry profile along 
the time course of infection (Additional file  1) showed 
decreased albumin (at 1 dpi, P = 0.039), total proteins (at 
1 dpi, P = 0.009), glucose (at 2 dpi, P = 0.024), high den-
sity lipoprotein cholesterol (HDL, at 1 dpi, P = 0.046; 2 dpi, 
P = 0.003 and 6 dpi, P = 0.041), alanine transaminase (ALT, 
at 1 dpi, P = 0.030 and 6 dpi, P = 0.001) and porcine IgM 
(at 2 dpi, P = 0.012 and 6 dpi, P = 0.008).

Complete microarray results can be found in Addi-
tional file 3. In jejunum, expression changes were found 
only in day 2 after infection (2  dpi), and most genes 
were up-regulated (71%). Expression changes in colon 
occurred at 2 and 6  dpi, and most genes were found to 
be down-regulated (70 and 73%, respectively). Ileum was 
the gut portion where the vast majority of DE genes were 
found (over 2300 different genes), and the proportion of 
up- and down-regulated genes was similar at all points of 
the infection time course (Figure 1).

Ileal transcriptomic response during Salmonella infection
Salmonella colonization observed in ileum at 1 and 2 dpi 
(Figure 2) is in agreement with previous reports [32, 39]. 
Functional analysis of DE genes revealed that affected 
biological pathways included inflammation and immune 
response, lipid metabolism and cell death and survival 
(Figure  3; Additional file  4). Immune-related biological 
pathways were altered at all times of the infection time 
course, showing a chronological progress of events. The 
infection triggered an antimicrobial response at 1 dpi, and 
later the immune response was replaced by an alteration 
of the immune cell trafficking and inflammatory response 
(more pronounced at 1 and 2  dpi), cell-to-cell signaling 

and interaction, infectious disease and cell-mediated 
immune response. Genes affecting lymphoid tissue 
structure were impaired at all times, but changes were 
more evident at 6 dpi, where humoral response was also 
observed. This differential expression implicated dysregu-
lation of inflammatory/immune processes such as IL-6 
signaling pathway, LPS/IL-1 mediated inhibition of RXR 
function, granulocyte adhesion and diapedesis, IL-10 
signaling, differential regulation of cytokine production 
in intestinal epithelial cells by IL-17A and IL-17F and 
IL-12 signaling and production in macrophages (Figure 3; 
Additional file 4). At 6 dpi, we observed a dysregulation of 
pathways related to proliferation and reposition of dam-
aged tissue (Figure 3).

Along with inflammation and immune response, lipid 
metabolism and its related functions (e.g., free radical 
scavenging, endocrine system development and func-
tion) were highly impaired at 1 and 2  dpi after experi-
mental infection, dysregulating retinoid X receptor 
(RXR) related pathways such as LPS/IL-1 mediated 
inhibition of RXR function, LXR/RXR activation, FXR/
RXR activation and hepatic cholestasis. Genes showing 
the largest transcriptional changes at 1 and 2 dpi (Addi-
tional file  3) are involved in these pathways. DE genes 
described in Table  1 are involved in bile acid metabo-
lism and intestinal absorption of bile through the ileum 
mucosa (e.g., FABP2, a fatty acid transporter, and 
FABP6, an ileum-specific bile acid transporter). In order 
to confirm the disruption of the normal lipid/bile acid 
absorption pathway in ileum due to S. Typhimurium 
infection and its impact in overall homeostasis, expres-
sion of genes involved in this pathway were further 

Figure 1 Number of differentially expressed genes in porcine 
jejunum, ileum and colon after S. Typhimurium infection. 
Number of genes differentially expressed compared to controls in 
the porcine gut (jejunum, ileum, colon) after 1, 2 and 6 days of S. 
Typhimurium infection.
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studied using qPCR (Table  1). At 2  dpi, we confirmed 
up-regulation of IL-1B, IL-6, TLR2, TLR4, TNFα and 
PPARG, along with down-regulation of ASBT, FABP6, 
FABP2, FXR, RXRG and APOA1. The overall gene 

dysregulation found in this pathway tended to resolve 
at 6 dpi (Table 1), and some regulatory genes (FXR and 
RXRG) even changed direction of expression (from 
down to up-regulated).

Figure 2 Intestinal colonization of S. Typhimurium in the porcine gut at 1, 2 and 6 dpi.  Immunohistochemical detection of S. Typhimu‑
rium in intestinal tissue (i.e., jejunum, ileum, colon) at 1, 2 and 6 dpi.

Figure 3 Biological functions impaired due to S. Typhimurium infection in porcine ileum. Biological functions (A) and canonical pathways 
(B) affected by S. Typhimurium infection in porcine ileum at 1, 2 and 6 dpi.
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Transcriptomic response in jejunum and colon 
during Salmonella infection
Jejunum showed a reduced transcriptional response, with 
absence of response at 1 and 6 dpi (Figure 1). At 2 dpi we 
observed scarce changes in genes involved in inflamma-
tory response (e.g., CXCL2 overexpression) but with few 
consequences in inflammatory/immune response signal-
ing pathways (Additional file  4). In colon, we found no 
transcriptional changes at 1  dpi, while at 2 and 6  dpi a 
general down-regulation (70% of genes) of cellular prolif-
eration pathways was found, especially actin-based Rho 
signaling pathways (Additional file 3).

miRNA regulation of immune response against Salmonella 
in ileum at 2 dpi
Based on the highest misregulation of gene expression 
(Additional file  3) and bacterial colonization found in 
ileum at 2  dpi (Figure  2), the miRNA expression profile 
was investigated at this time point. A total of 62 miR-
NAs (FC ≥ 1.5, P < 0.05) were found DE in ileum after S. 
Typhimurium infection, from which 37 were up-regulated 
and 25 down-regulated (Additional file  5). The predic-
tion of their target genes revealed that these 62 miRNAs 
are potential regulators of 880 genes (Additional file  6); 
these genes are involved in many biological functions 
such as cellular growth and proliferation, cell death and 
survival, inflammatory response, immune cell trafficking 

and gastrointestinal disease (Additional file 7). Although 
we validated the array results by qPCR (Table 2), we could 
observe that in general miRNA expression values were 
very moderate compared to mRNA results, and only miR-
451 was found to be statistically significant and biologi-
cally meaningful (FC > 2, P < 0.001).

Discussion
The present experimental time course of infection dem-
onstrated that S. Typhimurium infection in pigs lead to 
an inflammatory response and activation of immune 
mechanisms, as shown by massive transcriptional dys-
regulation. These changes were more pronounced at day 
1 and day 2 after experimental infection, and tended to 
disappear by day 6 after bacterial challenge. Most gene 
expression changes occurred in the ileum, indicating an 
early immune response to infection (1 and 2  dpi) fol-
lowed by cell proliferation (6 dpi).

Activation of TLR2 and TLR4 along the time course 
of the experimental infection triggered early intesti-
nal (innate) immune response at 1 and 2 dpi. In parallel, 
initial exposure to pathogens also induced secretion of 
antimicrobial substances (at 1 and 2 dpi) such as antimi-
crobial peptides (AMP) and production of reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS) at 
the site of infection. Antimicrobial elements differentially 
expressed in this study included S100A9 and S100A8 
(highly over-expressed), as well as DEFB1, EDN, S100A12 
and LTF, showing the intense local response occurring in 
the porcine gut after S. Typhimurium infection (in agree-
ment with previous reports [40]). Stimulation of TLR by 
bacterial recognition activated cytokine cascades such as 
IL-6 and IL-10 signaling pathways predominantly at 1 and 
2  dpi, which lead to recruitment of other immune cells 
(e.g., neutrophils, dendritic cells) to the infection site in 
order to clear infection. This early inflammatory response 
disappeared at 6 dpi, and it was replaced by tissue regen-
eration and proliferation. Interestingly, and even though 
TLR2 and TLR4 expression remained elevated, the host 

Table 1 Validation (qPCR) of genes involved in bile acid 
metabolism after S. Typhimurium infection.

All values are expressed in fold change (FC) compared to controls. Asterisks 
indicate statistically significant values (compared to controls).

* P < 0.05; ** P < 0.01; *** P < 0.001.

Gene Day 2 Day 6

qPCR Array qPCR Array

APOA1 −50.00** −33.32** −1.76 –

C‑FOS 7.00* – 1.87 –

C‑JUN 1.87 – 1.33 –

FABP2 −50.00* −48.16*** −2.58 –

FABP6 −200.00** −56.24* −2.28 –

IL‑1B 30.22** 3.4* 2.92 –

IL‑6 1.69 – −1.91 –

NR1H4 (FXR) −3.73 −4.68* 1.34 2.02*

PPARG 1.70 1.88** 1.39 –

RXRG −4.09* −2.92** 1.56 –

SLC10A2 (ASBT) −1.92* – 1.38

STAT3 1.64 1.57 −1.6*

TLR2 2.99* 1.57* 3.43 2.41*

TLR4 10.44* 1.88* 2.25 3.52*

TLR9 −1.79 −1.29 −1.92*

TNF‑α 8.68* 1.59* −1.26 –

Table 2 miRNA microarray validation by qPCR from ileum 
samples at 2 dpi.

All values are expressed in fold change (FC) compared to controls. Asterisks 
indicate statistically significant values (compared to controls).

* P < 0.05; ** P < 0.01; *** P < 0.001.

miRNA qPCR microArray

miR‑374a‑5p 1.18* 2.27*

miR‑30a‑5p 1.02 2.4*

miR‑451 2.87*** 2.3*

miR‑454‑3p −1.09 −2.27

Let‑7b‑5p 1.11 3.22*

miR‑27b‑3p 1.07 2.62*
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inflammatory response weakened at 6  dpi. The role of 
TLR2, TLR4 and TLR9 in S. Typhimurium infection has 
been recently characterized by Arpaia et  al. [41], who 
found that a failure in host cell TLR recognition of the 
bacteria impairs formation of the Salmonella-containing 
vacuole (SCV) and activation of the Salmonella Patho-
genicity Island-2 genes [41].

In the present study, we observed that intesti-
nal inflammation at 1 and 2  dpi was associated with 
a down-regulation of the farnesoid X receptor (FXR, 
NR1H4), increasing expression of NF-κB dependent 
genes (IL-1A, IL-1B, ILRN, IL1R1, IL1RAP, CD14, IL-
33, TNFα, TNFRSF1B, IL-6) in agreement with previous 
reports [40, 42]. FXR, also called bile acid (BA) recep-
tor, is a nuclear receptor that locally modulates intestinal 
immune response via regulation of cholesterol and BA 
metabolism. It has been described that FXR forms a het-
erodimer with the retinoid X factor (RXR), maintaining 
BA homeostasis in gut and liver [43]. Under physiologi-
cal conditions, bile acids are synthetized in the liver and 
secreted into the intestine (i.e., duodenum) for digestion 
and absorption of dietary fat. Since over 90% of secreted 
BA are reabsorbed through the ileum to be recycled [44], 
FXR has an important role in regulation of the intestinal 
absorption for protecting the cells from biliary damage. 
Most inflammatory NF-kB dependent genes were not 
differentially expressed at 6  dpi, which concurs with a 
FXR change to overexpression. Therefore, our findings 
support previous studies [42], claiming that modulation 
of the inflammatory process mediated by FXR prevents 
further tissue damage and avoids disease progression. 
Intracellular FXR activation by presence of BA in ile-
ocytes has been described to inhibit further absorption 
by up-regulation of SHP (NR0B2), which represses the 
apical enterocyte BA transporter ASBT (SLC10A2) limit-
ing additional entrance, and inhibits CYP7A1, the hepatic 
enzyme that synthetizes BA from cholesterol in the liver 
[45]. We report here that S. Typhimurium infection in 
pigs shut down the FXR pathway, subsequently down-
regulating FXR target genes; these results are in agree-
ment with previous murine studies [46]. We observed 
that FXR repression at 1 and 2  dpi (along with NR2B3 
down-regulation, its heterodimer partner) during the 
early inflammatory response lead to a decreased expres-
sion of ASBT and the fatty and bile acid transporters 
FABP2 and FABP6, impairing normal bile absorption in 
ileum. Repression of ileal BA transporters in the S. Typh-
imurium infected gut, contrary to the physiological regu-
latory mechanism, has been associated with decreased 
BA production in the liver (i.e., down-regulated CYP7A1) 
[46]. To our knowledge, changes in FXR expression had 
not been previously reported in pigs after S. Typhimu-
rium experimental infection.

Down-regulation of the RXR-LXR pathway in ileum 
was evident at 1 and 2 dpi, with repression of its target 
genes ABCG8, APOA1, APOC3, and LPL. These find-
ings indicate deficiency in cholesterol absorption, and are 
supported by serum concentrations of HDL cholesterol 
in the studied pigs, which was significantly lower dur-
ing the infection time course, especially at 2 dpi, demon-
strating a disruption in cholesterol carriage from tissues 
to the liver. Alteration of lipid metabolism (BA and cho-
lesterol) is tightly linked to the inflammatory response 
triggered by the S. Typhimurium infection, since activa-
tion of the IL-1 signaling cascade down-regulates ASBT 
[47], limiting BA absorption and therefore FXR-mediated 
transcription of the target genes previously mentioned.

After the initial period of non-specific immune 
response, the acquired pathogen-specific response is acti-
vated in order to clear bacteria (although this mechanism 
can fail, leading to persistence). Antigen presenting cells 
(e.g., dendritic cells, macrophages) will then stimulate 
T cells into different types, each of them pathogen- or 
toxin-specific. It has been shown that Salmonella infec-
tion decreases MHC class II molecules’ expression (swine 
leucocyte antigen, SLA) by inducing polyubiquitination 
of SLA-DR in infected cells, limiting pathogen recogni-
tion [48]. Our data are in agreement with that, indicating 
a late overstimulation of the antigen presenting func-
tion in ileum at 6 dpi, demonstrated by up-regulation of 
SLA-DRA, SLA-DRB2, SLA-DRB4, SLA-B, SLA-DQA1, 
and SLA-DQB2. In parallel, we found a down-regulation 
of B-cell differentiation and function suggesting impair-
ment of a proper humoral immune response, as indicated 
by down-regulation of molecules involved in B-cell path-
ways such as FOXO1, CD19, BLNK and EBF1 [49–52].

Transcriptional changes found in jejunum (e.g., over-
expression of CXCL2, S100A9), which occurred only at 
2 dpi, are product of the early inflammatory/acute phase 
response. This innate inflammatory response to Salmo-
nella has been previously reported using experimental 
jejunal loop infection model in pigs, where overexpres-
sion of inflammatory molecules was detected from 2 to 
8 h after Salmonella perfusion [9]. Colonic response to S. 
Typhimurium infection started at 2 dpi, and was still pre-
sent at 6 dpi. Our results indicate a general repression of 
pathways related to cellular proliferation and disruption 
of cell junctions, which has also been reported in mouse 
colon 4 days post Salmonella infection [53]. Gastrointes-
tinal epithelial turnover is a needed physiological process 
that helps maintaining gut homeostasis; although it can 
be accelerated due to cell injury [54], it has been demon-
strated that bacterial infections counteract the renewal of 
epithelial cells due to the effect of bacterial proteins on 
different host genes [55]. Epithelial cell turnover is mainly 
triggered by cell oxidative burst that occurs in intestinal 
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epithelial cells during infections (mainly in intestinal stem 
cells, located in the crypts and in charge of turnover), due 
to JAK-STAT and JNK pathways’ stimulation [56]. In our 
study, we detected a down-regulation of LIMS2 at 2 and 
6 dpi. This gene encodes an integrin-linked kinase (ILK) 
binding protein. S. Typhimurium EspO1 protein deregu-
lates cell shedding by acting on host ILK [57], therefore 
the down-regulation of LIMS2 could be explained by this 
phenomenon. Also, we found down-regulation of tissue 
remodeling-related genes (especially those specific of tight 
junctions, such as ACTC1, ACTG2, and ACTA1), which 
can be explained by the action of Salmonella pathogenic-
ity island 1 effector proteins (e.g., SopB, SopE, SopE2 and 
SipA) that disrupt cell–cell junctions [58]. AvrA has been 
shown to have an anti-inflammatory effect, acting on 
mitogen-activated protein kinase kinases (MAPKKs) [59], 
explaining the down-regulation of MAPKAP1 (MAPK 
associated protein 1) found at 2 dpi.

Our microarray results on miRNAs revealed a total of 
62 miRNAs differentially expressed in ileum 2 days after 
S. Typhimurium infection. Assessment of some of the best 
candidates by qPCR confirmed the microarray results 
but the fold changes obtained by qPCR were very modest 
compared with the fold changes found in the microarray 
data, with the exception of miR-451 which showed highly 
significant differential expression. In general, changes in 
expression levels are much more moderate in miRNAs 
compared to mRNAs. Nevertheless, several miRNAs can 
target the same mRNA, working cooperatively and mak-
ing these fold changes accumulative. Moreover, target 
prediction analysis for the 62 miRNAs found DE in the 
microarray study revealed 880 genes. These target genes 
are mainly involved in biological functions such as cel-
lular growth and proliferation, cell death, inflammatory 
response, immune cell trafficking and gastrointestinal dis-
ease, confirming the findings at the mRNA level. Agreeing 
with our present study, it has been previously described 
that let-7b overexpression is induced by NF-kB activa-
tion [60]. Similarly, we observed miR-374a up-regulation, 
which has been described as CEBPB regulator [61], con-
trolling the expression of IL-6, IL-8 and other acute phase 
inflammatory genes during S. Typhimurium infection 
[62]. We also found miR-451 overexpression in ileum, in 
agreement with a recent study of porcine blood miRNA 
profile after S. Typhimurium infection [40]. Target pre-
diction analysis indicated that this miRNA controls the 
expression of ATP-binding cassette B1 (ABCB1) [63, 64], 
highly expressed in the apical surface of epithelial cell in 
ileum, where it contributes to the luminal efflux of choles-
terol [65]. Repression of miR-451 has been associated to 
ABCB1 up-regulation, impairing S. Typhimurium ability 
to invade host cells by reducing adhesion to epithelial cells 
[66, 67]; on the other hand, ABCB1 down-regulation (as in 

the present study) is associated with inflammatory reac-
tion (TNF activation) in the gut in response to bacterial 
infections [66, 68]. Additionally, it has been shown that 
overexpression of ABCB1 is frequently associated with an 
increase in intracellular pH, therefore down-regulation of 
this gene could cause a decrease in intracellular pH, which 
is beneficial to intracellular survival of Salmonella [69].

To conclude, our biological approximation showed a 
global deregulation of a number of genes upon S. Typh-
imurium infection along the porcine gut. Our results 
reveal that jejunum, ileum and colon respond differ-
ently to infection. We observed a slight transcriptional 
response in jejunum, affected only at 2  dpi. The major-
ity of immune response was observed in ileum, where we 
found a high inflammatory reaction and a repression of 
the genes involved in bile acid absorption and metabo-
lism, although this tended to resolve at 6  dpi. In colon, 
we found down-regulation at 2 and 6 dpi of some genes 
involved in Salmonella invasion pathways, actin fila-
ments organization and signaling by Rho family GTPases. 
Our results provide also information about the role of a 
number of miRNAs in the regulation of bacteria induced 
immune and inflammatory responses in porcine ileum.
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