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Abstract

Background: Accuracy of genomic prediction depends on number of records in the training population, heritability,
effective population size, genetic architecture, and relatedness of training and validation populations. Many traits have
ordered categories including reproductive performance and susceptibility or resistance to disease. Categorical scores
are often recorded because they are easier to obtain than continuous observations. Bayesian linear regression has
been extended to the threshold model for genomic prediction. The objective of this study was to quantify reductions
in accuracy for ordinal categorical traits relative to continuous traits.

Methods: Efficiency of genomic prediction was evaluated for heritabilities of 0.10, 0.25 or 0.50. Phenotypes were
simulated for 2250 purebred animals using 50 QTL selected from actual 50k SNP (single nucleotide polymorphism)
genotypes giving a proportion of causal to total loci of .0001. A Bayes Cπ threshold model simultaneously fitted all
50k markers except those that represented QTL. Estimated SNP effects were utilized to predict genomic breeding
values in purebred (n = 239) or multibreed (n = 924) validation populations. Correlations between true and predicted
genomic merit in validation populations were used to assess predictive ability.

Results: Accuracies of genomic estimated breeding values ranged from 0.12 to 0.66 for purebred and from 0.04 to
0.53 for multibreed validation populations based on Bayes Cπ linear model analysis of the simulated underlying
variable. Accuracies for ordinal categorical scores analyzed by the Bayes Cπ threshold model were 20% to 50% lower
and ranged from 0.04 to 0.55 for purebred and from 0.01 to 0.44 for multibreed validation populations. Analysis of
ordinal categorical scores using a linear model resulted in further reductions in accuracy.

Conclusions: Threshold traits result in markedly lower accuracy than a linear model on the underlying variable. To
achieve an accuracy equal or greater than for continuous phenotypes with a training population of 1000 animals, a
2.25 fold increase in training population size was required for categorical scores fitted with the threshold model. The
threshold model resulted in higher accuracies than the linear model and its advantage was greatest when training
populations were smallest.

Background
Recent innovation in high-throughput Single Nucleotide
Polymorphism (SNP) genotyping technology has made
SNP chips commercially available for most livestock
species, including cattle, sheep, pigs, horses and chick-
ens [1]. Bayesian linear regression models (Bayes A, B
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and C, Bayesian LASSO,machine learning methods) have
made jointly fitting all SNP effects feasible for genomic
prediction and genome-wide association analyses. Appli-
cation of genome-wide Bayesian regression models, as
described by Meuwissen et al. [2], require simultaneous
estimation of marker effects across the entire genome
using genotypes and phenotypes of animals in a train-
ing population, before prediction of breeding values of
selection candidates or animals in a validation population
based on their marker genotypes and estimated marker
effects from the training data analyses. Findings from
recent genome-wide studies investigating the effects of
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marker density, heritability, number of observations and
relationships among the individuals in training popula-
tion using simulated or actual data have indicated that
genomic prediction is often superior to pedigree-based
BLUP prediction in terms of accuracy of prediction [3-7].
For continuous traits, the factors that affect the accu-

racy of genomic prediction by Bayesian linear regression
models have been studied using simulated [8-11] and
field [6,12] data analyses in purebred (PB) and multi-
breed (MB) populations. Results from those studies have
demonstrated that accuracy of genomic estimated breed-
ing values (GEBV) depend on the number of records in the
training population, the heritability of the trait, the effec-
tive population size, the size of the genome, the density
of markers, the genetic architecture of the trait, and the
extent of relatedness between training and validation pop-
ulations [1,11,13]. Calus et al. [4] investigated the accuracy
of GEBV produced by genomic selection in a simulation
study using different map densities and haplotype struc-
tures in a 3 Morgan genome in an unselected outbred
population, and found that the greatest benefit of genomic
selection was for traits with a low heritability.
Categorical scores are often recorded because they are

easier to obtain than continuous observations on the same
trait. Many traits of low heritability have ordered categor-
ical scores, such as susceptibility or resistance to a disease
and reproductive traits like calving difficulty. In theory,
methods that are used to analyze continuously distributed
traits are not optimal for the analysis of ordinal cate-
gorical traits [14]. Wright [15] developed the threshold
concept to map a normally distributed underlying vari-
able to the observed ordered categorical phenotypes. In
a threshold model, the phenotype is assumed to be the
visible expression of an underlying continuous variable
rendered discrete via a set of fixed thresholds [16]. Gianola
and Foulley [17], and Harville and Mee [18] developed
the threshold mixed effects model, which has become
popular for pedigree-based genetic evaluation of ordinal
categorical traits.
Due to the importance of ordinal categorical scores in

animal production systems and the benefits of genomic
selection, Kizilkaya et al. [19] used a BayesC threshold
model to analyze the ordinal categorical trait of Infec-
tious Bovine Keratoconjunctivitis in Angus beef cattle.
The same model was used for the genome-wide associ-
ation analysis of first service conception and pregnancy
in Brangus heifers [20] and for insect bite hypersensitiv-
ity [21]. Furthermore, BayesA, Bayesian LASSO and two
machine learning methods [22], as well as BayesB [23]
have been extended to the threshold model in order to
obtain genomic predictions of breeding values for binary
traits.
It is expected that the realized accuracy for an ordi-

nal categorical trait will be lower than that predicted

from theory for a continuous trait in the same popu-
lation with the same genetic architecture and heritabil-
ity. The objective of this study was to use computer
simulation to quantify that reduction in accuracy for
an ordinal categorical trait relative to a continu-
ous trait across the range of commonly encountered
heritabilities in purebred and multibreed beef cattle
populations.

Methods
In order to quantify the reduction in accuracy of pre-
diction of breeding values for an ordinal categorical trait
relative to a continuous trait, underlying and ordinal cat-
egorical phenotypes for a training population, and true
breeding values for training and validation populations
were simulated using real SNP data from two beef cattle
resource populations. The SNP genotypes were obtained
using DNA samples extracted from semen or hair sam-
ples and did not require an approved animal use and care
protocol. These simulations are described in greater detail
below.

Marker genotypes for training and validation populations
High-density genotypes 53 367 (50k) were obtained from
the two resource populations using the Bovine SNP50
Infinium II BeadChip (Illumina, Inc., San Diego CA). The
first resource population included 2250 purebred (PT)
American Angus cattle [24] and was used as the training
population.
The second population included a subsample of 924 ani-

mals from the multibreed Carcass Merit Project [25], and
was used as the validation population (MV). In that pop-
ulation, Angus, Brahman, Charolais, Hereford, Limousin,
Maine-Anjou, Shorthorn, South Devon AI sires were
mated to commercial cows, and DNA samples and phe-
notypes were collected from 239 Angus-, 10 Brahman-,
183 Charolais-, 78 Hereford-, 45 Limousin-, 137 Maine-
Anjou-, 97 Shorthorn-, and 135 South Devon-sired steer
offspring [25]. The 239 purebredAngus animals in theMV
population were used as a purebred Angus validation (PV)
population in the project.
SNP covariate values of 0, 1, or 2, representing the

number of B alleles in the Illumina A/B allele calls, were
available for each locus. Missing genotypes represented
less than 0.2% of total observations and were replaced with
average covariate values for that locus. All genotypes were
retained for analysis, regardless of minor allele frequency
in the genotype data set [10].

Simulation of underlying and categorical phenotypes for
the training population
The observed 50k genotypes from the PT population were
used to simulate n = 2250 underlying (latent) phenotypes
with heritability of 10%, 25% or 50%. Then, n = 1000
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samples were selected randomly from 2250 observations
in order to create smaller training populations.
The underlying phenotypic value of each animal was

simulated using the model:

li = x′
iβ +

K∑
j=1

zijαjδj + ei i = 1, . . . , n (1)

where li is the underlying phenotypic value of animal
i, β is a vector of fixed effects sampled from the stan-
dard normal distribution, x′

i is the incidence row vector of
animal i, relating its fixed effects to the underlying phe-
notypic value, δj is a Bernoulli random variable indicating
the selection of locus j as a QTL from the observed SNP
loci with fixed probability (1-π ) where π = 0.999, αj is
the random substitution effect for locus j, sampled from
a normal distribution with mean equal to 0 and variance
σ 2

α = σ 2
g

K(1−π)2pq , K is the number of SNPs and 2pq is the
mean heterozygosity of the SNPs, zij is the covariate with
0, 1 or 2 at locus j for animal i, and ei is the random resid-
ual effect, which has a standard normal distribution with
mean equal to 0 and variance σ 2

e = 1. The value of pq
was estimated from all SNP loci in the PT population, and
values of 0.12, 0.33 or 1 were assigned to σ 2

g so that the
expected heritabilities (h2) of underlying variables were
0.10, 0.25 or 0.50 [26].
Thirty-two replicates of the data were generated for

each of three heritability scenarios. One fixed class effect
with three levels was generated from the standard nor-
mal distribution in the simulation. Levels of fixed effects
were randomly assigned to individuals in generating the
underlying phenotypic values. The fixed effects (β), loci
representing QTL (δj = 1) and substitution effects (αj)
were sampled independently in each replicate.
In order to generate ordinal categorical phenotypes with

four (y4i) categories, the underlying phenotypic values
were mapped to ordinal categorical phenotypes based on
the following threshold (τ ) parameters:

y4i =

⎧⎪⎨
⎪⎩

1 if−∞ < li ≤ τ1,
2 if τ1 < li ≤ τ2,
3 if τ2 < li ≤ τ3,
4 if τ3 < li ≤ ∞.

(2)

The threshold values were τ1 = 0.61, τ2 = 1.41, and
τ3 = 2.05, which correspond to calving categories of no
assistance, minor assistance, major assistance and cae-
sarian section with frequencies of 73, 19, 6, and 2%, as
observed in a Gelbvieh population [27] (Figure 1).
Two (y2i) and three (y3i)-category ordinal data sets were

created by combining categories in the four-category ordi-
nal data sets as follows:

y2i =
{
1 if y4i = 1,
2 if 2 ≤ y4i ≤ 4, and y3i =

⎧⎨
⎩

1 if y4i = 1,
2 if 2 ≤ y4i ≤ 3,
3 if y4i = 4.

(3)

Models of analysis
Bayes Cπ thresholdmodel
The thresholdmodel [15] assumes that ordinal categorical
data are determined by unobserved underlying continu-
ous (l) variables and a set of unknown fixed thresholds,
τ1 < τ2 < . . . < τc−1, where c is the number of mutu-
ally exclusive, ordered categories. More specifically, the
ordinal categorical score (yi) for animal i is assumed to be
determined by the following:

p(yi = j|li, τ ) = I(τj−1 < li < τj)I(yi = j), (4)

where li is the underlying variable of animal i, and I(.) is
an indicator function taking the value 1 when expression
(.) is true and 0 otherwise.
Marker-based binomial or ordinal threshold mod-

els were developed by modifying the Bayes C model
described by Kizilkaya et al. [10], with the underlying
variable for animal imodeled as follows:

li = x′
iβ +

K∑
k=1

zikak + ei, (5)

where β is a px1 vector of fixed effects, x′
i is a known inci-

dence row vector corresponding to fixed effects in β , K
is the number of SNP loci in the genotype file, zik is the
covariate (0, 1 or 2) at locus k for animal i, a′ = [a1, . . . ,ak]
is a Kx1 vector of random substitution effects for K loci,
and ei ∼ N(0, σ 2

e ) is a random residual. It was assumed
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Figure 1 Distribution of observations by categories.
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that, given the location parameters β and a, the underly-
ing variable li of animal i is conditionally independent and
distributed as

li|β , a ∼ N(x′
iβ +

K∑
k=1

zikak , σ 2
e ). (6)

The joint posterior density of β , a, τ , σ 2
a and the under-

lying variable l [28] is given by:

p
(
β , a, l, τ , σ 2

a |y) ∝ p
(y|β , a, l, τ , σ 2

a
)
p

(
β , a, l, τ , σ 2

a
)

= p (y|l, τ ) p (l|β , a) p
(
β , a, τ , σ 2

a
)

(7)

=
n∏

i=1

[
I
(
τj−1 < li < τj

)
I
(
yi = j

)]

×
[ n∏
i=1

p (l|β , a)

]
p

(
β , a, τ , σ 2

a
)

To ensure identifiability in the threshold model, σ 2
e and

the first threshold (τ1) were set to 1 and 0, respectively.
Flat prior distributions were assigned for the fixed

effects β . In Bayes Cπ threshold model, the prior for ak
follows a mixture distribution as:

ak |π , σ 2
a =

{
0 with probability π ,
∼ N(0, σ 2

a ) with probability (1 − π),
(8)

where π is the probability that a SNP has no effect on
the trait. The parameter π was treated as unknown with
uniform U(0, 1) prior.
The variance σ 2

a was a priori assumed to be a scaled
inverse Chi-Square with degrees of freedom ν = 4 and
scale parameter S2a = σ 2

g (ν−2)
K(1−π)2pqν . A flat prior was

assumed for the thresholds.
The fixed effects βm were sampled from

βm ∼ N(β̂m, (x′
mxm)−1) (9)

where β̂m =
x′
m(l−[X−mβ−m+

K∑
k=1

Zkak ])

x′
mxm and X−m is matrix X

with the mth column deleted, and β−m is vector β with
mth element deleted.
The full conditional posterior distribution for ak was

ak |π , σ 2(t)
a =

{
0 σ

2(t)
a = 0,

∼ N(
z′
krk
Ck

,C−1
k ) σ

2(t)
a > 0,

(10)

where rk = l−[Xβ +
K∑

k′ �=k
zk′ak′ ] and Ck = z′

kzk + (σ 2
a )−1.

The common effect variance σ 2
a was sampled from a

scaled inverse Chi-Square with degrees of freedom ν̃ =

ν +ν
(t)
M and scale S̃2a =

νS2a+
K∑

k=1
a2k

ν̃
, where ν

(t)
M is the number

of SNPs fitted in iteration t.

The full conditional posterior distribution of the under-
lying variable was

p(li|β , a, τ , l−i, y) ∝ p(li|β , a)
(
I(τj−1 < li < τj)I(yi = j)

)
.

(11)

This density is a truncated Normal distribution with

mean

(
x′
iβ +

K∑
k=1

zikak

)
and variance = 1. A Metropolis-

Hastings scheme with the proposal distribution of trun-
cated normal, which was presented by Cowles [29], was
used to generate the samples for elements of τ in the
ordinal setting.
The parameter of π was sampled from Beta(K −M(t) +

1,M(t)+1), whereM(t) is the number of SNPs fitted in the
model for iteration t. The starting value of π was 0.5.

Bayes Cπ linear model
Simulated liabilities l and binomial and ordinal categorical
(y) data were modeled and analyzed as continuous traits
using the linear model as follows,

ỹi = x′
iβ +

K∑
k=1

zikak + ei, (12)

where ỹi is li or yi for animal i, ei was normally distributed
residuals with mean = 0 and unknown variance σ 2

e [10].

Markov chain Monte Carlo implementation
The 50k genotypes, excluding the 50 loci sampled as QTL
(50k-QTL), were used to analyze each replicate data set
with simulated underlying variables (l) and ordinal cat-
egorical phenotypes (y2, y3, and y4). SNP effects were
estimated within PT (n = 1000 and 2250) training popu-
lations and used to predict genetic merit in the PV and
MV validation populations. These procedureswere imple-
mented by Gibbs sampling in the GenSel software [30]
applied to each replicated data set within each heritabil-
ity scenario, by defining a burn-in period of 5000 Markov
chain Monte Carlo (MCMC) cycles before saving samples
from each of an additional 40 000 MCMC cycles.

Genomic prediction and accuracy calculation
In training and validation populations, the true (gip ) and
estimated (ĝip|PT ) genomic merits of animal i were calcu-
lated as

gip =
Q∑

q=1
ziqαq and ĝip|PT =

K∑
k=1

zikâk

(13)

where p is the PV orMV population, ziq is the covariate (0,
1 or 2) at QTL locus q for animal i in population p, zik is the
covariate (0, 1 or 2) at locus k for animal i in population p,
αq is the true value of the substitution effect at QTL locus
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q, and âk is the posterior mean of the substitution effect
at locus k. In order to quantify the accuracy of prediction
in validation populations, the sample covariance between
the predicted (ĝp|PT ) and true (gp) additive genetic mer-
its and their sample variances from breeds were pooled
according to their respective degrees of freedom.

Results and discussion
In this study, the realistic marker panel, 50k without
QTL, was used for analyses of continuous and categori-
cal phenotypes. The estimates of π varied depending on
heritabilities, training population size, model of analysis
and number of categories (Table 1). These results indi-
cated a significant decreasing trend in estimates of π

with increasing heritability and training population size.
Habier et al. [31] investigated the estimation of π using
a Bayes Cπ linear model in relation to number of train-
ing individuals, number of QTL and distribution of QTL
effects. They observed decreasing trends for estimates of
π with increasing training data size. Wolc et al. [7] stud-
ied the evaluation of accuracy of GEBV for economically
important traits measured at early or late ages in a closed
population of layer chickens over five successive gener-
ations using a Bayes Cπ linear model, and found that

accuracy of GEBV increased with the size of the training
data, moreso for traits with low estimates of π and high
heritability. Also, a higher accuracy of GEBV for traits
with high estimates of π was observed.
Table 2 shows the accuracies of GEBV for continu-

ous and ordinal categorical phenotypes across training
population size, heritability, model of analysis and num-
ber of categories. For continuous phenotypes, accuracies
ranged from 0.12 to 0.66 for PV and from 0.04 to 0.53 for
MV validation populations. For ordinal categorical scores,
accuracies ranged from 0.04 to 0.55 for PV and from 0.01
to 0.44 for MV based on the analysis of threshold model,
and from 0.04 to 0.50 for PV and from 0.01 to 0.39 for MV
based on the analysis using the linear model on categorical
scores. The results in Table 2 indicate that genome-wide
analysis of an ordinal categorical phenotype resulted in a
substantially lower accuracy of GEBV than the analysis of
a continuous phenotype.
To examine the effect of heritability, the relationship

between training and validation populations, and the
number of categories on the loss in accuracy due to
categorizing a continuous trait, the accuracy of GEBV
from the analysis of ordinal categorical scores from 1000
or 2250 training animals was expressed relative to the

Table 1 Estimates of π from Bayes Cπ analysis in the Angus training (PT) population

Type of phenotype Model h2 c n = 1000 n = 2250

Continuous Linear 0.10 - 0.99982 ± 0.00002 0.99985 ± 0.00002

0.25 - 0.99972 ± 0.00003 0.99940 ± 0.00006

0.50 - 0.99903 ± 0.00007 0.99861 ± 0.00008

Categorical Threshold 0.10 2 0.99700 ± 0.00159 0.99992 ± 0.00001

3 0.99636 ± 0.00257 0.99992 ± 0.00001

4 0.99881 ± 0.00053 0.99991 ± 0.00001

0.25 2 0.99955 ± 0.00010 0.99976 ± 0.00004

3 0.99939 ± 0.00019 0.99973 ± 0.00004

4 0.99949 ± 0.00015 0.99973 ± 0.00004

0.50 2 0.99562 ± 0.00112 0.99894 ± 0.00012

3 0.99583 ± 0.00116 0.99900 ± 0.00008

4 0.99319 ± 0.00258 0.99894 ± 0.00009

Categorical Linear 0.10 2 0.99989 ± 0.00001 0.99995 ± 0.00001

3 0.99987 ± 0.00001 0.99995 ± 0.00001

4 0.99985 ± 0.00002 0.99994 ± 0.00001

0.25 2 0.99992 ± 0.00001 0.99993 ± 0.00001

3 0.99992 ± 0.00001 0.99992 ± 0.00001

4 0.99991 ± 0.00001 0.99990 ± 0.00001

0.50 2 0.99990 ± 0.00001 0.99981 ± 0.00002

3 0.99988 ± 0.00001 0.99976 ± 0.00002

4 0.99984 ± 0.00001 0.99967 ± 0.00003

The true value of π was 0.999.
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Table 2 Correlation between true (g) and predicted (ĝ) breeding values in the Angus (PV) andmultibreed (MV) validation
populations

(gPV , ĝPV |PT) r(gMV , ĝMV |PT)

Type of phenotype Model h2 c n = 1000 n = 2250 n = 1000 n = 2250

Continuous Linear 0.10 - 0.12 ± 0.02 0.31 ± 0.02 0.04 ± 0.01 0.23 ± 0.02

0.25 - 0.28 ± 0.03 0.51 ± 0.02 0.21 ± 0.02 0.41 ± 0.02

0.50 - 0.55 ± 0.02 0.66 ± 0.02 0.42 ± 0.02 0.53 ± 0.01

Categorical Threshold 0.10 2 0.04 ± 0.02 0.14 ± 0.02 0.01 ± 0.01 0.09 ± 0.02

3 0.05 ± 0.01 0.13 ± 0.03 0.03 ± 0.01 0.09 ± 0.02

4 0.07 ± 0.01 0.14 ± 0.02 0.02 ± 0.01 0.10 ± 0.02

0.25 2 0.15 ± 0.03 0.29 ± 0.03 0.10 ± 0.02 0.22 ± 0.08

3 0.15 ± 0.03 0.32 ± 0.03 0.11 ± 0.02 0.24 ± 0.02

4 0.16 ± 0.03 0.34 ± 0.03 0.10 ± 0.02 0.27 ± 0.02

0.50 2 0.32 ± 0.02 0.51 ± 0.02 0.26 ± 0.02 0.41 ± 0.02

3 0.36 ± 0.02 0.53 ± 0.02 0.28 ± 0.02 0.43 ± 0.02

4 0.38 ± 0.02 0.55 ± 0.02 0.29 ± 0.02 0.44 ± 0.02

Categorical Linear 0.10 2 0.04 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

3 0.04 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

4 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 0.01 ± 0.01

0.25 2 0.09 ± 0.02 0.23 ± 0.03 0.08 ± 0.02 0.18 ± 0.02

3 0.09 ± 0.02 0.23 ± 0.03 0.06 ± 0.02 0.18 ± 0.03

4 0.05 ± 0.01 0.24 ± 0.03 0.03 ± 0.01 0.19 ± 0.02

0.50 2 0.25 ± 0.03 0.46 ± 0.02 0.20 ± 0.02 0.38 ± 0.02

3 0.26 ± 0.03 0.48 ± 0.02 0.19 ± 0.02 0.38 ± 0.02

4 0.29 ± 0.03 0.50 ± 0.03 0.20 ± 0.02 0.39 ± 0.02

Results are given for Bayes Cπ linear model analysis of continuous phenotypes and Bayes Cπ linear or threshold model analysis of ordinal categorical phenotypes
classified (c) as 2, 3 or 4 categories with heritabilities (h2) of 0.10, 0.25 or 0.50 in the Angus training (PT) population with (n) 1000 or 2250 observations.

accuracy for the continuous phenotype in Figure 2. This
relativity is important because a researcher with a fixed
budget may have the choice of investing in either a dif-
ficult to measure expensive phenotype or of genotyping
a larger training population that is characterized with a
cheap and easily measured categorical score. For this rea-
son, to further characterize the loss of information in
terms of training population size, when going from a con-
tinuous to an ordinal categorical phenotype, the accuracy
for the ordinal categorical phenotype from 2250 train-
ing animals was expressed relative to the accuracy for
the continuous phenotype from 1000 training animals in
Figure 3.

Effect of validation population
There was a substantial difference between actual accu-
racies of GEBV from PV and MV validation popula-
tions. PV validation populations resulted in about 30
to 40% higher accuracy than MV validation populations
for ordinal categorical phenotypes (Table 2). The rel-
ative accuracy of GEBV for categorical phenotypes in
Figure 2 indicated that 5 to 80% of the accuracy from the

continuous phenotype could be obtained in the analysis
of the ordinal categorical phenotype within PV and MV
validation populations. In addition, the relative accuracies
of GEBV for categorical phenotypes within PV valida-
tion populations were about 1.5 fold higher than those
within MV validation populations across heritabilities,
training population size, analytical model and number
of categories and a 2.25 fold increase in the training
population size was not sufficient to provide similar rela-
tive accuracies within PV and MV validation populations
(Figure 2).
Relative accuracies of GEBV for ordinal categorical phe-

notypes in Figure 3 were equal to or greater than 100%
within PV and MV validation populations for heritabili-
ties of 0.25 and 0.50. These findings indicate that a 2.25
fold increase in the size of the training population was
sufficient to obtain a similar accuracy of GEBV for con-
tinuous and ordinal categorical phenotypes within PV and
MV validation populations. However, this increase was
not sufficient for a linear model analysis of ordinal cate-
gorical data with a heritability of 0.10 within PV and MV
validation populations.
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Figure 2 Accuracies of GEBV for a categorical trait relative to a continuous trait. Accuracies are given by validation population, heritability,
training population size, model of analysis and the number of categories.

These results demonstrate that validation of genomic
prediction analyses of ordinal categorical phenotypes is
sensitive to the choice of validation population and to
pedigree relationships between the animals contributing
to validation and training populations as has been shown
for continuous traits [6]. Saatchi et al. [6,32] applied
genomic prediction to US Angus, Limousin and Simmen-
tal beef cattle to evaluate some routinely measured eco-
nomically important traits. The accuracy of GEBV ranged
from 0.22 to 0.69 in Angus, from 0.39 to 0.76 in Limousin
and from 0.29 to 0.65 in Simmental cattle, using K-means
clustering to minimize relationships between training and
validation groups. The accuracy (0.38 to 0.85) of GEBV
obtained by random clustering was higher for all traits
than the corresponding accuracies obtained by K-means
clustering. Villanueva et al. [23] found higher accuracies

than this study, equal to about 0.4 or 0.6, in the analysis of
binomial phenotypes with a heritability of 0.1 or 0.3 but
with higher genetic relationships between the training and
validation populations.
The difference between accuracies obtained in PV

versus MV validation populations could result from
the different extent and patterns of linkage disequilib-
rium (LD) because there were significant differences
in the extent of LD between PT, PV and MV pop-
ulations (data not shown). Toosi et al. [9] reported
that using training and validation populations from the
same breed resulted in the highest values of accuracy
of GEBV in other cross or admixed populations and
that compared to these values, when training and vali-
dation were done in different breeds, accuracy dropped
by 46%.
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Figure 3 Accuracies of GEBV for a categorical trait relative to a continuous trait in a smaller population. The population size was 2250 for the
categorical trait and was 1000 for the continuous trait.

Effects of training population size and heritability
The importance of training population size and heritabil-
ity on the accuracies of GEBV for continuous pheno-
types [2,31] and ordinal categorical phenotypes [23] has
been shown in simulation studies. The accuracy of GEBV
depends on the genetic variation for the trait analyzed and
the number of animals in the training population [33]. An
increase in accuracy with training data size was confirmed
in real continuous phenotypes. Habier et al. [31] indicated
that the accuracy of GEBV improved markedly with train-
ing data size formilk yield, fat yield and somatic cell scores
from 1000 to 4000 North American Holstein bulls. In a
study on the persistence of accuracy of GEBV over gen-
erations in layer chickens, Wolc et al. [7] determined that
accuracy tended to increase when the number of observa-
tions available for the training population increased about
five folds from generation 1 to 5.
Table 2 shows that when the training population size

and heritability increased, accuracy of GEBV increased

significantly for all models of analysis and for all number
of categories in the ordinal categorical data. Increasing
the size of training population resulted in increased accu-
racies of GEBV for heritabilities of 0.10 and 0.25 more
than for heritabilities of 0.50 within the PV and MV val-
idation populations. The gain in accuracy of GEBV was
about 85 to 230% for heritabilities of 0.10, 170 to 210%
for heritabilities of 0.25 and 65 to 75% for a heritability
of 0.50 across validation populations and analytical mod-
els (Table 2). The effect of increasing training population
size varied considerably depending on heritabilities, ana-
lytical models and the number of categories. The highest
gain for a binomial phenotype was observed with heri-
tabilities of 0.10 or 0.50, whereas the highest gain for four
category ordinal phenotypes was found with a heritabil-
ity of 0.25 across validation populations. The same pattern
of relationships with training population size and heri-
tability were observed for the accuracy of GEBV for the
ordinal categorical phenotype relative to the continuous
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phenotype (Figure 2). The largest increase in accuracy
with training population size was observed for a heritabil-
ity of 0.1 but the largest increase for relative accuracy was
for heritabilities of 0.25 and 0.5 (Figure 2). For heritabili-
ties of 0.25 and 0.50, the accuracy obtained for the categor-
ical trait relative to the continuous trait increased with the
number of categories, but this trend was observed neither
with a heritability of 0.1, nor for the linear model.
With a threshold model, the accuracies of GEBV for

ordinal categorical phenotypes given in Figure 3 indicate
that a 2.25 fold increase in training population size was
sufficient to achieve an accuracy equal to or greater than
that obtained for the continuous phenotypes with a train-
ing population size of 1000 animals across heritabilities
and numbers of categories. However, with a linear model,
a greater than 2.25 fold increase in the size of training pop-
ulation would be required to achieve the same accuracy as
a continuous trait with 1000 observations for the analysis
of an ordinal categorical phenotype with a heritability of
0.10.

Effects of the analytical model and the number of
categories
Accuracies of GEBV in Table 2 and Figures 2 and 3 show
that the thresholdmodel had higher accuracies than linear

model analyses when analyzing categorical data. Varona
et al. [34] compared linear and threshold models in con-
ventional pedigree-based evaluations (EBV) by examin-
ing the correlation between predicted and true breeding
values using simulated data sets for calving difficulty.
The correlations with the threshold model were better
than with the linear model for both direct and mater-
nal effects. Ramirez-Valverde et al. [27] compared the
accuracy of EBV from threshold animal, threshold sire-
maternal grandsire, linear animal and linear sire-maternal
grandsire models for calving difficulty in beef cattle and
determined that the accuracy of EBV from the thresh-
old model was 10% higher than from the linear model for
animal and sire-maternal grandsire models. Casellas et al.
[35] analyzed litter size using linear and threshold models
and found better goodness-of-fit and predictive ability for
EBV from a threshold model than for a linear model.
Table 3 shows the Spearman rank correlations among

GEBV (ĝCon, ĝT and ĝL) in the Angus (PV) and multibreed
(MV) validation populations after estimating the substi-
tution effects from the 50k panel without QTL using the
Bayes Cπ linear (Con) model analysis of continuous phe-
notypes and Bayes Cπ linear (L) or threshold (T) model
analysis of ordinal categorical phenotypes. The rank cor-
relations between ĝT and ĝL ranged from 0.52 to 0.89 in

Table 3 Spearman rank correlation among predicted (ĝCon, ĝT and ĝL) genotypic values

r(ĝCon, ĝT )PV r(ĝCon, ĝL)PV r(ĝT , ĝL)PV r(ĝCon, ĝT )MV r(ĝCon, ĝL)MV r(ĝT , ĝL)MV

h2 c n = 1000 n = 1000 n = 1000 n = 1000 n = 1000 n = 1000

0.10 2 0.26 0.21 0.61 0.29 0.26 0.60

3 0.27 0.22 0.62 0.31 0.27 0.57

4 0.32 0.26 0.52 0.34 0.29 0.48

0.25 2 0.34 0.31 0.74 0.33 0.29 0.73

3 0.37 0.34 0.74 0.37 0.34 0.70

4 0.40 0.33 0.64 0.40 0.29 0.56

0.50 2 0.54 0.45 0.66 0.50 0.42 0.66

3 0.59 0.47 0.66 0.54 0.43 0.64

4 0.61 0.51 0.64 0.55 0.46 0.61

h2 c n = 2250 n = 2250 n = 2250 n = 2250 n = 2250 n=2250

0.10 2 0.34 0.31 0.89 0.31 0.25 0.83

3 0.40 0.35 0.88 0.34 0.28 0.82

4 0.41 0.37 0.82 0.36 0.29 0.74

0.25 2 0.52 0.44 0.86 0.45 0.37 0.85

3 0.54 0.47 0.84 0.48 0.41 0.82

4 0.59 0.50 0.80 0.53 0.44 0.80

0.50 2 0.70 0.63 0.85 0.66 0.59 0.84

3 0.72 0.66 0.87 0.68 0.62 0.84

4 0.74 0.68 0.87 0.70 0.63 0.84

Results are for Angus (PV) and multibreed (MV) validation populations using Bayes Cπ linear (Con) model analysis of continuous phenotypes and Bayes Cπ linear (L) or
threshold (T ) model analysis of ordinal categorical phenotypes classified (c) as 2, 3 or 4 categories with heritabilities (h2) of 0.10, 0.25 or 0.50 in the Angus training (PT)
population with (n) 1000 or 2250 observations.
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the PV validation population and from 0.48 to 0.85 in the
MV validation population. Categorical phenotypes classi-
fied by 2 or 3 scores resulted in higher rank correlations
among the alternative analyses than when categorical
phenotypes were classified by 4 scores across heritabilities
and training population sizes. However, the rank corre-
lations were not affected when heritabilities and training
population sizes increased. The rank correlations between
ĝCon and ĝT , and between ĝCon and ĝL indicated that the
Bayes Cπ linear (Con) model analysis of continuous phe-
notypes and Bayes Cπ threshold (T) model analysis of
ordinal categorical phenotypes resulted in GEBV with a
similar ranking than the Bayes Cπ linear (Con) model
analysis of continuous phenotypes and Bayes Cπ linear (L)
model analysis of ordinal categorical phenotypes across
heritabilities, number of categories and training popula-
tion sizes. Vazquez et al. [36] compared Poisson, logit and
linear models for accuracy of EBV for clinical mastitis in
Norwegian Red cows. They found that the type of model,
linear or nonlinear, had an impact on accuracy and the
ranking of sires. Guerra et al. [37] and Marcondes et al.

[38] studied linear and threshold models for the analysis
of calving rate and calf survival in a multibreed beef cattle
population and for the analysis of stayability for Nellore
cows and found that the two models resulted in EBV with
very similar rankings (rank correlation = 97%).

Bias in predictions
The presence of bias in GEBV was evaluated by regress-
ing true (g) genotypic values of validation animals on their
predicted (ĝ) genotypic values (Table 4). These regression
coefficients tended to differ from the expected value of 1.
Regression coefficients for the MV validation population
were lower than those for the PV validation population,
regardless of heritability, training population size, model
of analysis and the number of categories, when the PT
training population was purebred. GEBV were found to
be more biased with 1000 observations than with 2250
observations in the training population. Generally, when
heritability and training population size increased, bias
reduced. The least bias occurred when the phenotype was
continuous. The threshold model resulted in greater bias

Table 4 Regression (b) of true (g) on predicted (ĝ) genotypic values

b(gPV , ĝPV |PT ) b(gMV , ĝMV |PT)

Type of phenotype Model h2 c n = 1000 n = 2250 n = 1000 n = 2250

Continuous Linear 0.10 - 0.57 ± 0.11 1.10 ± 0.27 0.33 ± 0.06 0.92 ± 0.25

0.25 - 1.01 ± 0.27 1.02 ± 0.10 0.73 ± 0.12 0.86 ± 0.09

0.50 - 0.87 ± 0.07 0.87 ± 0.04 0.73 ± 0.04 0.78 ± 0.05

Categorical Threshold 0.10 2 0.28 ± 0.13 1.11 ± 0.43 0.05 ± 0.05 0.90 ± 0.45

3 0.08 ± 0.09 0.45 ± 0.16 0.02 ± 0.04 0.34 ± 0.09

4 0.52 ± 0.16 0.55 ± 0.21 0.23 ± 0.12 0.35 ± 0.10

0.25 2 0.81 ± 0.23 1.00 ± 0.24 0.65 ± 0.16 0.87 ± 0.14

3 0.61 ± 0.29 1.34 ± 0.21 0.63 ± 0.16 1.03 ± 0.17

4 1.12 ± 0.29 1.21 ± 0.18 0.66 ± 0.12 1.16 ± 0.30

0.50 2 0.44 ± 0.11 0.74 ± 0.14 0.43 ± 0.06 0.69 ± 0.07

3 0.69 ± 0.12 0.87 ± 0.11 0.50 ± 0.07 0.77 ± 0.06

4 0.56 ± 0.10 1.04 ± 0.06 0.49 ± 0.07 0.82 ± 0.05

Categorical Linear 0.10 2 0.41 ± 0.18 0.62 ± 0.40 0.10 ± 0.23 0.74 ± 0.40

3 0.01 ± 0.20 0.86 ± 0.38 0.08 ± 0.08 1.83 ± 0.71

4 0.18 ± 0.23 0.75 ± 0.27 0.04 ± 0.10 0.50 ± 0.10

0.25 2 0.63 ± 0.46 2.27 ± 0.51 0.31 ± 0.22 2.07 ± 0.31

3 0.61 ± 0.38 2.27 ± 0.45 0.15 ± 0.24 1.87 ± 0.32

4 0.59 ± 0.30 1.91 ± 0.34 -1.24 ± 1.21 1.59 ± 0.40

0.50 2 4.41 ± 0.64 4.67 ± 0.36 3.94 ± 0.60 3.94 ± 0.29

3 3.77 ± 0.61 4.11 ± 0.35 3.01 ± 0.48 3.38 ± 0.27

4 2.85 ± 0.58 3.04 ± 0.21 1.91 ± 0.29 2.31 ± 0.15

Results are for Angus (PV) and multibreed (MV) validation populations using Bayes Cπ linear model analysis of continuous phenotype and Bayes Cπ linear or
threshold model analysis of ordinal categorical phenotype classified (c) as 2, 3 or 4 categories with heritabilities (h2) of 0.10, 0.25 or 0.50 in the Angus training (PT)
population with (n) 1000 or 2250 observations.
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than analysis of a continuous phenotype. Some of the
worst bias occurred when the data was categorical but
analyzed as if it was continuous using a linear model. Gen-
erally the more biased predictions were associated with
lower accuracy. Saatchi et al. [6] indicated that traits in US
Angus that presented the highest bias i.e. having regres-
sions of deregressed estimated breeding values (DEBV)
on DGV different from 1, also exhibited less accuracy,
regardless of the number of animals with DEBV.
Table 5 shows the estimates of heritabilities on the

underlying scale across heritabilities, training population
size, and number of categories. Bayes Cπ linear model
analysis of continuous phenotypes resulted in downward
bias of heritability estimates for training population sizes
with 1000 and 2250 observations, except for a heritabil-
ity of 0.10 and a training population size with 1000
observations. Increasing training population size from
1000 to 2250 did not help improve the estimates of her-
itabilities. Bayes Cπ threshold model analysis of ordinal
categorical phenotypes resulted in upward or downward
bias of heritability estimates on the underlying scale for
training population sizes of 1000 or 2250. The increase
in training population size resulted in similar estimates of

heritabilities on the underlying scale from Bayes Cπ lin-
ear model analysis of continuous phenotypes and Bayes
Cπ threshold model analysis of ordinal categorical phe-
notypes. However, the estimates of heritabilities on the
underlying scale from Bayes Cπ linear model analysis of
ordinal categorical phenotypes were found to be signifi-
cantly downward biased for training population sizes with
1000 and 2250 observations.

Other factors that influence the results from categorical
analyses
In some practical settings, linear model analyses perform
as well as threshold model analyses as discussed above.
This is expected because as the number of categories
increases, the distribution of the data tends towards a
normal distribution. The worst scenario is for binomial
data and although not significant, the trends for accu-
racy of predictions tend to be poorer for two compared
to three or four categories, as in Figure 2. The perfor-
mance of analyses of binomial data treated as continuous
also eroded as the observed frequency departed from 0.5.
In the simulations presented here, the distributions of
ordered categorical scores were chosen to reflect those

Table 5 Estimates of heritability (h2)

Type of phenotype Model h2 c n = 1000 n = 2250

Continuous Linear 0.10 - 0.16 ± 0.019 0.04 ± 0.004

0.25 - 0.14 ± 0.018 0.16 ± 0.012

0.50 - 0.39 ± 0.016 0.39 ± 0.011

Categorical Threshold 0.10 2 0.56 ± 0.045 0.03 ± 0.003

3 0.44 ± 0.042 0.03 ± 0.004

4 0.37 ± 0.043 0.03 ± 0.004

0.25 2 0.28 ± 0.039 0.10 ± 0.014

3 0.27 ± 0.040 0.11 ± 0.013

4 0.25 ± 0.037 0.11 ± 0.013

0.50 2 0.62 ± 0.047 0.41 ± 0.018

3 0.60 ± 0.045 0.39 ± 0.017

4 0.62 ± 0.045 0.40 ± 0.017

Categorical Linear 0.10 2 0.27 ± 0.037 0.01 ± 0.001

3 0.26 ± 0.032 0.01 ± 0.001

4 0.26 ± 0.031 0.01 ± 0.002

0.25 2 0.09 ± 0.032 0.02 ± 0.004

3 0.10 ± 0.030 0.03 ± 0.005

4 0.11 ± 0.028 0.03 ± 0.006

0.50 2 0.08 ± 0.009 0.10 ± 0.009

3 0.10 ± 0.010 0.13 ± 0.010

4 0.13 ± 0.011 0.15 ± 0.011

Estimates were obtained using Bayes Cπ linear model analysis of continuous phenotypes and Bayes Cπ linear and threshold model analyses of ordinal categorical
phenotypes classified (c) as 2, 3 or 4 categories with heritabilities (h2) of 0.10, 0.25 or 0.50 in the Angus training (PT) population with (n) 1000 or 2250 observations.
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commonly observed, namely a majority of observations
in one extreme category, and successively fewer scores in
each successive category. In data in which the distribution
of scores is spread more evenly, the loss in accuracy from
using categorical scores rather than measuring a continu-
ous variable will be smaller than that observed here, which
indicates that it will not be necessary to increase train-
ing population size by as much as 2.25 fold to achieve
the accuracy for continuous phenotypes with a training
population size of 1000 animals.
The distribution of outcomes across categories can also

differ between fixed class variables such as herd-year-
season. The simulation reported here used only one fixed
class effect with three similarly represented levels. It is dif-
ficult to simulate data to represent all situations thatmight
be encountered with field data, but we believe the param-
eters we have chosen will provide indicative values for
relative information content of continuous data compared
to that measured with categorical scores.

Conclusions
Genomic prediction of ordinal categorical phenotypes
was carried out using Bayes Cπ threshold and linear mod-
els. Results indicated that there was a clear loss in accuracy
of GEBV from the analysis of ordinal categorical pheno-
types compared to that of continuous phenotypes. This
loss was found to depend on training population size,
heritability, model of analysis and number of categories.
The accuracies of GEBV for ordinal categorical pheno-
types analyzed by the threshold model were higher than
those with a linear model applied to the scores, and the
advantage of a thresholdmodel was greatestwhen training
populations were small. Accuracy of GEBV in a purebred
validation population was greater than in a multibreed
validation population; however, this difference became
smaller when training population size increased. A 2.25
fold increase in training population size for ordinal cate-
gorical phenotypes analyzed using a threshold model was
sufficient to achieve an accuracy equal to or greater than
that for continuous phenotypes with a training population
size of 1000 animals.
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