Performing and Visualizing Temporal Analysis of Large Text Data Issued for Open Sources: Past and Future Methods

Abstract : In this paper we first propose a state of the art on the methods for the visualization and the interpretation of textual data, in particular of scientific data. We then shortly present our contributions to this field in the form of original methods for the automatic classification of documents and easy interpretation of their content through characteristic keywords and classes created by our algorithms. In a second step, we focus our analysis on the data evolving over time. We detail our di-achronic approach, especially suitable for the detection and visualization of topic changes. This allows us to conclude with Diachronic'Explorer, our upcoming tool for visual exploration of evolutionary data.
Type de document :
Communication dans un congrès
BDAS 2016, May 2016, Krakow, Poland. 2016, Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery - 12th International Conference. 〈10.1007/978-3-319-34099-9_4〉
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01340846
Contributeur : Nicolas Dugue <>
Soumis le : samedi 2 juillet 2016 - 00:11:02
Dernière modification le : mardi 24 avril 2018 - 13:33:09
Document(s) archivé(s) le : lundi 3 octobre 2016 - 10:15:38

Fichier

bdas2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Jean-Charles Lamirel, Nicolas Dugué, Pascal Cuxac. Performing and Visualizing Temporal Analysis of Large Text Data Issued for Open Sources: Past and Future Methods. BDAS 2016, May 2016, Krakow, Poland. 2016, Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery - 12th International Conference. 〈10.1007/978-3-319-34099-9_4〉. 〈hal-01340846〉

Partager

Métriques

Consultations de la notice

623

Téléchargements de fichiers

217