D. W. Cleveland, S. Y. Hwo, and M. W. Kirschner, Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin, Journal of Molecular Biology, vol.116, issue.2, pp.207-225, 1977.
DOI : 10.1016/0022-2836(77)90213-3

J. Q. Trojanowski, L. , and V. M. , The role of tau in Alzheimer's disease, Medical Clinics of North America, vol.86, issue.3, pp.615-627, 2002.
DOI : 10.1016/S0025-7125(02)00002-0

L. Buee, T. Bussiere, V. Buee-scherrer, A. Delacourte, and P. R. Hof, Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work., Brain Research Reviews, vol.33, issue.1, pp.95-130, 2000.
DOI : 10.1016/S0165-0173(00)00019-9

E. M. Mandelkow, K. Stamer, R. Vogel, E. Thies, and E. Mandelkow, Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses, Neurobiology of Aging, vol.24, issue.8, pp.1079-1085, 2003.
DOI : 10.1016/j.neurobiolaging.2003.04.007

D. Panda, S. J. Massie, M. Feinstein, S. C. , and W. L. , Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9548-9553, 2003.
DOI : 10.1073/pnas.1633508100

G. Lee, N. Cowan, and M. Kirschner, The primary structure and heterogeneity of tau protein from mouse brain, Science, vol.239, issue.4837, pp.285-288, 1988.
DOI : 10.1126/science.3122323

B. L. Goode and S. C. Feinstein, Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau, The Journal of Cell Biology, vol.124, issue.5, pp.769-782, 1994.
DOI : 10.1083/jcb.124.5.769

N. Gustke, B. Trinczek, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Domains of tau Protein and Interactions with Microtubules, Biochemistry, vol.33, issue.32, pp.9511-9522, 1994.
DOI : 10.1021/bi00198a017

B. L. Goode, P. E. Denis, D. Panda, M. J. Radeke, H. P. Miller et al., Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly., Molecular Biology of the Cell, vol.8, issue.2, pp.353-365, 1997.
DOI : 10.1091/mbc.8.2.353

U. Z. Littauer, D. Giveon, M. Thierauf, I. Ginzburg, and H. Ponstingl, Common and distinct tubulin binding sites for microtubule-associated proteins Proc, Natl. Acad. Sci. U.S.A, pp.83-7162, 1986.

L. Serrano, E. Montejo-de-garcini, M. A. Hernandez, and J. Avila, Localization of the tubulin binding site for tau protein Eur, J. Biochem, vol.153, issue.3, pp.595-600, 1985.

P. K. Marya, Z. Syed, P. E. Fraylich, and P. A. Eagles, Kinesin and tau bind to distinct sites on microtubules, J. Cell Sci, vol.107, pp.339-344, 1994.

R. B. Maccioni, C. I. Rivas, and J. C. Vera, Differential interaction of synthetic peptides from the carboxyl-terminal regulatory domain of tubulin with microtubule-associated proteins, EMBO J, vol.7, issue.7, pp.1957-1963, 1988.

J. Al-bassam, R. S. Ozer, D. Safer, S. Halpain, and R. A. Milligan, MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments, The Journal of Cell Biology, vol.6, issue.7, pp.1187-1196, 2002.
DOI : 10.1021/bi9527395

S. Kar, J. Fan, M. J. Smith, M. Goedert, A. et al., Repeat motifs of tau bind to the insides of microtubules in the absence of taxol, The EMBO Journal, vol.22, issue.1, pp.70-77, 2003.
DOI : 10.1093/emboj/cdg001

F. Devred, S. Douillard, C. Briand, and V. Peyrot, First tau repeat domain binding to growing and taxol-stabilized microtubules, and serine 262 residue phosphorylation, FEBS Letters, vol.16, issue.1-3, pp.1-3, 2002.
DOI : 10.1016/S0014-5793(02)02999-X

K. A. Butner and M. W. Kirschner, Tau protein binds to microtubules through a flexible array of distributed weak sites, The Journal of Cell Biology, vol.115, issue.3, pp.717-730, 1991.
DOI : 10.1083/jcb.115.3.717

I. S. Novella, J. M. Andreu, and D. Andreu, Chemically synthesized 182-235 segment of tau protein and analogue peptides are efficient in vitro microtubule assembly inducers of low apparent sequence specificity FEBS Lett, pp.311-235, 1992.

K. Ichihara, H. Kitazawa, Y. Iguchi, H. Hotani, and T. J. Itoh, Visualization of the stop of microtubule depolymerization that occurs at the high-density region of microtubule-associated protein 2 (MAP2), Journal of Molecular Biology, vol.312, issue.1, pp.107-118, 2001.
DOI : 10.1006/jmbi.2001.4934

D. J. Ennulat, R. K. Liem, G. A. Hashim, and M. L. Shelanski, Two separate 18-amino acid domains of tau promote the polymerization of tubulin, J. Biol. Chem, vol.264, issue.10, pp.5327-5357, 1989.

H. Aizawa, H. Kawasaki, H. Murofushi, S. Kotani, K. Suzuki et al., A common amino acid sequence in 190- kDa microtubule-associated protein and tau for the promotion of microtubule assembly, J. Biol. Chem, vol.264, issue.10, pp.5885-90, 1989.

M. A. Jimenez, J. A. Evangelio, C. Aranda, A. Lopez-brauet, D. Andreu et al., Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides Protein Sci, pp.788-799, 1999.

J. Lowe, H. Li, K. H. Downing, and E. Nogales, Refined structure of alpha beta-tubulin at 3.5 A resolution, J. Mol. Biol, issue.5, pp.313-1045, 2001.

R. C. Weisenberg, G. G. Borisy, T. , and E. W. , Colchicine-binding protein of mammalian brain and its relation to microtubules, Biochemistry, vol.7, issue.12, pp.4466-4479, 1968.
DOI : 10.1021/bi00852a043

J. M. Andreu, M. J. Gorbunoff, J. C. Lee, and S. N. Timasheff, Interaction of tubulin with bifunctional colchicine analogs: an equilibrium study, Biochemistry, vol.23, issue.8, pp.1742-1752, 1984.
DOI : 10.1021/bi00303a025

G. Deleage, C. Blanchet, and C. Geourjon, Protein structure prediction. Implications for the biologist, Biochimie, vol.79, issue.11, pp.681-686, 1997.
DOI : 10.1016/S0300-9084(97)83524-9

URL : https://hal.archives-ouvertes.fr/hal-00313013

A. P. Minton, Modern Ultracentrifugation, pp.81-93, 1994.

M. L. Johnson, J. J. Correia, D. A. Yphantis, and H. R. Halvorson, Analysis of data from the analytical ultracentrifuge by nonlinear least-squares techniques Biophys, J, vol.36, pp.575-588, 1981.

T. M. Laue, B. D. Shah, T. M. Ridgeway, and S. L. Pelletier, Computer-aided interpretation of analytical sedimentation data for proteins in Analytical Ultracentrifugation in, Biochemistry and Polymer Sciences, pp.90-125, 1992.

P. Schuck, R. , and P. , Determination of the sedimentation coefficient distribution by least-squares boundary modeling, Biopolymers, vol.240, issue.5, pp.328-341, 2000.
DOI : 10.1002/1097-0282(20001015)54:5<328::AID-BIP40>3.0.CO;2-P

V. Bloomfield, K. E. Van-holde, D. , and W. O. , Frictional coefficients of multisubunit structures. II. Application to proteins and viruses Biopolymers, pp.149-159, 1967.

W. F. Stafford, S. E. Harding, and A. Rowe, III (1992) in Modern Applications of Analytical Ultracentrifugation in Analytical Ultracentrifugation in Biochemistry and Polymer Science, pp.359-393

J. S. Philo, A Method for Directly Fitting the Time Derivative of Sedimentation Velocity Data and an Alternative Algorithm for Calculating Sedimentation Coefficient Distribution Functions, Analytical Biochemistry, vol.279, issue.2, pp.151-163, 2000.
DOI : 10.1006/abio.2000.4480

J. F. Diaz, M. Menendez, and J. M. Andreu, Thermodynamics of ligand-induced assembly of tubulin, Biochemistry, vol.32, issue.38, pp.10067-77, 1993.
DOI : 10.1021/bi00089a023

M. T. Martin and R. Shapiro, Atomic absorption spectrometry of magnesium Methods Enzymol, pp.365-70, 1988.

G. Rivas, A. Lopez, J. Mingorance, M. J. Ferrandez, S. Zorrilla et al., Magnesium-induced Linear Self-association of the FtsZ Bacterial Cell Division Protein Monomer. THE PRIMARY STEPS FOR FtsZ ASSEMBLY, Journal of Biological Chemistry, vol.275, issue.16, pp.275-11740, 2000.
DOI : 10.1074/jbc.275.16.11740

P. Barbier, V. Peyrot, D. Leynadier, and J. M. Andreu, The active GTP-and ground GDP-liganded states of tubulin are distinguished by the binding of chiral isomers of ethyl 5-amino- 2-methyl-1,2-dihydro-3-phenylpyrido, Biochemistry, vol.3, issue.37, pp.4-7, 1998.

H. Wille, G. Drewes, J. Biernat, E. M. Mandelkow, and E. Mandelkow, Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro, The Journal of Cell Biology, vol.118, issue.3, pp.573-584, 1992.
DOI : 10.1083/jcb.118.3.573

M. D. Weingarten, A. H. Lockwood, S. Y. Hwo, and M. W. Kirschner, A protein factor essential for microtubule assembly., Proceedings of the National Academy of Sciences, vol.72, issue.5, pp.1858-1862, 1975.
DOI : 10.1073/pnas.72.5.1858

O. Schweers, E. Scho-Ènbrunn-hanebeck, A. Marx, and E. Mandelkow, Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure, J. Biol. Chem, vol.269, pp.24290-24297, 1994.

C. D. Syme, E. W. Blanch, C. Holt, R. Jakes, M. Goedert et al., A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behavior of natively unfolded proteins Eur, J. Biochem, vol.269, pp.148-156, 2002.

L. Maire, M. Rivas, E. Moller, and J. V. , Use of gel chromatography for determination of size and molecular weight of proteins: Further caution, Analytical Biochemistry, vol.106, issue.1, pp.12-21, 1980.
DOI : 10.1016/0003-2697(80)90112-8

C. Tanford, . K. Kawahara, S. Lapanje, T. M. Hooker, . Jr et al., Proteins as random coils. III. Optical rotatory dispersion in 6M guanidine hydrochloride, Journal of the American Chemical Society, vol.89, issue.19, pp.5023-5032, 1967.
DOI : 10.1021/ja00995a034

J. C. Lee and S. Rajendran, Studies of macromolecular interaction by sedimentation velocity in Modern Analytical Ultracentrifugation, pp.138-155, 1994.

S. Kotani, G. Kawai, S. Yokoyama, and H. Murofushi, Interaction mechanism between microtubule-associated proteins and microtubules. A proton nuclear magnetic resonance analysis on the binding of synthetic peptide to tubulin, Biochemistry, vol.29, issue.43, pp.10049-10054, 1990.
DOI : 10.1021/bi00495a006

B. J. Berne, Interpretation of the light scattering from long rods, Journal of Molecular Biology, vol.89, issue.4, pp.755-758, 1974.
DOI : 10.1016/0022-2836(74)90049-7

F. Gaskin, Techniques for the study of microtubule assembly in vitro Methods Enzymol, pp.433-442, 1982.

G. Scatchard, THE ATTRACTIONS OF PROTEINS FOR SMALL MOLECULES AND IONS, Annals of the New York Academy of Sciences, vol.173, issue.3, pp.660-72, 1949.
DOI : 10.1111/j.1749-6632.1949.tb27297.x

G. C. Na and S. N. Timasheff, Measurement and analysis of ligand-binding isotherms linked to protein self-associations Methods Enzymol, pp.496-519, 1985.

F. Oosawa and S. Asakura, Thermodynamics of the Polymerization of Protein, 1975.

G. C. Na and S. N. Timasheff, Velocity sedimentation study of ligand-induced protein self-association Methods Enzymol, pp.459-95, 1985.

R. B. Scheele and G. G. Borisy, In vitro assembly of microtubules in Microtubules, pp.175-253, 1979.

M. W. Kirschner, R. C. Williams, M. Weingarten, and J. C. Gerhart, Microtubules from Mammalian Brain: Some Properties of Their Depolymerization Products and a Proposed Mechanism of Assembly and Disassembly, Proceedings of the National Academy of Sciences, vol.71, issue.4, pp.1159-63, 1974.
DOI : 10.1073/pnas.71.4.1159

E. Nogales, H. W. Wang, and H. Niederstrasser, Tubulin rings: which way do they curve?, Current Opinion in Structural Biology, vol.13, issue.2, pp.256-61, 2003.
DOI : 10.1016/S0959-440X(03)00029-0

J. F. Diaz, E. Pantos, J. Bordas, and J. M. Andreu, Solution Structure of GDP-tubulin Double Rings to 3 nm Resolution and Comparison with Microtubules, Journal of Molecular Biology, vol.238, issue.2, pp.214-239, 1994.
DOI : 10.1006/jmbi.1994.1282

K. H. Doenges, S. Biedert, and N. Paweletz, Characterization of a 20S component in tubulin from mammalian brain, Biochemistry, vol.15, issue.14, pp.2995-3004, 1976.
DOI : 10.1021/bi00659a009

M. Ackmann, H. Wiech, and E. Mandelkow, Nonsaturable Binding Indicates Clustering of Tau on the Microtubule Surface in a Paired Helical Filament-like Conformation, Journal of Biological Chemistry, vol.275, issue.39, pp.30335-30378, 2000.
DOI : 10.1074/jbc.M002590200

V. Makrides, T. E. Shen, R. Bhatia, B. L. Smith, J. Thimm et al., Microtubule-dependent Oligomerization of Tau: IMPLICATIONS FOR PHYSIOLOGICAL TAU FUNCTION AND TAUOPATHIES, Journal of Biological Chemistry, vol.278, issue.35, pp.278-33298, 2003.
DOI : 10.1074/jbc.M305207200

R. B. Maccioni, J. C. Vera, J. Dominguez, and J. Avila, A discrete repeated sequence defines a tubulin binding domain on microtubule-associated protein tau, Archives of Biochemistry and Biophysics, vol.275, issue.2, pp.568-579, 1989.
DOI : 10.1016/0003-9861(89)90403-7

R. Hoffmann, N. F. Dawson, J. D. Wade, L. Otvos, and . Jr, Oxidized and phosphorylated synthetic peptides corresponding to the second and third tubulin-binding repeats of the ?? protein reveal structural features of paired helical filament assembly, The Journal of Peptide Research, vol.85, issue.2, pp.132-142, 1997.
DOI : 10.1111/j.1399-3011.1997.tb01178.x

R. A. Santarella, G. Skiniotis, K. N. Goldie, P. Tittmann, H. Gross et al., Surface-decoration of Microtubules by Human Tau, Journal of Molecular Biology, vol.339, issue.3, pp.539-553, 2004.
DOI : 10.1016/j.jmb.2004.04.008

M. R. Mejillano and R. H. Himes, Assembly properties of tubulin after carboxyl group modification, J. Biol. Chem, vol.266, issue.1, pp.657-664, 1991.

D. Boucher, J. C. Larcher, F. Gros, and P. Denoulet, Polyglutamylation of Tubulin as a Progressive Regulator of in Vitro Interactions between the Microtubule-Associated Protein Tau and Tubulin, Biochemistry, vol.33, issue.41, pp.12471-12477, 1994.
DOI : 10.1021/bi00207a014

J. C. Lee and S. N. Timasheff, In vitro reconstitution of calf brain microtubules: effects of solution variables, Biochemistry, vol.16, issue.8, pp.1754-1764, 1977.
DOI : 10.1021/bi00627a037

M. Menendez, G. Rivas, J. F. Diaz, and J. M. Andreu, Control of the Structural Stability of the Tubulin Dimer by One High Affinity Bound Magnesium Ion at Nucleotide N-site, Journal of Biological Chemistry, vol.273, issue.1, pp.167-176, 1998.
DOI : 10.1074/jbc.273.1.167

B. Vulevic and J. J. Correia, Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis, Biophysical Journal, vol.72, issue.3, pp.1357-1375, 1997.
DOI : 10.1016/S0006-3495(97)78782-4

W. D. Howard and S. N. Timasheff, Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization, J. Biol. Chem, vol.263, issue.3, pp.1342-1346, 1988.