M. Abeles, Local cortical circuits: an electrophysiological study, 1982.
DOI : 10.1007/978-3-642-81708-3

P. C. Bates, X. Chen, and A. Chmaj, Traveling Waves of Bistable Dynamics on a Lattice, SIAM Journal on Mathematical Analysis, vol.35, issue.2, pp.520-546, 2003.
DOI : 10.1137/S0036141000374002

C. Baesens and R. S. Mackay, Gradient dynamics of tilted Frenkel-Kontorova models, Nonlinearity, vol.11, issue.4, pp.949-964, 1998.
DOI : 10.1088/0951-7715/11/4/011

S. Coombes and P. C. Bressloff, Saltatory waves in the spike-diffuse-spike model of active dendrites, Phys. Rev. Lett, pp.91-028102, 2003.

R. Coutinho and B. Fernandez, Fronts in extended systems of bistable maps coupled via convolutions, Nonlinearity, vol.17, issue.1, pp.23-47, 2004.
DOI : 10.1088/0951-7715/17/1/002

R. O. Dror, C. C. Canavier, R. J. Butera, J. W. Clark, and J. H. Byrne, A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators, Biological Cybernetics, vol.80, issue.1, pp.11-23, 1999.
DOI : 10.1007/s004220050501

M. Diesmann, M. O. Gewaltig, and A. Aertsen, Stable propagation of synchronous spiking in cortical neural networks, Nature, vol.402, pp.529-533, 1999.

G. B. Ermentrout and J. B. Mcleod, Synopsis, Proc. Roy. Soc. Edinburg 123A, pp.461-478, 1993.
DOI : 10.1016/0362-546X(78)90015-9

L. M. Floria and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model, Adv. Phys, pp.45-505, 1996.

P. Goel and B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators, Physica D: Nonlinear Phenomena, vol.163, issue.3-4, pp.191-216, 2002.
DOI : 10.1016/S0167-2789(01)00374-8

S. Jacobi and E. Moses, Variability and Corresponding Amplitude-Velocity Relation of Activity Propagating in One-Dimensional Neural Cultures, Journal of Neurophysiology, vol.97, issue.5, pp.3597-3606, 2007.
DOI : 10.1152/jn.00608.2006

S. Jahnke, R. Memmesheimer, and M. Timme, Propagating synchrony in feed-forward networks, Frontiers in Computational Neuroscience, vol.7, issue.153, 2013.
DOI : 10.3389/fncom.2013.00153

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, 1995.
DOI : 10.1017/CBO9780511809187

D. Kleinfeld, K. R. Delaney, M. S. Fee, J. A. Flores, D. W. Tank et al., Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: An electrical and optical study, J. Neurophysiol, pp.72-1402, 1994.

O. E. Lanford, I. , and S. M. Mintchev, Stability of a family of travelling wave solutions in a feedforward chain of phase oscillators, Nonlinearity, vol.28, issue.1, pp.237-261, 2015.
DOI : 10.1088/0951-7715/28/1/237

V. Litvak, H. Sompolinsky, I. Segev, and M. Abeles, On the transmission of rate code in long feedforward networks with excitatory-inhibitory balance, J. Neurosci, vol.23, pp.3006-3015, 2003.

K. Lin, E. Shea-brown, and L. Young, Reliability of Coupled Oscillators, Journal of Nonlinear Science, vol.13, issue.3, pp.497-545, 2009.
DOI : 10.1007/s00332-009-9042-5

R. Lui, Biological growth and spread modeled by systems of recursions. I. mathematical theory, Mathematical Biosciences, vol.93, issue.2, pp.269-295, 1989.
DOI : 10.1016/0025-5564(89)90026-6

J. Mallet-paret, The global structure of traveling waves in spatially discrete dynamical systems, Journal of Dynamics and Differential Equations, vol.11, issue.1, pp.49-127, 1997.
DOI : 10.1023/A:1021841618074

D. Somers and N. Koppel, Waves and synchrony in networks of oscillators of relaxation and non-relaxation type, Physica D: Nonlinear Phenomena, vol.89, issue.1-2, pp.169-183, 1995.
DOI : 10.1016/0167-2789(95)00198-0

S. M. Mintchev and L. Young, Self-organization in predominantly feedforward oscillator chains, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.19, issue.4, pp.19-043131, 2009.
DOI : 10.1063/1.3272236

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, Journal of Mathematical Biology, vol.45, issue.6, pp.511-548, 2002.
DOI : 10.1007/s00285-002-0169-3

B. Zinner, G. Harris, and W. Hudson, Traveling Wavefronts for the Discrete Fisher???s Equation, Journal of Differential Equations, vol.105, issue.1, pp.46-62, 1993.
DOI : 10.1006/jdeq.1993.1082