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Abstract

The mathematical viability theory proposes methods and tools to study at a
global level how controlled dynamical systems can be confined in a desirable
subset of the state space. Multi-level viability problems are rarely studied
since they induce combinatorial explosion (the set of N agents each evolving
in a p-dimensional state space, can evolve in a Np dimensional state space).
In this paper, we propose an original approach which consists in solving first
local viability problems and then studying the real viability of the combina-
tion of the local strategies, by simulation where necessary. In this article we
consider as multi-level viability problem a stylized agricultural cooperative
which has to keep a minimum of members. Members have an economical
constraint and some members have a simple model of the functioning of
the cooperative and make assumptions on other members’ behavior, espe-
cially pro-viable agents which are concerned about their own viability. In
this framework, the model assumptions allow us to solve the local viability
problem at the agent level. At the cooperative level, considering mixture of
agents, simulation results indicate if and when including pro-viable agents
increases the viability of the whole cooperative.
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1. Introduction

For Hardin [1], common goods are doomed to be overexploited and dev-
astated. Noting that there exists thousands of practical examples preventing
the ”tragedy of the commons” in reality, Ostrom [2] prefers to address the
”issue of how to improve the skills of participants to change the rules of
the game coercive to achieve results different from the relentless tragedies”.
Schuster [3] considers that no matter how nice the successful examples of self-
governance are we should also not forget the large numbers of cases where
self-organization failed terribly and his conclusion is that the evolution of in-
teractions between governmental interference and self-governance is still not
sufficiently well understood yet.

Mathematical methods and models can help to understand the general
processes of interactions and regulations happening in groups made of indi-
viduals. The complex system is viewed as a network of interacting discrete
entities (individuals or objects) and individual-based model group includes
models ranging from cellular automata to very detailed agent-based models
on various social network graphs. These individual-based models are becom-
ing the tools of choice for investigating the behavior of groups of individuals
in many fields [4, 5]: Scheffran and Hannon [6] introduce a general framework
for modeling the interactions between agents in which agents can adjust their
actions and resources to those of other agents and study by simulations the
transition from conflict to cooperation in several cases; considering a model of
groundwater use, López et al. [7] show that the success of the optimal man-
agement program depends heavily on the information that the users have
about the resource.

The problem addressed in this paper is the investigation of the links
between microscopic/individual viability and macroscopic/global viability in
individual-based mathematical models. The issue is the persistence of a
group and the entities that make it up over time.

The mathematical viability theory has been developing for thirty years
methods and tools to study the compatibility between dynamics and con-
straints [8, 9]. This framework has been applied to renewable resources man-
agement and especially to the regulation of fisheries [10, 11, 12, 13], forest
preservation [14, 15] or lake eutrophication management [16] as well as to
broader(eco)-system dynamics [17, 18, 19] or to pure economic or social ones
[20, 21].

In all these works, systems are described by global variables and the con-
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trol regulation also operates at the global scale, for example the total amount
of harvest or the total amount of phosphorus inputs in the lake. However,
the total amount of harvest is the sum of harvest of individual fisheries, as
the total amount of phosphorus inputs is the sum of phosphorus inputs of
individual farmers. And these entities may have their own dynamics and
constraints at a local scale. Viability studies including macro and micro
scales are rare. Studying quotas in marine fisheries, Péreau et al. [22] re-
cently determined viable global quotas strategies integrating a constraint at
the global level which takes into account the social and economic constraints
at the level of individual fisheries (considering the less efficient). Considering
agents harvesting a renewable resource, Doyen and Péreau [23] considered
local controls (the effort of each agent i) but the viability problem they solve
only concerns the global level.

As far as individual-based models are concerned, viability constraints can
both rely on local and global scales. Once agent behaviors and interaction
rules are defined, the evolution of the system can be analysed by statistical
mechanics techniques (master equation in the mean-field limit in [24] for
instance) or shown by extensive computer simulations as in [25].

The inverse problem of the individual strategy design is addressed by
differential game theory: Every agent considered as a player chooses a control
to maximize independently from the others his own performance objective.
In the zero-sum differential games framework with two players, Bettiol et
al. [26] have included state constraints; nonzero-sum differential games with
a very large number of players have been investigated in the terminology
of mean-field games [27, 28]. But the advances on nonzero-sum differential
games with N players have been scarcer, and mainly restricted to linear
quadratic games for the main reason that there was very little understanding
of the system of Hamilton-Jacobi equations naturally attached to these games
[29].

In this article, we then propose to combine viability theory and simula-
tions to study viability properties of an individual based model (N players in
game theory terminology) facing both local and global constraints: We use
viability theory tools to derive viable local individual strategies and simula-
tions to study the impact of these strategies on collective viability.

Agricultural cooperatives are world-wide well-known farmers organiza-
tions (see for instance [30] for German cooperatives). An agricultural coop-
erative and its members may constitute a relatively simple example of two
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scales systems: They are characterized by open membership societies, col-
lective ownership, equal voting power, principles of equality and solidarity.
This cooperative model is constructed for making cooperative business ef-
ficient under specific economic conditions especially when the average cost
curve is continually declining with size [31]. Cooperative members, however,
are rather heterogeneous. In general, members can be differentiated accord-
ing to geographic dispersion, variances in age and education, farm size and
type, as well as business objectives and strategies. Furthermore, when mem-
bers do not see a strong connection between the success of the cooperative
and their own business, Fulton and Giannakas [32] showed that member het-
erogeneity concerning the trust and loyalty toward the cooperative firm may
lead to substantial financial pressures for the cooperatives. For example in
wine cooperatives, usually the same price is paid for the same grape. There-
fore, each viticulturist that belongs to a wine cooperative can produce the
grapes for every wine that he wishes, regardless whether the grapes match
the consumer quality criteria in taste. As a result, members select their
grapes adversely so that they sell the better-quality grapes to other mostly
private owned enterprises [33].

Several works apply economic theory to agricultural cooperative, they de-
velop models using neoclassical theory solving members’ utility maximization
problem to find optimal pricing rules or game theory for instance to examine
the issue of member commitment in the context of a mixed oligopoly where
cooperatives and investor-owned firms compete with each other in supplying
a consumer good [34]. In this article we build a model that includes the
evolution with time of the cooperative and its members to be able to study
the viability of this two scales system that is its persistence over time.

In the stylized cooperative we propose to study, we consider that members
heterogeneous behavior is described by their loyalty toward the cooperative:
The N members of the cooperative earn an amount proportional to the pro-
vided quantity. They have the possibility to fraud by increasing artificially
the provided amount without being discovered until a given threshold. How-
ever, the proportionality coefficient used to evaluate their earnings depends
on the global quality of the cooperative production which is altered by fraud.

From a viability viewpoint, if the cooperative members get no information
and are not subjected to any pressure from the aggregated level, it is then
only a juxtaposition of individual independent local viability problems (as it
is rather the case in consumer’s buying groups). When the global level makes
the local controls compulsory, then it is a classical global viability problem.
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In this paper we consider a partial influence of the global level on the local
level: The payment of each member depends on the average level of fraud.

In this framework we study the impact of the individual local strategies
on the viability at the global level. A naive approach consists in consider-
ing the viability problem of the global system of N agents. In general it is
impossible to solve: It deals with a dynamical system of at least N state
variables. Moreover, it is very often unrealistic to assume that the global
level can enforce the behavior of each agent. In order to make the problem
tractable, we propose to provide each agent with a model of the impact of
the other members’ behavior on its income. Making assumptions about the
other members’ behavior, the agent is able to solve its own local viability
problem. Here we consider simple models and behaviors, and very elemen-
tary hypothesis about the possible behaviors. The objective of the paper is
to show that even in this stylized framework, individual viability concerns
can generate collective viability.

The paper is organized as follows: In the next section we present the
particular viability problem we propose to address. In section three we de-
scribe the illustrative cooperative model from which we derive local viability
problems depending on three agent types. We present the theoretical results
concerning the viability of the strategies followed by the three types of agents
in section four. The results concerning the global viability of the whole co-
operative are described in section five. Finally, the main conclusions of this
work are summarized in section six.

2. Problem statement: Interlinked local viability problems

We consider N agents, members of the same global entity.
Each agent i is characterized by its own individual state variables, xi ∈ Xi ⊂
Rni , and control variables, ui ∈ Rpi . Since all agents are members of the same
global entity, each of the individual dynamics depends on the individual state
and control variables but it is also influenced by the state variables of the
global entity x ∈ X ⊂ Rn:

x′i(t) = fi(xi(t), ui(t), x(t))
ui(t) ∈ Ui(xi(t), x(t))

(1)

where Ui(xi, x) ⊂ Rpi is the set of admissible controls for agent i when its
state is xi and the global entity state is x. Local agents face local viability
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constraints described by Li ⊂ Xi:

∀t , xi(t) ∈ Li. (2)

Moreover, the variations of the macroscopic variables x ∈ X ⊂ Rn de-
scribing the global entity depend on their own values but also on local vari-
ables and controls :

x′(t) = f(x(t), {xi(t)}1,...,N , {ui(t)}1,...,N). (3)

To solve a viability problem is to find control strategies such that all the
constraints are satisfied over time. Here the dimension of the state space
equals

∑N
1 ni + n, so the classical approach of [8] is intractable.

We then propose to study this problem in two steps. First we solve the
viability problems at the local level, allowing each agent to make assumptions
on the evolution of the other members’ behavior. With these hypotheses, it is
possible to compute for each agent viable strategies for its own local viability
problem. Second, we propose to study by simulation the real viability of
the combination of these local strategies when they are implemented by the
agents.

3. The case study: The cooperative and the micro/macro viability
problem

3.1. The model of the cooperative

In our stylized cooperative, the cooperative is described by a single global
variable which is the price at which the production is sold; each member
has one state variable, its capital, and one control variable, its fraud level.
However, the evolution with time of all these variables are correlated that
makes the local and global viability issues intertwined.

3.1.1. The agent model

Each agent i has only one state variable: Its capital Ki, which evolves
with the simple following dynamics:

(i) Each agent i produces a quantity wi.

(ii) Each agent i can control partially the quality of its production. Here
we consider that agents can alter the quality by fraud, which means
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artificially increasing the production quantity brought to the coopera-
tive. Actually, each member brings a quantity αiwi to the cooperative,
αi = 1 if he does not fraud and αi ∈]1; ᾱ] otherwise. The value ᾱ
corresponds to the maximal fraud level which avoids detection.

(iii) Each member i pays fix charges with amount Ci associated with its
production activity including the minimal salary for its subsistence;
Each member benefit equals pαiwi−Ci where p is the price per quantity
unit paid by the cooperative to all members.

The capital, Ki(t), of each member i evolves with time according to its
benefits:

Ki(t+ 1) = Ki(t) + p(t+ 1)αi(t+ 1)wi(t+ 1)− Ci(t+ 1). (4)

3.1.2. The global price dynamics

We consider a single global variable: The price per quantity unit p(t).
This price depends on:

(i) The cooperative production quality, Q, which depends at each time
step on the global fraud amount that can be measured by comparing∑

i αiwi and
∑

iwi.
If no member frauds,

∑
i αiwi =

∑
iwi and the global cooperative pro-

duction quality is high equal to Q0. However, when some members
fraud, the quality is lower. If all members fraud with highest value ᾱ,∑

i αiwi = ᾱ
∑

iwi and the quality of the production of the cooperative
is the worst quality the cooperative can produce, Q. We consider here
that a highly degraded global quality results in a decrease of individual
incomes. Indeed, if the price is proportional to the quality, the individ-
ual income is proportional to the product of the global quality by the
individual production. This income equals Q0.wi if no member frauds.
When all members fraud with highest value ᾱ, the global production is
ᾱ
∑

iwi, but the quality is degraded in a higher proportion we set to
Q = Q0/ᾱ

2. Hence the individual income is lower if all the members
fraud than if no member frauds, since with ᾱ > 1,

Q0

ᾱ2
.ᾱ.wi =

1

ᾱ
Q0.wi < Q0.wi.

Once set the extreme values, we assume that the quality, Q, varies

linearly with the global fraud amount
∑
i αiwi∑
i wi

. And consequently,
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Q = −Q0A

∑
i αiwi∑
iwi

+Q0(1 + A) (5)

with

A =
ᾱ + 1

ᾱ2
. (6)

Actually, Q(
∑

i αiwi = ᾱ
∑

iwi) = Q0

ᾱ2 (i.e. maximal fraud) andQ(
∑

i αiwi =∑
iwi) = Q0 (no fraud).

(ii) The cooperative reputation: When the quality decreases, the effect is
instantaneous, the price per quantity unit paid to each member corre-
sponds to the global production quality of the cooperative; However,
when the quality increases, the price does not increase as fast as it has
decreased, it is a matter of reputation. The effect of a quality decrease
is instantaneous, so we set that ∆p(t) := p(t + 1) − p(t) is propor-
tional to ∆Q(t) := Q(t+ 1)−Q(t). When the quality increases, that is
∆Q(t) ≥ 0, the price will increase less quickly since getting a good rep-
utation takes time. This inertia is represented by the weight δ ∈ [0; 1[
allocated to the previous price, p(t), when evaluating p(t+ 1):

p(t+ 1) = p(t) + p0

Q0
∆Q(t) if ∆Q(t) ≤ 0

p(t+ 1) = δp(t) + (1− δ)(p(t) + p0

Q0
∆Q(t)) if ∆Q(t) ≥ 0

(7)

with p0

Q0
the proportionality coefficient: p0 is the price corresponding to

the highest quality Q0.

From (5),

∆Q = −Q0A∆
(∑

i αiwi∑
i wi

)
. (8)

Consequently, from (7),

p(t+ 1) = p(t)− p0A∆
(∑

i αi(t)wi(t)∑
i wi(t)

)
, if ∆

(∑
i αi(t)wi(t)∑
i wi(t)

)
≥ 0

p(t+ 1) = p(t)− (1− δ)p0A∆
(∑

i αi(t)wi(t)∑
i wi(t)

)
, if ∆

(∑
i αi(t)wi(t)∑
i wi(t)

)
≤ 0

(9)

3.2. The model of the other members’ behavior

We provide the agents with a simple assumption on the other members’
future behavior based on the idea that other agents may probably do the
same reasoning as they does and then choose the same fraud level and others
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will behave in average as in the previous period: Agent i anticipates that if
it chooses for its next fraud level the value α(t + 1), the next average fraud

level of the whole cooperative measured by
∑
i αi(t+1)wi(t+1)∑

i wi(t+1)
will be equal to

1/Bi(
∑N

j=1wj(t+ 1))αi(t+ 1) + (1− 1/Bi)(
∑N

j=1 wj(t+ 1))αm(t)∑N
j=1 wj(t+ 1)

with Bi > 1.
Member i anticipates that in the mean, at time t + 1, other members will
behave as if its new fraud level, αi(t+1), would apply to a proportion 1/Bi of
the global production (

∑N
j=1 wj(t + 1)); Whereas the remaining proportion,

1 − 1/Bi, of the global production would experience a fraud level equal to
the previous fraud average, αm(t).

The agents estimate the previous fraud average, αm(t), from the price,
p(t), they have sold their last production: if p(t) = p0, then they estimate
αm(t) = 1, if p(t) = p0/ᾱ

2, then they estimate αm(t) = ᾱ, and in general
using a linear extrapolation:

αm(t) =
p0(1 + A)− p(t)

p0A
. (10)

Consequently, member i anticipates that:

∆

(∑N
j=1 αj(t)wj(t)∑N
j=1 wj(t)

)
=

1/Bi
∑N
j=1 wj(t+1)αi(t+1)+(1−1/Bi)

∑N
j=1 wj(t+1)αm(t)∑N

j=1 wj(t+1)
− αm(t)

= 1
Bi

(αi(t+ 1)− αm(t))

= 1
Bi

(αi(t+ 1)− p0(1+A)−p(t)
p0A

).

(11)

3.3. The local viability problems

With these models of cooperative functioning and other members’ behav-
ior, i local viability problems can be defined.

3.3.1. The dynamics

From (9) and (11), the global price value forecast by member i equals:
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p(t+ 1) = p(t)− p0A
Bi

(αi(t+ 1)− p0(1+A)−p(t)
p0A

),

if (αi(t+ 1)− p0(1+A)−p(t)
p0A

) ≥ 0

p(t+ 1) = p(t)− (1− δ)p0A
Bi

(αi(t+ 1)− p0(1+A)−p(t)
p0A

),

if (αi(t+ 1)− p0(1+A)−p(t)
p0A

) ≤ 0.

(12)

Equations (4) and (12) give the values of the global price and of the
capital of member i at time t+ 1 as a function of their values at time t and
of member i fraud value, αi(t + 1). Member i chooses is next fraud level
between 1 and ᾱ. Thus, let u(t) ∈ [1; ᾱ],

α(t+ 1) = u(t) ∈ [1; ᾱ]. (13)

Variable u is called control variable in the mathematical viability theory
framework and the model of agent i, member of the cooperative, is a control
dynamical system discrete with time.

The dynamics of each local viability problem is the following:
Ki(t+ 1) = Ki(t) + p(t+ 1)ui(t)wi(t+ 1)− Ci(t+ 1)

p(t+ 1) = p(t)−
(

1− δ ∗ 1
ui(t)−

(p0(1+A)−p(t))
p0A

≤0

)
p0A
Bi

(ui(t)− (p0(1+A)−p(t))
p0A

)

ui(t) ∈ [1; ᾱ]
(14)

with 1
ui(t)−

(p0(1+A)−p(t))
p0A

≤0
= 1 when ui(t)− (p0(1+A)−p(t))

p0A
≤ 0 and 0 otherwise.

For sake of simplicity, we consider in the following sections that wi(t) =
wi and Ci(t) = Ci, to reduce the dimension of the dynamical system to 2
state variables Ki and p. Otherwise it would be necessary to add the time
dimension.

3.3.2. The constraints

The constraint on the global variable, p(t) ∈ [ p0

ᾱ2 ; p0] is necessarily satisfied
for all t ∈ N according to global price evolution equation (14).

The simplest constraint is imposed on the capital of each individual mem-
ber, Ki, which is to remain above a given threshold, Kimin , with time, that
is:

∀t ∈ N, Ki(t) ≥ Kimin . (15)

This second constraint is not necessarily satisfied, it depends on the price
the cooperative can sell its production which depends itself on the quality of
the production and on the successive fraud amounts.
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The constraint set is then defined by:

Li ⊂ R2 := {(Ki, p) ∈ [Kimin ; +∞[×[
p0

ᾱ2
; p0]}. (16)

3.4. Different individual strategies

In this paper, we aim at showing that individual viability concerns can
generate collective viability. We will then consider three agent types:

1. Myopic agent replicates the previous average fraud level;

2. Maximizing agent maximizes its income;

3. Pro-viable agent maximizes its income among the viable fraud levels.

It is worth noticing that the first type of agent does not need any assumption
on the other members’ behavior, whereas the second and third ones do.
Obviously many other types of agents and strategies could be studied.

4. Theoretical results

The myopic agents situation is easy to describe: The fraud level remains
constant. Theoretical results concerns the maximal and the maximal viable
individual strategies. In the following, we omit index i in Ki(t), ui(t), Bi,
wi, Ci, Kimin and Li.

4.1. The strategy of maximizing agents does not always correspond to maxi-
mal fraud

From (14), K(t+ 1)−K(t) depends on p(t) and u(t) but not on K(t), so
the strategy of the maximizing agent is described by the function, uM , which
only depends on p:

uM : [ p0

ᾱ2 ; p0] → [1, ᾱ]
p → argmaxu∈[1;ᾱ]K(t+ 1)−K(t)

(17)

We also define the function, ∆pM : [p0/ᾱ
2; p0]→ R, which is the variation of

p when u = uM(p), which also only depends on p.
The following propositions specify the link between uM(p) and p and

assess sufficient conditions for the maximal strategy not to be viable.

Proposition 1. If B > ᾱ(ᾱ + 1), uM(p) = ᾱ for all p ∈ [p0/ᾱ
2; p0].

If B ≤ ᾱ(ᾱ + 1),
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(i) when p < p0
1+A

1+BD
, uM(p) = p0(1+A)−p(1−BD)

2p0A
,

(ii) when p ∈ [p0(1+A)
1+BD

; p0(1+A)
1+B

], uM(p) = p0(1+A)−p
p0A

,

(iii) when p ∈ [p0
1+A
1+B

; p0
ᾱ(ᾱ+1)−1
ᾱ2(B−1)

], uM(p) = p0(1+A)−p(1−B)
2p0A

,

(iv) when p > p0
ᾱ(ᾱ+1)−1
ᾱ2(B−1)

, uM(p) = ᾱ.

Proof. From (14), with ∆p(t) := p(t + 1) − p(t), and omitting the (t), we
get:

∆p = −(1− δ ∗ 1{∆p>0})
p0A

B
u+ (1− δ ∗ 1{∆p>0})

1

B
(p0(1 + A)− p) (18)

and u as a function of p and ∆p:

u(p,∆p) = − 1

1− δ ∗ 1{∆p>0}

B

p0A
∆p+

1

p0A
(p0(1 + A)− p). (19)

Moreover,

K(t+ 1)−K(t) = p(t+ 1)u(t)w − C
= ∆p(t)u(t)w + p(t)u(t)w − C . (20)

Let define ∆K(p(t),∆p(t)) := K(t+ 1)−K(t) and, let D := 1/(1− δ) ≥ 1.
Omitting the (t) again,

∆K(p,∆p) = −BDw
p0A

∆p2 + w
p0A

(p0(1 + A)− p(1 +BD))∆p+ pw
p0A

(p0(1 + A)− p)− C
if ∆p ≥ 0

∆K(p,∆p) = − Bw
p0A

∆p2 + w
p0A

(p0(1 + A)− p(1 +B))∆p+ pw
p0A

(p0(1 + A)− p)− C
if ∆p ≤ 0.

(21)
Moreover, when u ranges from 1 to ᾱ, ∆p ranges from ∆pmin(p) to ∆pmax(p).
From (14), the minimum is reached for u = ᾱ, and the maximum for u = 1,
so we have:

∆pmin(p) = 1/B(p0/ᾱ
2 − p) (22)

and
∆pmax(p) = 1/(BD)(p0 − p). (23)

So, for a situation described by the pair (K, p), the set of reachable
situations at the next time step according to the fraud level chosen by member
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i, u, and its anticipation model of other members’ behavior (14) is represented
in the (K, p)-plane by two sections of parabola curves which meet when
∆p = 0.

We first consider max∆p∈[0;∆pmax(p)] ∆K(p,∆p).

If p0(1 +A)−p(1 +BD) > 0, that is p < p0
1+A

1+BD
, the top of the parabola

is at ∆p∗(p) := p0(1+A)−p(1+BD)
2BD

> 0. Moreover, ∆p∗(p) ≤ ∆pmax(p), conse-
quently,

max
∆p∈[0;∆pmax(p)]

∆K(p,∆p) = ∆K(p,∆p∗(p)). (24)

If p0(1 + A)− p(1 +BD) ≤ 0,

max
∆p∈[0;∆pmax(p)]

∆K(p,∆p) = ∆K(p, 0). (25)

We consider now max∆p∈[∆pmin(p);0] ∆K(p,∆p).

If p0(1 +A)− p(1 +B) < 0, that is p > p0
1+A
1+B

, the top of the parabola is

at ∆p∗∗(p) := p0(1+A)−p(1+B)
2B

< 0.

Moreover, ∆p∗∗(p) ≥ ∆pmin(p), that is p0(1+A)−p(1+B)
2B

≥ p0/ᾱ2−p
B

, when p ≤
p0

ᾱ(ᾱ+1)−1
ᾱ2(B−1)

and then :

max
∆p∈[∆pmin(p);0]

∆K(p,∆p) = ∆K(p,∆p∗∗(p)). (26)

Otherwise,
max

∆p∈[∆pmin(p);0]
∆K(p,∆p) = ∆K(p,∆pmin(p)). (27)

If p0(1 + A)− p(1 +B) ≥ 0,

max
∆p∈[∆pmin(p);0]

∆K(p,∆p) = ∆K(p, 0)). (28)

Consequently,

(i) when p < p0
1+A

1+BD
, ∆pM(p) = ∆p∗(p) > 0,

(ii) when p ∈ [p0(1+A)
1+BD

; p0(1+A)
1+B

], ∆pM(p) = 0,

(iii) when p ∈]p0
1+A
1+B

; p0
ᾱ(ᾱ+1)−1
ᾱ2(B−1)

], ∆pM(p) = ∆p∗∗(p) < 0,

(iv) when p > p0
ᾱ(ᾱ+1)−1
ᾱ2(B−1)

, ∆pM(p) = ∆pmin(p) < 0.

(29)
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Finally, from (19), when ∆pM(p) = ∆p∗(p), the fraud value, uM(p), that
corresponds to the price variation ∆pM(p) equals

uM(p) = −BD
p0A

∆p∗(p) + 1
p0A

(p0(1 + A)− p)
= 1

2p0A
(p0(1 + A)− p(1−BD)),

(30)

when ∆pM(p) = ∆p∗∗(p), the fraud value, uM(p), that corresponds to the
price variation ∆pM(p) equals

uM(p) = − B
p0A

∆p∗∗(p) + 1
p0A

(p0(1 + A)− p)
= 1

2p0A
(p0(1 + A)− p(1−B)),

(31)

when ∆pM(p) = 0, uM(p) = p0(1+A)−p
p0A

, and when ∆pM(p) = ∆pmin(p),

uM(p) = ᾱ. �

Corollary 1. Let (K(n), p(n)), n ∈ N, an evolution governed by the maxi-
mal strategy.

• When B > ᾱ(ᾱ + 1), if C
p0w

> 1
ᾱ

or

• when B ≤ ᾱ(ᾱ + 1), if C
p0w

> (1+A)2

A
B

(1+B)2

then ∃N ∈ N and ∃c < 0 such that ∀n ≥ N , K(n+ 1)−K(n) < c.
Consequently, the evolution (K(n), p(n)) is not included in any constraint set
(16), the evolutions governed by the maximal strategy are never viable.

Proof. We first show that under the conditions of corollary 1, ∆K(p, 0) is
strictly negative when p ∈ [p0/ᾱ

2,max(p0
1+A
1+B

, p0/ᾱ
2)].

Let c(p) := ∆K(p, 0) = pw
p0A

(p0(1 + A)− p)− C. The top of the parabola is

reached for p = p0(1 +A)/2 ≥ max(p0
1+A
1+B

, p0/ᾱ
2), so c is increasing between

p0/ᾱ
2 and max(p0

1+A
1+B

, p0/ᾱ
2).

Consequently, ∀p ∈ [p0/ᾱ
2,max(p0

1+A
1+B

, p0/ᾱ
2)], c(p) ≤ c(max(p0

1+A
1+B

, p0/ᾱ
2)).

• when B > ᾱ(ᾱ + 1), we have p0/ᾱ
2 > p0

1+A
1+B

.

Since c(p0/ᾱ
2) = wp0

ᾱ
− C, if wp0

ᾱ
− C < 0, c(max(p0

1+A
1+B

, p0/ᾱ
2)) < 0

and

∀p ∈ [p0/ᾱ
2; max(p0

1 + A

1 +B
, p0/ᾱ

2)], ∆K(p, 0) = c(p) < 0. (32)
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• when B ≤ ᾱ(ᾱ + 1), we have p0/ᾱ
2 ≤ p0

1+A
1+B

.

Since c(p0
1+A
1+B

) = (1+A)2wp0

A
B

(1+B)2 − C, if (1+A)2wp0

A
B

(1+B)2 − C < 0,

c(max(p0
1+A
1+B

, p0/ᾱ
2)) < 0 and

∀p ∈ [p0/ᾱ
2; max(p0

1 + A

1 +B
, p0/ᾱ

2)], ∆K(p, 0) = c(p) < 0. (33)

Now, let (K(n), p(n)) an evolution governed by the maximal strategy.
Necessarily, p(0) ∈ [p0/ᾱ

2; p0]. Moreover, from (29),

• if p(0) > p0
1+A
1+B

, then p(n) tends toward max(p0
1+A
1+B

, p0/ᾱ
2),

• if p0
1+A

1+BD
≤ p(0) ≤ p0

1+A
1+B

, then for all n, p(n) = p(0),

• if p(0) < p0
1+A

1+BD
, then p(n) tends toward p0

1+A
1+BD

.

Thus, for all p(0) ∈ [p0/ᾱ
2; p0], limn p(n) = p̂ ∈ [p0/ᾱ

2; max(p0/ᾱ
2, p0(1 +

A)/(1 +B))] and limn p(n+ 1)− p(n) = 0.

Consequently, the capital variationK(n+1)−K(n) tends toward ∆K(p̂, 0) =
c(p̂) which is strictly negative from (32) and (33) since p̂ ∈ [p0/ᾱ

2; max(p0/ᾱ
2, p0(1+

A)/(1 +B))]. Consequently, the evolution (K(n), p(n)) is not viable. �

Figures 1(a) et 1(b) display uM and ∆pM according to p with parameter
values such that according to Corollary 1, the maximal strategy is never
viable. Figure 1(a) shows that such a strategy implies high fraud values for
all p. Moreover, figure 1(b) shows that necessarily such a strategy converges
toward a fraud level associated with a negative value of ∆K and so leads to
ruin.

4.2. The maximal viable strategy

The maximal viable individual benefit strategy consists in maximizing at
each time step the agent benefit while ensuring the constraint satisfaction
over time.

From [8], given a control dynamical system{
x(t+ 1) = f(x(t), u(t))
u(t) ∈ U(x(t))

(34)
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(a) (b)

Figure 1: The parameter values are p0 = 12, ᾱ = 2, w = 1, C = 11, B = 3 and D =
2. Figure 1(a) displays uM according to p. With these values p0

1+A
1+B = 5.25. Figure

1(b) displays p+ ∆pM (p) according to p with bold line when ∆K(p,∆pM (p)) < 0.

and a constraint set, L, the first step to determine viable strategies is to
compute the viability kernel that is the subset of L gathering all states of
the system such that there exists at least one control function that allows
the system to remain in the constraint set indefinitely1:

Viab(34)(L) = {x ∈ L | ∃u(.) | x(t) ∈ L ∀t ∈ N}).

The states belonging to the viability kernel are called viable states and the
control functions that allow to remain in the viability kernel are called viable
control functions. Such functions can be derived from viability kernel deter-
mination: These are the control functions such that system state remains in
the viability kernel at next time step.

Consequently, the computation of the viability kernel of the local viability
problem of one cooperative member, Viab(14)(L) ⊂ R2, associated with the
control dynamical system (14) and the constraint set (15) is a preliminary
to maximal viable strategy determination. Actually, viable strategies can
only be defined for pairs (K, p) belonging to the viability kernel. Outside,

1In the discrete time case, the assumptions are that the control dynamical system has
to be Lipschitz with closed images and the constraint set has to be closed.
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constraints will be violated whatever the fraud strategy. In particular, if
the viability kernel is empty, from any point, there is no viable strategy.
The following theorem specifies necessary and sufficient conditions for the
viability kernel to be non empty.

Theorem 1. Let f :]0; 2]→ R such that f(A) = (1+A)2

4A
if A ≤ 1 and f(A) =

1 otherwise.
Viab(14)(L) 6= ∅ if and only if C

p0w
≤ f(A).

Proof. We give here a sketch of the proof, the complete proof is in Appendix
A.
When the condition on the parameter values of Theorem 1 is satisfied, we
can exhibit a viable evolution so the viability kernel is not empty.
When the condition on the parameter values of Theorem 1 is not satisfied,
the third term of the quadratic function describing ∆K(p, .) according to ∆p
is strictly negative whatever the value of p (21). The first consequence is that
if ∆p = 0, ∆K(p, 0) < 0. The first part of the proof consists in comparing
the marginal capital growth associated with an increase of the price with
the marginal capital growth associated with a decrease of the price. This
comparison allows to show in the second part of the proof that any capital
evolution is lower than a sequence which tends toward −∞. �

We compute the viability kernels following the algorithm of [35]. Since
the variations of the state variables (K, p) do not depend on K, the results
for Kmin > 0 can be deduced from those with Kmin = 0 by a translation of
+Kmin on the K-axis. We then set Kmin = 0 in the following, the constraint
to be satisfied is then K ≥ 0.
Given a maximal exploration value for K, Kmax, given discretization steps
for p and K, all pairs (K, p) ∈ [0;Kmax] × [p0/ᾱ

2; p0] belonging to the dis-
cretization grid constitute the set to be tested at the initialization of the
algorithm. At each iteration of the algorithm, pairs are removed if they have
no successor by (14) in the current set to be tested. Algorithm stops when
no pair is removed during an iteration.

Figure 2 displays the viability kernel for dynamics (14) and constraint
set (15) for different values of C and for different values of B. The viability

kernel volume decreases with C and becomes empty when C
p0w

> (1+A)2

4A
as

stated in Theorem 1 (Fig. 2(a)). It decreases with B (Fig. 2(b)) since the
effect of agent i’s fraud on the global quality is inversely proportional to B.
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(a) (b)

Figure 2: The parameter values are p0 = 12, ᾱ = 2, w = 1, D = 2, so p0w(1+A)2

4A =
12.25. Figure 2(a) displays the lower boundary of the viability kernel for B = 3
and C = 7, 8, 9, 10, 11 for the plain lines and C = 11.2, 11.4, 11.6, 11.8, 12, 12.2 for
the bold lines. The viability kernel volume decreases with C. Figure 2(b) displays
the lower boundary of the viability kernel for C = 11 and B = 2, 3, . . . , 40. The
viability kernel volume decreases with B.

Let ∆pMV (K, p) and uMV (K, p) the values of the global price variation
and the values of the fraud levels of member i associated with the maximal
viable benefit strategy, these functions are only defines on Viab(14)(L) and
contrary to the maximal strategy, these values depend on K:

∆pMV (K, p) = argmax
∆p∈[∆pmin(p);∆pmax(p)]

(K+∆K(p,∆p),p+∆p)∈Viab(14)(L)

∆K(p,∆p). (35)

From (19),

uMV (K, p) = −BD
p0A

∆pMV (K, p) + 1
p0A

(p0(1 + A)− p)
if ∆pMV (K, p) ≥ 0

uMV (K, p) = − B
p0A

∆pMV (K, p) + 1
p0A

(p0(1 + A)− p)
if ∆pMV (K, p) < 0.

(36)

The values of uMV according to (K, p) are displayed in figure 3(a). Fig-
ures 3(a) and 3(b) show that when K is high, maximal and maximal viable
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strategies merge: Constraint set boundary K = 0 is too far to have an influ-
ence. Figure 3(a) shows that for smaller K values, halting fraud is necessary
to avoid ruin.

(a) (b)

Figure 3: The parameter values are p0 = 12, ᾱ = 2, w = 1, D = 2, B = 3 and
C = 11. Figure 3(a) displays uMV according to (K, p). In figure 3(b), the area
where uMV (K, p) differs from uM (p) is colored black.

Figure 4(a) gives the capital variation values, ∆K(p,∆pMV (K, p)), as-
sociated with the maximal viable strategy according to (K, p). In the area
where the maximal and the maximal viable strategy differ, the capital vari-
ation obviously also differs. Figure 4(b) shows the capital lost during one
time step by pro-viable agent compared to a maximal one according to K
and p, ∆K(p,∆pMV (K, p))−∆K(p,∆pM(p)).

5. Practical issue: Can local strategies of pro-viable agents ensure
collective viability?

In the previous sections we have studied the local behavior of the agents,
when they work out their strategy with their own model of the cooperative.
We now study the real viability of the combination of the local strategies of
the members of the cooperative.

5.1. Definition of the viability of the cooperative

The viability of the cooperative depends on the number of agents that
remains in the cooperative. N(t) is the state variable of the cooperative on
which the viability constraint is defined.
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(a) (b)

Figure 4: The parameter values are p0 = 12, ᾱ = 2, w = 1, D = 2, B = 3 and C =
11. Figure 4(a) displays capital variations according to (K, p) when u = uMV . In
figure 4(b), the area where uMV (K, p) differs from uM (p) is colored according to the
difference between the capital variations associated with u = uM and the capital
variations associated with u = uMV , ∆K(p,∆pMV (K, p))−∆K(p,∆pM (p)).

Definition 1. A cooperative is strongly viable when N(t) = N(0), ∀t ∈ N.

Definition 2. A cooperative is weakly viable when N(t) ≥ Nmin, ∀t ∈ N.

We consider here that agents leave the cooperative when their capital Ki

becomes too low (Ki < Kimin), and we suppose that no new agent enters the
cooperative.

5.2. Cooperative of Myopic agents

When all members of the cooperative are myopic agents, the price remains
constant, as all agents’ capital variation and fraud level. From (19), an agent
i is viable (according to the local definition) if:

Ki(1)−Ki(0) =
p(0)wi(p0(1 + A)− p(0))

p0A
− Ci ≥ 0 , (37)

since ∀t, Ki(t+ 1)−Ki(t) = Ki(1)−Ki(0). Consequently the cooperative is
strongly viable if all agents remain in the cooperative, that is when:

∀i, p(0)wi(p0(1 + A)− p(0))

p0A
− Ci ≥ 0. (38)
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Let M := card{i/∆Ki(0) ≥ 0}, then the cooperative is weakly viable for
Nmin ≤M . In all other cases, the cooperative is not viable.

Proposition 2. Let f :]0; 2] → R such that f(A) = (1+A)2

4A
if A ≤ 1 and

f(A) = 1 otherwise (as in theorem 1).
When all members of the cooperative are myopic agents, a myopic agent is
never viable whatever the initial price value when Ci

wip0
> f(A).

When Ci
wip0
≤ f(A), this myopic agent is viable if and only if

p(0) ∈ [pZimin; pZimax] := [max(p0/ᾱ
2,
p0(1 + A)−

√
∆̂

2
); min(

p0(1 + A) +
√

∆̂

2
, p0)]

(39)
where

∆̂ := p2
0(1 + A)2 − 4

p0ACi
wi

. (40)

Proof. Proposition 2 is a consequence of the study of the quadratic equa-
tion (37). �

We note Zi the area of the state space (K, p) delimited by the values of
(Ki(0), p(0)) for which myopic agent i is viable in a cooperative of myopic
agents (see figure 5),

Zi = [0; +∞[×[pZimin; pZimax]

with pZimin and pZimax defined in (39).

5.3. Mixture of agents

For sake of simplicity, we assume from here on that all agents have the
same production quantity and charge:

∀i, wi = w and Ci = C. (41)

In that case, Bi can be interpreted as the inverse of the proportion of cooper-
ative members that act like agent i. Let ki such that Bi = N/ki, this means
that agent i assumes that:

• ki members among N will make the same fraud level choice as itself;

• the N − ki other members are myopic agents (they choose on average
a next fraud level equal to the previous one).
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Figure 5: The area Zi is colored white: If (Ki(0), p(0)) ∈ Zi, then the myopic agent i is
viable in a cooperative of myopic agents.

5.3.1. Mixture of myopic and maximizing agents

We consider now a mixture of k maximizing agents and N − k myopic
agents. We assume that the maximizing agents have an accurate perception
of the other members’ behavior, that is that their parameter Bi = B = N/k.
The following proposition is a consequence of corollary 1:

Proposition 3. Let a mixture of myopic and maximizing agents satisfying
condition (41).

• When B > ᾱ(ᾱ + 1), if C
p0w

> 1
ᾱ

or

• when B ≤ ᾱ(ᾱ + 1), if C
p0w

> (1+A)2

A
B

(1+B)2

then neither maximizing nor myopic agents of the mixture are viable.

From the previous subsection we know that there are values of (Ki(0), p(0))
for which myopic agents alone are viable when C

wp0
≤ f(A).

Incorporating maximizing agents provoke then a complete loss of viability
(myopic agents alone are viable for (Ki(0), p(0)) ∈ Z, whereas all the agents
of the mixture are never viable whatever the value of (Ki(0), p(0))) when:

C
wp0

∈ [ 1
ᾱ

; f(A)] with B > ᾱ(ᾱ + 1), (42)
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or
C
wp0

∈ [ (1+A)2

A
B

(1+B)2 , f(A)] with B ≤ ᾱ(ᾱ + 1). (43)

Figure 6 illustrates this loss of global viability: the area colored in grey
represents the values of the initial price for which a cooperative of myopic
agents is viable according to the value of C

p0w
. When maximizing agents are

included in the mixture, the area of initial price for which the mixture is
viable is reduced to the left side of the vertical lines; their positions depend
on the proportion of maximazing agents described by parameter B.

Figure 6: The upper curve represents pZmax according to C
p0w

. The lower curve represents
pZmin according to C

p0w
. The area which is colored grey represents the values of the initial

price for which a cooperative of myopic agents is viable. When maximizing agents are
included in the mixture, the area of initial price for which the mixture is viable is reduced
to the left side of the vertical lines. p0 = 12, ᾱ = 2 and from (43), the position of the
vertical lines is defined by C

p0w
= (1+A)2

A
B

(1+B)2 when B ≤ ᾱ(ᾱ + 1) = 6 and by C
p0w

= 1
ᾱ

when B > ᾱ(ᾱ+ 1) = 6.

5.3.2. Mixture of myopic and pro-viable agents

Theorems on pro-viable agents individual viability cannot help to derive
any conclusion on the viability of a mixture of myopic and pro-viable agents.
It is necessary to study the viability of the mixture through simulation.
However,
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Lemma 1. With condition (41), the area Z for which the myopic agents are
viable is included in the viability kernel of each pro-viable agent.

Proof. Let (K, p) ∈ Z, K ≥ Kmin and c(p) ≥ 0. So, ∆K(p, 0) = c(p) ≥ 0
and the evolution such that (K(0) = K, p(0) = p) and for all t ∈ N, ∆p(t) = 0
is viable. �

To highlight the influence of the pro-viable agents on the collective viabil-
ity, we now study the behavior of a mixture of myopic and pro-viable agents
in a parameter range such that myopic agents alone can be viable (depending
on the initial value of p) and such that no mixture with maximizing agents
is ever viable. From the preceding subsection, we choose then simulation
parameters which satisfy conditions (42) or (43).

In particular, we have chosen:

• p0 = 12

• ᾱ = 2, and therefore A = 3
4

• w = 1

• C = 11

• δ = 0.5

• Kmin = 0 for the pro-viable agents

• K(0) = 20 is the same for all pro-viable agents

• N = 24 (similar results are obtained with other values for N)

• k = 4 (B = 6), k = 6 (B = 4), k = 8 (B = 3), k = 10 (B = 2.4).

With these parameters, the conditions expressed in (43) are verified and

we have pZmin = 21−3
√

5
2

(39).
As in the mixture with myopic and maximizing agents, we assume that

pro-viable agents have an accurate perception of the other members’ behavior
(Bi = B = N/k).
All simulation results indicate that:
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(a) (b)

(c) (d)

Figure 7: The parameter values are N = 24, k = 6 (B = 4), K(0) = 20 and p(0) = 7.
Figure 7(a) displays the trajectory of the evolution of the global price and the capital of the
pro-viable agents (dotted line) and of the global price and the capital of the myopic agents
(plain line) in the (K, p)-plane. The viability kernel of the pro-viable agents is colored
gray. Figure 7(b) show the evolution of the capital of the pro-viable agents (dotted line)
and of the capital of the myopic agents (plain line) according to time. Figure 7(c) show
the evolution of the fraud level of the pro-viable agents (dotted line) and of the fraud level
of the myopic agents (plain line) according to time. Figure 7(d) show the evolution of the
global price according to time.

• Pro-viable agents begin with increasing their capital when it is possible
(at least when p(t) ≥ pZmin but not only, see figure 9). This is achieved
by increasing their fraud level, therefore p(t) decreases as does the
myopics’ capital (since their fraud level is always lower than the pro-
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(a) (b)

(c) (d)

Figure 8: The parameter values are N = 24, k = 10 (B = 2.4), K(0) = 20 and p(0) = 7.
Figure 8(a) displays the trajectory of the evolution of the global price and the capital of the
pro-viable agents (dotted line) and of the global price and the capital of the myopic agents
(plain line) in the (K, p)-plane. The viability kernel of the pro-viable agents is colored
gray. Figure 8(b) show the evolution of the capital of the pro-viable agents (dotted line)
and of the capital of the myopic agents (plain line) according to time. Figure 8(c) show
the evolution of the fraud level of the pro-viable agents (dotted line) and of the fraud level
of the myopic agents (plain line) according to time. Figure 8(d) show the evolution of the
global price according to time.

viable agents fraud level at this stage) (Fig. 7(a), 8(a), 9(a) and 10(a)).

• When p(t) becomes too low, pro-viable agents behave as maximizing
agents as long as they are not near the boundary of the viability ker-
nel: They keep an almost constant fraud level, therefore p(t) remains
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(a) (b)

(c) (d)

Figure 9: The parameter values are N = 24, k = 6 (B = 4), K(0) = 20 and p(0) = 12.
Figure 9(a) displays the trajectory of the evolution of the global price and the capital of the
pro-viable agents (dotted line) and of the global price and the capital of the myopic agents
(plain line) in the (K, p)-plane. The viability kernel of the pro-viable agents is colored
gray. Figure 9(b) show the evolution of the capital of the pro-viable agents (dotted line)
and of the capital of the myopic agents (plain line) according to time. Figure 9(c) show
the evolution of the fraud level of the pro-viable agents (dotted line) and of the fraud level
of the myopic agents (plain line) according to time. Figure 9(d) show the evolution of the
global price according to time.

constant (Fig. 7(d), 8(d), 9(d) and 10(d)) but all agents loose money
(Fig. 7(b), 8(b), 9(b) and 10(b)).

• When the pro-viable agents reach the boundary of their viability ker-
nel, they change radically their behavior (Fig. 7(a), 8(a), 9(a) and
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(a) (b)

(c) (d)

Figure 10: The parameter values are N = 24, k = 10 (B = 2.4), K(0) = 20 and p(0) = 12.
Figure 10(a) displays the trajectory of the evolution of the global price and the capital of
the pro-viable agents (dotted line) and of the global price and the capital of the myopic
agents (plain line) in the (K, p)-plane. The viability kernel of the pro-viable agents is
colored gray. Figure 10(b) show the evolution of the capital of the pro-viable agents
(dotted line) and of the capital of the myopic agents (plain line) according to time. Figure
10(c) show the evolution of the fraud level of the pro-viable agents (dotted line) and of
the fraud level of the myopic agents (plain line) according to time. Figure 10(d) show the
evolution of the global price according to time.

10(a)). They reduce their fraud level until p(t) becomes close to pZmin
(Fig. 7(d), 8(d), 9(d) and 10(d)). In this phase, myopic agents loose
less money than the pro-viable ones. Pro-viable agents evolve on the
boundary of the viability kernel until they reach the constraint bound-
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ary K = 0. After that their fraud level stays very close to u(pZmin) (19)
(Fig. 7(c), 8(c), 9(c) and 10(c)). Myopic agents no longer loose money.

• Myopic agents’ capital has a lower bound, which can be negative, de-
pending on p(0), K(0), and k

N
(Fig. 7(b), 8(b), 9(b) and 10(b)).

The experiment suggests that when p(0) and K(0) are chosen inside the
viability kernel of pro-viable agents, then the myopic agents’ capital has
always a lower bound. This means that pro-viable agents increase the
viability area of myopic agents. The viable area gained by myopic agents
depends on the proportion of pro-viable agents, as shown in Figure 2(b).
With one single pro-viable agent here B = 24 the area gained is rather
small, but with B = 2.4 and K(0) = 20 it is possible to choose as initial
value of price the lowest price p(0) = p0

ᾱ2 .
We then conjecture that the cooperative is strongly viable as soon as the

myopic agents Kmin is lower than this lower bound.
Figures 7 and 8 show how the cooperative agents evolve for different

proportions of pro-viable agents (respectively 1/4 and 5/12, other parameters
give similar results and figures). These are cases where myopic agents alone
are not viable (p(0) = 7 does not belong to Z). In all cases the cooperative
becomes viable (since (p(0) = 7, K(0) = 20) is inside the local viability kernel
of pro-viable agents). However the minimum capital of myopic agents is lower
as the proportion of pro-viable agents increases as shown in Table 1. When
there are only pro-viable agents left, their minimum capital is 0.

N k mint{K(t)} for all myopic agents mint{K(t)} for all myopic agents
when p(0) = 7 when p(0) = 12

24 4 10.83 -17.17
24 6 8.56 -10.05
24 8 4.46 -9.06
24 10 2.00 -8.54

Table 1: Minimal capital value over time, mint{K(t)}, for all myopic agents depending on
the proportion of pro-viable agents.

When p(0) ∈ Z, for example p(0) = 12, myopic agents are viable by
themselves (their income is positive at each time step). In a mixture with pro-
viable agents their capital can be lower than when they are by themselves.
It can even be negative. Figures 9 and 10 show for different proportions
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of pro-viable agents (respectively 1/4 and 5/12) how myopic agents capital
first decreases to a minimum and then increases slightly (other values for
k/N satisfying condition (43) give similar shapes). The minimum capital
of myopic agents is negative but increases with the proportion of pro-viable
agents as shown in Table 1.

6. Conclusion

We have studied a non classical viability problem which encompasses N
linked local viability problems and which is then in general non tractable by
the existing viability algorithms due to the high dimensionality. We consider
the case of a stylized agricultural cooperative. The cooperative members in-
come is a function of their economic ratio λ = C

wp0
, their fraud level (between

1 and ᾱ) and the price which depends on the average fraud level. Three
kinds of strategies are taken into account: Myopic agents (which imitate
the average behavior), maximizing agents and pro-viable agents. These last
two types of agents use a model of the other’s behavior characterized by the
proportion (1/B) of agents acting like themselves.

We have proved that the strategy of maximizing agents does not always
correspond to maximal fraud, and we have identified the range of values of
parameters for which this behavior prevails. In particular, this happens when
the proportion of maximizing agents is high and the price is not too high.
We have also proved that for some range of values of the proportion 1/B
and of the micro-economic ratio λ = C

wp0
, the maximizing strategy is never

viable.
Regarding pro-viable agents, which maximize their income while ensuring

their own viability, we have proved that the local viability kernel is not
empty if and only if the micro-economic ratio λ is below a threshold, λ̂. This
threshold does not depend on the proportion 1/B, it depends only on the
maximum fraud level ᾱ.

Regarding a cooperative of myopic agents with same micro-economic ra-
tio, we have proved that the cooperative is never viable when the micro-
economic ratio is above the same threshold value λ̂. When it is lower than
this threshold, we have proved that the cooperative is viable if and only if
the initial price belongs to a specific interval.

Regarding a cooperative composed of myopic and maximizing agents with
identical economic ratio and with an accurate perception of the other mem-
bers’ behavior, we have proved that when the maximizing strategy is not
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viable, then the myopic agents are no more viable either.
Regarding a cooperative composed of myopic agents and identical (same

K(0), w, C, B) pro-viable agents, with same micro-economic ratio C
wp0

for
both pro-viable and myopic type of agents, we have proved that the local via-
bility kernel of pro-viable agents contains the viability area of the cooperative
with only myopic agents.

Besides, we have illustrated by simulation the behavior of such a coop-
erative of myopic and pro-viable agents with an accurate perception of the
other members’ behavior. The simulation results show how in some cases
pro-viable agents increase the viability area of myopic agents.
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Appendix A. Proof of theorem 1

We recall the statement of the theorem :

Let f :]0; 2] → R such that f(A) = (1+A)2

4A
if A ≤ 1 and f(A) = 1

otherwise.
Viab(14)(L) 6= ∅ if and only if C

p0w
≤ f(A).

We recall that the equation which governs the evolution of K according
to p and the variation of p, ∆p, is :

∆K(p,∆p) = −BDw
p0A

∆p2 + w
p0A

(p0(1 + A)− p(1 +BD))∆p+ pw
p0A

(p0(1 + A)− p)− C
if ∆p ≥ 0

∆K(p,∆p) = − Bw
p0A

∆p2 + w
p0A

(p0(1 + A)− p(1 +B))∆p+ pw
p0A

(p0(1 + A)− p)− C
if ∆p ≤ 0.

(A.1)
where A = ᾱ+1

ᾱ2 > 0, D := 1/(1− δ) ≥ 1 since δ which measures the influence
of reputation belongs to [0; 1[, and B > 1 is the inverse of the production
proportion 1/B that experiences the new fraud level, whereas the remaining
proportion, 1 − 1/B experiences a fraud level equal to the previous fraud
average.

We also recall that c(p) := ∆K(p, 0) and :

c(p) :=
pw

p0A
(p0(1 + A)− p)− C (A.2)

Moreover, when u ranges from 1 to ᾱ, ∆p ranges from ∆pmin(p) to
∆pmax(p) with, from (14),

∆pmin(p) = 1/B(p0/ᾱ
2 − p) (A.3)

and
∆pmax(p) = 1/(BD)(p0 − p). (A.4)

Proof. Let C̃ = maxp∈[
p0
α2 ;p0] c(p) and p̃ = argmaxp∈[

p0
α2 ;p0]c(p).

If the condition of the theorem is satisfied, that is C
p0w
≤ f(A), then C̃ is

positive.
Let define the evolution (K(n), p(n)), n ∈ N governed by (14) with K(0) =
Kmin and p(0) = p̃ and ∀n, u(n) = 1

p0A
(p0(1+A)−p(0)) such that p(n+1) =

p(n) = p(0) = p̃ from (19).
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Then, ∀n, K(n+ 1)−K(n) = ∆K(p̃, 0) = c(p̃) = C̃ ≥ 0.
Consequently, ∀n, K(n) ≥ K(0) = Kmin. The evolution (K(n), p(n)) re-
mains in the constraint set L, (Kmin, p̃) ∈ Viab(14)(L) and Viab(14)(L) 6= ∅.

If the condition of the theorem is not satisfied, C
p0w

> f(A), then C̃ < 0

and ∀p ∈ [ p0

α2 ; p0], ∆K(p, 0) = c(p) ≤ C̃ < 0. Moreover, since the parabola
which represents ∆K(p, .) as a function of ∆p is located below its tangents,
from (A.1), ∆K(p,∆p) remains lower than C̃/2 when

|∆p| ≤ |C̃|
2| w
p0A

(p0(1 + A)− p(1 +BD))|
. (A.5)

Since function p→ | w
p0A

(p0(1 + A)− p(1 + BD))| is bounded on [ p0

α2 ; p0],

there exists ∆̃p > 0 such that, for all p ∈ [ p0

α2 ; p0], |∆p| ≤ ∆̃p implies

∆K(p,∆p) < C̃/2:

∆̃p =
|C̃|

2 maxp∈[p0/α2;p0] | wp0A
(p0(1 + A)− p(1 +BD))|

. (A.6)

Let define S by:

S := {(∆, p) ∈ R+ × [
p0

α2
; p0] | ∆ > 0 and p+ ∆ ≤ p0 and p−∆ ≥ p0

α2
},

(A.7)
For all pairs (∆, p) ∈ S, we consider all pairs (p1,∆p1) ∈ S1(∆, p) where

S1(∆, p) := {(p1,∆p1) ∈ [ p0

α2 ; p0]× [0; ∆pmax(p1)] |
p1 ≤ p−∆ and p1 + ∆p1 ≥ p+ ∆}. (A.8)

More precisely, from (A.4), p1 ∈ [max( p0
α2 ,

p+∆−p0/(BD)
1−1/(BD)

), p − ∆] and ∆p1 ∈
[p+ ∆− p1; 1/(BD)(p0 − p1)] (Figure A.11).

We now aim at maximizing ∆K(p1,∆p1)
∆p1

, the marginal capital growth, for

(p1,∆p1) ∈ S1(∆, p).
∆K(p1,∆p1)

∆p1
= −BDw

p0A
∆p1 + w

p0A
(p0(1 + A)− p1(1 +BD)) +

p1w
p0A

(p0(1+A)−p1)−C
∆p1
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Figure A.11: The area S1(∆, p) is colored grey.

We differentiate ∆K(p1,∆p1)
∆p1

according to p1 and ∆p1:

∂
∂∆p1

∆K(p1,∆p1)
∆p1

= −BDw
p0A

+
C− p1w

p0A
(p0(1+A)−p1)

∆p2
1

. (A.9)

Then,

∂

∂∆p1

∆K(p1,∆p1)

∆p1

= 0⇔ ∆p2
1 = 1/(BD)(p2

1−p0(1+A)p1+
p0AC

w
). (A.10)

Moreover,

∂
∂p1

∆K(p1,∆p1)
∆p1

= − w
p0A

(1 +BD) + w
A∆p1

(1 + A)− 2w
p0A∆p1

p1. (A.11)

Then,

∂

∂p1

∆K(p1,∆p1)

∆p1

= 0⇔ ∆p1 = 1/(1 +BD)(p0(1 + A)− 2p1). (A.12)

Thus,
∂

∂∆p1

∆K(p1,∆p1)

∆p1

=
∂

∂p1

∆K(p1,∆p1)

∆p1

= 0 (A.13)

amounts to

(1/(1 +BD)(p0(1 + A)− 2p1))2 = 1/(BD)(p2
1−p0(1+A)p1+

p0AC

w
) (A.14)

and

−(BD−1)2p2
1+p0(1+A)(BD−1)2p1+p0(p0(1+A)2BD−(1+BD)2AC/w) = 0.

(A.15)
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Let g(p1) = −(BD− 1)2p2
1 + p0(1 +A)(BD− 1)2p1 + p0(p0(1 +A)2BD−

(1 +BD)2AC/w). The top of the parabola g is reached for p0
1+A

2
.

Since C
p0w

> f(A),

• case 1 : A ≤ 1, then the discriminant of the quadratic trinomial, g,
equals

p2
0(1+A)2(BD−1)4 +4(BD−1)2p0(p0(1+A)2BD− (1+BD)2AC/w)

and is strictly negative since C
p0w

> (1+A)2

4A
, which implies

p0(1 + A)2BD − (1 +BD)2AC/w < −p0
(1 + A)2

4
(BD − 1)2.

Consequently, ∆K(p1,∆p1)
∆p1

does not reach any local maximum in the in-

terior of S1(∆, p),

• case 2 : A ≥ 1, then g reaches its maximum for p1 = p0
1+A

2
> p0. The

discriminant of g can be positive, but then the p1-value for which g is
null corresponds to a local minimum of ∆K(p1,∆p1)

∆p1
and again, ∆K(p1,∆p1)

∆p1

does not reach any local maximum in the interior of S1(∆, p).

Consequently, the maximum of ∆K(p1,∆p1)
∆p1

for (p1,∆p1) ∈ S1(∆, p) belongs

to the boundary of the domain S1(∆, p) (Figure A.11).
On the upper boundary, ∆p1 = 1/(BD)(p0 − p1), then,

∆K(p1, 1/(BD)(p0 − p1))

1/(BD)(p0 − p1)
= w

p1(BD − 1) + p0 − CBD/w
p0 − p1

(A.16)

and
d
dp1

∆K(p1,1/(BD)(p0−p1))
1/(BD)(p0−p1)

= wBD p0−C/w
(p0−p1)2

= BD
(p0−p1)2 c(p0) < 0.

(A.17)

So ∆K(p1,1/(BD)(p0−p1))
1/(BD)(p0−p1)

decreases with p1 on the upper boundary of S1(∆, p).
On the lower boundary, ∆p1 = p+ ∆− p1,

∆K(p1,p+∆−p1)
p+∆−p1

= w
p0A

(p1(BD−1)+p0(1+A))(p+∆)−BD(p+∆)2−C
p+∆−p1

(A.18)

and
d
dp1

∆K(p1,p+∆−p1)
p+∆−p1

= w
Ap0

−(p+∆)2+p0(1+a)(p+∆)−C
(p+∆−p1)2

= 1
(p+∆−p1)2 c(p+ ∆) < 0.

(A.19)
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So ∆K(p1,p+∆−p1)
p+∆−p1

decreases with p1 on the lower boundary of S1(∆, p).

Moreover, for all p̂ ∈ [p+ ∆; p+ ∆ + 1/(BD)(p0 − p+ ∆)− 2∆],

d
dp1

∆K(p1,p̂−p1)
p̂−p1

= w
Ap0

−p̂2+p0(1+a)p̂−C
(p̂−p1)2

= 1
(p̂−p1)2 c(p̂) < 0.

(A.20)

Thus,

max(p1,∆p1)∈S1(∆,p)
∆K(p1,∆p1)

∆p1
≤

∆K(
p+∆−p0/(BD)

1−1/(BD)
,
p0−(p+∆)
BD−1

)

p0−(p+∆)
BD−1

≤ w
p+∆−p0/(BD)

1−1/(BD)
(BD−1)+p0−CBD/w

p0− p+∆−p0/(BD)
1−1/(BD)

≤ w(BD − 1)
p+∆−C

w

p0−(p+∆)

(A.21)

Moreover,

∂
(

p+∆−C
w

p0−(p+∆)

)
∂∆

(∆, p) =
p0 − C

w

(p0 − (p+ ∆))2
< 0, (A.22)

when C
p0w

> f(A).

So, let define S(p) := {∆ such that (p,∆) ∈ S},

max
∆∈S(p)

(p1,∆p1)∈S1(∆,p)

∆K(p1,∆p1)
∆p1

≤ w(BD − 1) lim∆→0+

(
p+∆−C

w

p0−(p+∆)

)
≤ w(BD − 1)

p−C
w

p0−p

≤ w(B − 1)
p−C

w

p0−p := f1(p).

(A.23)

f1(p) is defined for p ∈ [p0/α
2; p0[ and admits an upper bound, maxp∈[p0/α2;p0[ f1(p) ≤

F1 < +∞.
Given (∆, p) ∈ S, let us now consider all pairs (p2,∆p2) ∈ S2, where

S2(∆, p) := {(p2,∆p2) ∈ [ p0

α2 ; p0]× [∆pmin(p2); 0] |
p2 ≥ p+ ∆ and p2 + ∆p2 ≤ p−∆}. (A.24)

More precisely, p2 ∈ [p+∆; min(p0,
p−∆−p0/(Bα2)

1−1/B
)] and ∆p2 ∈ [1/B(p0/α

2−
p2); p−∆− p2].
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We now aim at minimizing ∆K(p2,∆p2)
∆p2

, the marginal capital growth, for

(p2,∆p2) ∈ S2(∆, p).
Following the same reasoning as above, we show that

min
(p2,∆p2)∈S2(∆,p)

∆K(p2,∆p2)

∆p2

≥
∆K(p−∆−p0/(Bα2)

1−1/B
, p0/α2−(p−∆)

B−1
)

p0/α2−(p−∆)
B−1

(A.25)

for all (∆, p) ∈ S.

On the upper boundary of S2, ∆p2 = 1/B( p0

α2 − p2), then,

∆K(p2, 1/B( p0

α2 − p2))

1/B( p0

α2 − p2)
= αw

p2(B − 1) + p0

α2 − CB/(αw)
p0

α2 − p2

(A.26)

Then,

min
(p2,∆p2)∈S2(∆,p)

∆K(p2,∆p2)

∆p2

≥ w(B − 1)
α(p−∆)− C

w

p0/α2 − (p−∆)
(A.27)

Since
α(p−∆)−C

w

p0/α2−(p−∆)
increases with ∆,

min
∆∈S(p)

(p2,∆p2)∈S2(∆,p)

∆K(p2,∆p2)
∆p2

≥ w(B − 1) lim∆→0+

(
α(p−∆)−C

w

p0/α2−(p−∆)

)
≥ w(B − 1)

αp−C
w

p0/α2−p := f2(p)

(A.28)

f2(p) is defined for p ∈]p0/α
2; p0] and admits a lower bound, maxp∈]p0/α2;p0] f2(p) ≥

F2 > −∞.
Moreover,

f1(p)− f2(p) ≤ w(B − 1)
[
p−C/w
p0−p −

αp−C/w
p0/α2−p

]
≤ w(B − 1) (1−α)p2+pp0(α−1/α2)+Cp0/w(1/α2−1)

(p0−p)(p−p0/α2)

≤ w(B − 1)(α− 1)−p
2+pp0(1+A)−Cp0A/w
(p0−p)(p−p0/α2)

≤ w(B − 1)(α− 1) p0A/w c(p)
(p0−p)(p−p0/α2)

≤ p0A(B − 1)(α− 1) C̃
(p0−p)(p−p0/α2)

≤ 4 B−1
p0A(α−1)

C̃

< 0.

(A.29)
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Let (K(n), p(n)), n ∈ N an evolution governed by (14), we aim at showing
that K(n) is lower than a sequence which tends toward −∞ when n goes to
infinity.

If p(i+ 1)− p(i) = 0, K(i+ 1)−K(i) = ∆K(p(i), 0) = c(p(i)) < 0 since
C
p0w

< f(A), so we consider the more favourable case where ∀i p(i+1)−p(i) 6=
0.

K(n) = K(0) +
∑n−1

i=0 K(i+ 1)−K(i)

= K(0) +
∑n−1

i=0

∫ p(i+1)

p(i)
K(i+1)−K(i)
p(i+1)−p(i) dp

(A.30)

If p(i + 1) − p(i) > 0, K(i+1)−K(i)
p(i+1)−p(i) ≤ max

∆∈S(p)

(p1,∆p1)∈S1(∆,p)

∆K(p1,∆p1)
∆p1

≤ f1(p), for

all p ∈ [p(i); p(i+ 1)].

If p(i + 1) − p(i) < 0, K(i+1)−K(i)
p(i+1)−p(i) ≥ min

∆∈S(p)

(p2,∆p2)∈S2(∆,p)

∆K(p2,∆p2)
∆p2

≥ f2(p), for all

p ∈ [p(i); p(i+ 1)].

Consequently,

K(n) = K(0) +
∑n−1

i=0

∫ p(i+1)

p(i)
K(i+1)−K(i)
p(i+1)−p(i) dp

= K(0) +
∑n−1

i=0
p(i+1)−p(i)>0

∫ p(i+1)

p(i)
K(i+1)−K(i)
p(i+1)−p(i) dp+

∑n−1
i=0

p(i+1)−p(i)<0

∫ p(i+1)

p(i)
K(i+1)−K(i)
p(i+1)−p(i) dp

= K(0) +
∑n−1

i=0
p(i+1)−p(i)>0

∫ p(i+1)

p(i)
K(i+1)−K(i)
p(i+1)−p(i) dp+

∑n−1
i=0

p(i+1)−p(i)<0

∫ p(i)
p(i+1)

−K(i+1)−K(i)
p(i+1)−p(i) dp

≤ K(0) +
∑n−1

i=0
p(i+1)−p(i)>0

∫ p(i+1)

p(i)
f1(p)dp+

∑n−1
i=0

p(i+1)−p(i)<0

∫ p(i)
p(i+1)

−f2(p)dp

(A.31)
Assume for instance that p(n) ≥ p(0),

K(n) ≤ K(0) +
∑n−1

i=0
p(i+1)−p(i)<0

∫ p(i)
p(i+1)

(f1(p)− f2(p))dp+
∫ p(n)

p(0)
f1(p)dp

≤
∑n−1

i=0
p(i+1)−p(i)<0

∫ p(i+1)

p(i)
4(B−1)
p0A(α−1)

C̃dp+ (p(n)− p(0)) maxp∈[p0/α2;p0[ f1(p)

≤ 4(B−1)
p0A(α−1)

C̃ 1
2
[
∑n−1

i=0 |p(i+ 1)− p(i)| − (p(n)− p(0))] + (p0 − p0/α
2)F1

(A.32)
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If p(n) ≤ p(0),

K(n) ≤ K(0) +
∑n−1

i=0
p(i+1)−p(i)>0

∫ p(i+1)

p(i)
(f1(p)− f2(p))dp+

∫ p(n)

p(0)
−f2(p)dp

≤ 4(B−1)
p0A(α−1)

C̃ 1
2
[
∑n−1

i=0 |p(i+ 1)− p(i)| − (p(n)− p(0))] + (p0 − p0/α
2)F2.

(A.33)
Consequently, there exits M ∈ R such that :

K(n) ≤ K(0) + 2
n−1∑
j=1

|∆pj|
B − 1

p0A(α− 1)
C̃ +M. (A.34)

If
∑n−1

j=1 |∆pj| tends toward +∞ when n goes to infinity, then K(n) tends

toward −∞ since B−1
p0A(α−1)

C̃ < 0 when C
p0w

> f(A).

Otherwise, there exists N ∈ N such that, for all n ≥ N , |∆p(n)| ≤ ∆̃p,
and then from (A.6), K(n+ 1)−K(n) = ∆K(p(n),∆p(n)) < C̃/2 and K(n)
tends toward −∞.

In both cases (K(n), p(n)) does not remain in the constraint set L and
the viability kernel of L for dynamics (14) when C

p0w
> f(A) is then empty.

�
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