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Using discriminative motion context
for on-line visual object tracking

Stefan Duffner and Christophe Garcia

Abstract—In this paper, we propose an algorithm for on-line, from the background, that copes with complex scene and
real-time tracking of arbitrary objects in videos from uncon-  object motion, and that is able to adapt to large changes of
strained environments. The method is based on a particle fir the object's appearance, size, and shape. But this adaptai

framework using different visual features and motion prediction . .t - L.
models. We effectively integrate a discriminative on-lindearning also holds the risk of "drift” (the so-called stability-jsfacity

classifier into the model and propose a new method to collect dilemma [1]), when the object model gradually includes in-
negative training examples for updating the classifier at eeh formation not belonging to iti.e. from the background. As a
video frame. Instead of taking negative examples only fromlte  consequence, the tracking algorithm will not preciselckra

surroundings of the object region, or from specific backgromd e gpiect any more or even lose it completely at some point
regions, our algorithm samples the negatives from a contexsl in time

motion density function in order to learn to discriminate the
target as early as possible from potential distracting imag
regions. We experimentally show that this learning scheme
improves the overall performance of the tracking algorithm A- Related Work

Moreover, we present quantitative and qualitative results on Numerous methods for on-line tracking of arbitrary objects

four challenging public datasets that show the robustnessfo : 2
the tracking algorithm with respect to appearance and view have been published over the last yeais [2], [&], []. [3], [6

changes, lighting variations, partial occlusions as well sobject [7, [8], [9], [10], [11], [12], [13], [14], [15]. Many recenh
deformations. Finally, we compare the results with more tha 30 works [16], [2], [4], 5], [3], [6], [9], [10], [11], [12] prgpose
state-of-the-art methods using two public benchmarks, sheing  a tracking-by-detection framework, where a discriminatie-

very competitive results. tector is trained with object and background image samples.
Index Terms—Image sequence analysis, Image motion analysis, each frame of the video, this detector is applied inside echea
Object detection window to estimate the current position of the object, and
then the model is updated using this estimate and the current
l. INTRODUCTION image. The advantage of this approach is that no specific

) , i __motion model needs to be designed and parameterised, and
We consu;ier the prc_>b|em of automatmally traclgn_g a s!ngﬁe output is deterministic. Also the discriminative manghi
arbitrary object in a video, where the algorithm is initsaid learning methods that are used are rather well studied iic sta

in the first frame from a bounding box around the objedlyings e g their performance on object detection in still
that is to be tracked. No prior knowledge about appearang&, qes

shape, or motion of the O.bJeCtS or the environment 'S_used'Another approach is to detect local feature points and
Also, we focus here own-line tracking, where at each time

. N atch them from one frame to the next, in order to track
step, only past and present but no future information is .useraaj

lcati ¢ i sual obi K object [[17], [[¥], [15], [[1B]. The problem here is to select
App ications for on-line visual object tracking aré NUMESO  ,ny match prominent and discriminative feature pointantak
including, for example, video indexing,

H Robot | ; id _”Human-if(_)mputer Shto consideration the fact that some of them might disappea
riuman-io ot nteragt!o_n, video-surveillance, traffic mon and reappear during tracking. Other worlesg [19], [20],
ing, or autonomous driving. 21], [22], [11], use some type of foreground-background

bl_n real-worll(d scen;\nos, this p_:joblet:rp IS challenging asr: gmentation to track the object. This can be in form of
object to track may change considerably its appearancpes parametric or active contour_[23], _[19], or a pixel-wise

size, and pose in the image (Iike. the articulated. human bo, eground mask[22][[24]L25] of the object, for example.
for (_axample). Furthermore, the Ob]e,Ct can be pamallymﬁetj Naturally, this alleviates the problem of drift, espegialith

by itself, other objects_, or the environment. T_he objec_t M3 ghly deformable objects.

also move abruptly or in unpredictable ways. Finally, tr_men Classically, the tracking problem has been tackled in a
ronmentji.e. the image background, may change considera obabilistic way with recursive Bayesian filters like Kam

and rap.|dly. in v.|de(.)s from moving cameras and be affect ﬂers or particle filters[[26],[27],[28], [21], 129] T201[31],

by varying |IIum|nat|on._ . _ . 14]. These methods are able to estimate the posterior state
: This We"’?"'y constrf';uned setting requires a trac|_<|ng algéistribution of the tracked object and allow for maintaiin

nthml that is able, with few data, to b.u”d. an object (an everal state hypotheses. Usually, they explicitly iraegr

possibly a scene) model that can well discriminate the mbj%otion models used to predict the next object state by definin
S. Duffner and C. Garcia are with the Université de Lyon, GNRNSA- & prObapi"StiC transition mnCti(_)n independent from theage

Lyon, LIRIS, UMR5205, F-69621, France observations. Some particle filter techniques use some more



advanced motion models, like in Odobetzal. [27]; a dense harm the overall tracking performance. Finally, modellihg
parametric motion estimator with an affine model is appliespatial, temporal, or appearance-based pairwise retdtips
to propose new state values, as we propose in this paper. Atetween objects and/or interest points can lead to a combi-
similar to this paper, parametric motion models have beed usatorial explosion and make the inference on the state space
to estimate background€. camera) motion [32] and segmendifficult.
the object region from the background [33]. To alleviate this problem, in this work, we propose a prob-
Other recently proposed approaches have also included tiilistic method that dynamically updates the foreground a
type of contextual motion information. For example, Yangackground model depending on distracting objects or image
et al [34] introduced a method that, throughout a videaegions in the scene background. This contextual appearanc
continuously discovers objects that move in the same dnmect information is extracted from moving image regions and used
as the tracked object by performing a motion correlatio® train on-line a discriminative binary classifier that,éach
analysis. These auxiliary objects help to support and improvideo frame, detects the image region corresponding to the
tracking by performing inference in a star-structured biegl object to track.
model that includes their state. Traditionally, these discriminative on-line classifiersed
Spatial context has also been exploited by using supportgfstracking-by-detection approachés|[16], [6],[10]. [L{2],
i.e. other objects or feature points around the target in t] learn negative examples extracted from the image region
image. Grabneet al [33], for example, extended the well-surrounding the current target object region. This choge i
known Implicit Shape Model by detecting feature points ifnotivated by the fact that the object will move only slightly
the image that have a correlated motion with the targéfom one frame to the other w.r.t. the background or other
These supporters are matched from frame to frame and thgiijects, and by computational speed. In contrast, our rdetho
relative displacement vectors are updated on-line. teal yses a stochastic sampling process to extract negativexesm
[36] also proposed a method that detects supporters (htfn image regions that move. We call thesmntextual
called contributors) which are interest points within aadbc motion cuegsee Fig[L). In that way, regions that correspond to
neighbourhood around the target, in order to improve thgssibly distracting objects are detected efficiently aadyg
tracking performance. In addition, their method makes use. without them having to be inside a search window and
of a longer-term temporal context using an on-line sub-spagithout scanning the whole image at each point in time. More

learning method that groups together observations fromraév precisely, the contributions of this paper are the follayvin
frames. Similarly, the approach proposed by Sral. [37]

tracks “helper” objects using an on-line Adaboost detector

initialised manually at the first frame. Their relative pmsi

is learnt on-line and used to predict the target object’stjpos
Dinh et al. [38] proposed a method using supporters as *

well as distractors, which are objects with similar appeeaea

to the target. The distractors help to avoid confusion of the

tracker with other similar objects in the scene, and they can®

possibly be used to reason about the objects’ mutual oceiusi

Supporters are not used directly for the target’s statenasitbn

but only to disambiguate between the target and its distract

Honget al. [39] recently proposed an approach based orfthe Compared to our previous work [42], we performed more ex-

tracker [9] that deals with distractors by automaticallrieing tensive experiments, including the recent tracking beragkm

a metric not only between positive and negative exampl¥©OT 2014 [43], and we validated our approach by evaluating

but also within the collected negative examples, effettiveit with different discriminative on-line tracking algohins:

replacing the originally proposed Euclidean distance. Multiple Instance Learning (MIL) Tracker in addition to On-
Finally, Supantit and Ramanan [40] presented a selfepadieie Adaboost.

learning tracker that also selects training examples frateov ~ The paper is organised as follows. In Secfidn Il, we describe

frames in the past to perform long-term tracking, an ide& ththe overall tracking algorithm. Sectidn]lll explains howeth

has also been used in the recent work of tétial [41]. motion context is used to update the appearance models in

the tracker. Experimental results are presented in Sefdbn
and conclusions are drawn in the last section.

« a method for on-line learning of a discriminative classifier
using stochastic sampling of negative examples from
contextual motion cues in videos,

the integration of this incremental discriminative mogkel i
an efficient adaptive particle filter framework combining
effectively several visual cues,

a thorough evaluation on difficult public benchmarks
experimentally showing the performance increase from
this type of on-line learning as well as an improvement
over state-of-the-art tracking methods.

B. Motivation

The disadvantage with using supporting and distracting
objects is that several objects need to be detected andettack Il. TRACKING ALGORITHM
which can be computationally expensive especially with a
larger number of objects. Moreover, the success or failfire o In order to be able to handle more complex, multi-modal
data association or, in some methods, matching local festustate distributions in a computationally efficient way, we
points in successive video frames, heavily depends on t®@pose a tracking algorithm based on a recursive Bayesian
type of object to track and the surrounding background. THimmework. Assuming we have the observatiovis., from
process can be error-prone and, in some situations, magrratime 1 to ¢, we want to estimate the posterior probability



distribution over the statX;, at timet: simple first order model is used for the scale and eccentricit
1 parameterss ande. Let = (s, e). Then:
(X Y1) = EP(Yt|Xt)

p(T|Te—1) = N (T4—150, 2) . 4)
X / (X)X 1)p(Xy—1| Y1) dXy—1, (1) The second term of the proposal function:
Xio1
pr(Xe|Xi—1) = M(d(Xe-1); 0, %7) %)

where C' is a normalisation constant. As closed-form solu-
tions are usually not available in practice, this estinmaii® predicts the new state by performing a parametric robust
implemented using a particle filtere. sampling importance motion estimation between the previous and current image
resampling (SIR) or bootstrapping. We refer [tol[44].1[45] foof the region defined byX; like in [46] and similar to

more details on particle filters and only explain the maioptical flow computation. The output of this estimation is a

elements in the following sections. set of parameter§d,, d,, d, } defining a affine transformation
d(-) that translates and scales the state ve®fer; of the
A. Object state representation and inference previous frame to best match the current image. As the motion

estimation is performed on a pyramid of image scales, this

The stateX = (z,y,v,,vy,5,¢) € R® of the object to : -
. . ) S0 T Yo . ; term is very useful to compensate for large camera motion or
track is described by an upright bounding box defined h y b g

the object’s centre positionz(y) in the image, its 2D speed é,b.:.l;]it I(;l;{[egrre:ﬁceleratlons.

(v, vy) in the image plane, scales)( and eccentricity ),

i.e. the ratio of height and width. The sta®, is initialised pa(X¢|Xi1) = N (X% 0, Ed) (6)
manually by providing a bounding box around the object

d .
in the first frame. Then, for each video frame, the partic 6ooS the outpuX*” of a detector (see Sectinllll) that has been

) . . o : (i) tained on-line and that is applied in the neighbourhoodado
filter performs its classical steps pfedicting particles X' : . .
S X, on the current frame to predict the new object position and
sampled from the proposal distributieiiX;|X;_1) and up- . . d
. . X . o cale (as in[[47]/29] for example). The varian®5 and®
dating their weights according to the observation likelihoo d o relatively small compared to the ones in the auto-re@s
p(Y,|X;), state dynamic®,,(X;|X;_1) and proposal (see y P 9

; L P (X2 | X1 1) "~ model 3% and . Note that, to be coherent and to strictly
Section[ILB): w; = p(Y:|Xy) q(Xe X 1) ! for each particle Ereserve the probabilistic independence, the detectatjsub

Le L.N. At the end of each iteration, the observatio ol the previousframe could be used as well but represents a
likelihood model parameters are updated using the meanlé)g

the posterior distributiop(X,|Y1.:). And finally, systematic
resampling is performed.

s accurate proposal leading to a higher variance.
See Sectiofi IV for a summary of parameter values.

C. Observation likelihood

_ ’ ) ) The observation likelihood functiop(Y|X) that we pro-

In order to cope with fairly complex motion of arbitrarypose is designed to be robust against object deformations,
objects in videos from a possibly moving camera, we usedse and illumination changes as well as partial occlusions
proposal function composed of a mixture of three distrimst |t js a geometric mean of three distributions corresponding

B. State dynamics and proposal function

(X Xe—1) = Brnpm (Xe|Xi—1) different visual cues:
+ Brpp (Xl Xi1) @ p(YilX0) = (o (YelXe) ps(YelXe) pr(YelXe) '/, (7)
+ Bapa(X¢|X¢-1) wherepy computes a local colour histogram likelihood ratio,

where 3,,,8; and B; define the mixture weights, andps measures the global colour distribution similarity, gnd

pm(X¢|X;_1) is the state dynamics model defined by Ely. & a texture likelihood. Taking the cube root of the product

and [3, p;(X;|X;_1) is an optical flow-like motion-based ensures that the overall likelihood distribution does restdme

proposal function, ang,(X:|X;_1) proposes states comingtoo peaked. In the following, we explain each of the likebdo

from a discriminative on-line trained detector. In thedsiing, function in more detail.

we will describe each term in more detail. 1) Histogram likelihood ratio: The histogram likelihood
The state dynamic modep,,(X;|X; ;) is defined for function is defined as a ratio of foreground and background

each individual component oK. The position and speedlikelihoods:

components of the object are described by a mixture of a first- pra(Yi|Xe)

order auto-regressive modgl with additive Gaussian noise pr(Yi|Xe) = m’ (8)

and a uniform distributior,,. If & = (x,y,v,,v,) denotes a

position and speed component vector, we have:

9
P(&e|21-1) = apa(@e|e-1) + (1 — )pu(@e|di-1) ,  (B)  pra(YiXs) = exp <—)\FG > (D?[h; (r), h(r, Xt)])) :
r=1

With po(#¢|3i-1) = N(#-1;0,%), and p,(d4|3,-1) = c 9)
with ¢ being a constant (defined empirically) allowing fois the foreground likelihood defined over a grid 8fx 3
small “jumps” coming from the proposal function (Ed. 2). Aregionsr. D computes the Bhattacharyya distance between the

where



HSV histograms:; extracted from statX; and the respective IIl. M ODEL ADAPTATION WITH CONTEXTUAL CUES
reference histogramé; initialised from the first frame, and

Arg is a constant. Similarly, the background likelihood: In this section, we will describe the main contribution of
the proposed approach: a method to exploit motion context
pec (Y| X:) = exp (_)\BG(DQ[;LI,E(Xt)])) , (10) effectively for visual object tracking using a discrimiivat

classifier that is trained on-line on specific parts of theutnp
video. Our approach is different from previous work, where

and one depending on the object's current stﬁ(é(t) Here Motion context or background motion has been integrated

i* and E(Xt) are computed over the image region twice al;gghtly in thg .tracking proces®.g in the state dynamics, or
large as the object anliroundingit. All histograms contain WNere specific appearance models are used to avoid distrac-
two different quantisation levels, 4 and 8 bins, in the Hs{ons in thg backgrou_nd._ S )
colour space, using x 4, respectively8 x 8, bins for the H ~ AS mentioned earlier, in the particle filter, we use a binary
and S channels and 4/8 separate bins for the V channel [Z#Ecriminative classifier based on the On-line AdaboostBPA
The reference models* and * are updated linearly at each@lgorithm [16] for proposing new particles (Egl 6) as well
iteration using the object’s current bounding box. as for evaluating the observation likelihood (Egl 12). The
2) Global colour segmentation likelihoodn addition to classifier is trained with the first video frame using the imag

the more local colour models with one histogram per objeBfICh inside the object's bounding box as a positive example
part, we also use a global colour histogram model based o’ surrounding patches within a search window as negative
pixel-wise colour segmentation of foreground and backgdou gxam_ples. Then, the classifier is updated ?t each_ .tracklng
This further helps to delimit the object boundaries. As WitHeratlpn using the same strateg_y for extract_lng positind a
pm, HSV colour histograms with separate colour and greysceﬂggat've _ex_ampl_es. We refer {0 [16] for details on the model
bins are extracted — one inside the current bounding bRd how it is trained.
of the object, and one around it. Then, a probabilistic soft-
segmentation is performed (similar to [24]) computing the
probability p(c;|z;) of each pixeli inside a search window A. Background sampling
belonging to the foreground= 1 or background = 0 given
its colour z;.

Then, the likelihood function is defined as:

is defined by a reference histografwrgi from the first frame

We propose to sample negative examples from image
regions that contain motion and thus likely correspond to
moving objects (see Fidl 1). The idea is that these regions

_ 2 may distract the tracker at some point in time. Therefore
ps(Ye|Xe) = exp )\SSFG(Xt)g) ) (11) it is preferable to learn these negative examples as early
exp(—AsSBa(X¢)?) e .
as possiblej.e. as soon as they appear in the scene. One
where \s is a constantSr¢ is the proportion of foreground can see this as a kind of long-term prediction of possible
pixels, i.e. for which p(c = 1]z) > 0.5, inside the object's negative samples, in contrast to the much shorter (frame-by
bounding box andz is the proportion of foreground pixelsframe) time scale of the proposal function. To perform this
outsidethe bounding box. Clearly, the better the boundingegative sampling, we first compensate for camera motion
box delimits foreground and background of the segmentatibatween two consecutive frames using a classical parametri
the higher is this likelihood. The foreground and backgaburmotion estimation approach [46]. We apply a three-paramete
histograms used for the segmentation are updated linetrlymzodel to estimate the translation and scale of the scene, and
each iteration using the current bounding box. then compute the intensity differences for each pixel wigh i

3) Texture likelihood: The likelihood pr(Y|X) is based corresponding pixelin the previous frame. This gives argena
on the (greyscale) texture of the object to track. This visud! (z,y) approximating the amount of motion present at each
cue helps to track objects that have little discriminatistoar ~ POsition (z,y) of the current frame of the video. We then
information (for example in very dark environments) or ifransform this image into a probability density functio(®)
greyscale videos. A discriminative classifier is trained ak(z,y) over the 2-dimensional image space:
the first frame using the object region as positive and the
background regions as negative examples. Then, the otassifi m(z,y) =2"" Z M(u,v) , (13)
is updated at each iteration collecting positive and negati (u,v)€Q(z,y)
examples from the foreground and background respectively
(see SectiofTl). Here, we use the On-line Adaboost classifwhere Q(z,y) defines an image region of the size of the
presented by Grabnet al. [16] that uses Haar-like featuresbounding box of the object being tracked, centred:aty),

but any other on-line classifier could be used as well. andZ is a constant normalising the density function to sum up
The likelihood is based on the detector's confidengec 0 1. Thus,m(z,y) represents the relative amount of motion
[0, 1] for the image patch defined b, inside the region centred at, y). Finally, N~ image positions
(z,y) are sampled from this PDF corresponding to rectangles
pp(Y¢|X,) = exp(=Ap(1 —cp)?), (12) centred atz,y), where, statistically, regions with high amount

of motion are sampled more often than static image regions.
with Ap being a constant. This process is illustrated in Figl 1.



IV. EXPERIMENTS
A. Parameters

The following table summarises the tracking parametets tha
have been used for all the experiments:

a c b ) xf/p
05 | & | (7,7) | (0.001,0.001) | (1,1,10-%,10~%)

Bm | By | Ba | Arc | ABc | As | Ap
0.7 0.2 | 0.1 120 36 0.1 10

The variances for andy values are scaled by, w being

the current width of the bounding box. The variancessfand

e are relatively small, thus more rapid scale and eccentricit
changes cannot be accommodated easily, but on the other
hand the overall tracking robustness is increased. We ghoul
highlight that only 100 particles have been used throughbthut
experiments. This turns out to be sufficient due to our design
of effective proposal and discriminative likelihood fuioets.

B. Datasets

We performed a quantitative evaluation on four challenging
public tracking datasets that are described below.

1) Babenko: The first datasdt has been constructed by
Babenkoet al. [6] from various other publications, and it
has been used by many others afterwards. It contains 8
videos (with more than 5000 frames) of objects or faces
that undergo mostly rigid deformations and some ratheelarg
lighting variations as well as partial occlusions. Most luéde
sequences are actually in grey-scale format (except “David
“Girl", and “Face Occlusions 17).

2) Non-rigid objects: The second, more challenging
datasét is composed of 11 videos (around 2500 frames)
showing moving objects that undergo considerable rigid and
Fio. 1. llustration of different S " os (bl non-rigid deformations. This dataset has also been used by
i, 3. traton ofdferent samping sttegis obmive exaples () [11] and partally by [B] among others.
the object (red)Middle: the motion probability density functiom (Eq.[I3). 3) VOT2013: The third datasBt has been used for the
Bottom:the proposed negative sampling from Visual Object Tracking (VOT) Challenge 2013748]. It comigi
16 videos that have been automatically selected from adarge
set by maximising the variability in terms of certain crite-
ria, such as camera motion, illumination change, occlysion

B. Classifier update size change, or motion. Four of these sequences (“David”,
“diving”, “face”, “jump”) are also part of the first or second
dataset.

_The N™ image patches corresponding to the sampled re-jy 15014 This is the 2014 version of the VOT2013
glons as well as the positive example coming from the Me3Ataset available from the same web site. The dataset nentai
particle of the tracker are then used to update the classif L challenging videos

In th!s case, the O.AB method needg_ a balanced.number Of\lote that similar benchmarkg ([49], [50]) are available but
positives and negatives, thus the positive example is dsed due to limited space, we cannot report all the results here.
times, alternating positive and negative updates. '

The advantage of sampling positions from these motion cugs

is that we do not need to care about explicitly detecting, ini i . ,
tialising, tracking, and eventually removing a certain fem We performed several experiments with different evalumatio

of distracting objects at each point in time. Note that weI«touprOtOCOlS' For the first two datasets we evaluated the rebust

also sample regions of different scales but as scale does RS ©f the proposed algorithm by measuring the proporfion o
change rapidly in most videos the benefit of this would peorrectly tracked frames. A frame is counted as correchef t

relatively smal_l. l_\lot_e alsp that the PDF could as well m_elud "http:/vision uicsd eda/bbabenko/projecimiltrack At
appearance similarity with the tracked target. Howeves th zptp:jjirs icg.tugraz. atiresearch/houghtrack/
would considerably increase the computational complexity 3http://ivotchallenge.net/

Evaluation


http://vision.ucsd.edu/~bbabenko/project_miltrack.html
http://lrs.icg.tugraz.at/research/houghtrack/
http://votchallenge.net/

fixed fixed+rand. motion fixed+mot. fixed fixed+rand. motion fixed+mot.

David 99.9 98.9 99.9 100.0 Cliff-dive 1 82.9 89.3 83.2 96.8
Sylvester 64.9 60.9 74.3 96.2 Motocross 1 72.4 68.5 88.9 85.7
Girl 45.7 32.1 59.2 51.9 Skiing 72.2 64.1 75.6 79.2
Face Occlusions 1 69.5 94.6 92.9 95.5 Mountain-bike  100.0 100.0 100.0 100.0
Face Occlusions 2 67.2 73.2 78.1 93.6 Cliff-dive 2 76.7 67.7 71.6 51.6
Coke 94.7 90.3 94.9 90.5 \olleyball 22.5 39.4 81.9 78.1
Tiger 1 51.2 45.0 63.2 56.6 Motocross 2 80.0 83.3 71.3 98.7
Tiger 2 93.0 97.4 95.9 97.7 Transformer 84.8 90.2 85.6 89.7
Diving 26.7 30.2 32.2 60.8
average 733 741 823 853 High Jump 40.6 435 383 499
TABLE | Gymnastics 97.0 97.0 88.5 99.1

BABENKO SEQUENCES PERCENTAGE OF CORRECTLY TRACKED FRAMES
WITH FIXED NEGATIVE SAMPLING, SAMPLING FROM MOTION, COMBINED
FIXED+RANDOM SAMPLING, AND FIXED+MOTION SAMPLING. TABLE 1l
NON-RIGID OBJECT SEQUENCESPERCENTAGE OF CORRECTLY TRACKED
FRAMES WITH FIXED NEGATIVE SAMPLING, SAMPLING FROM MOTION,

average 68.7 70.3 74.3 80.9

tracking accuracyd = %ﬁg; is greater than a threshold, COMBINED FIXED+RANDOM, AND FIXED+MOTION SAMPLING.
where Ry is the rectangle corresponding to the mean particle — —
from the tracking algorithm, and?¢r is the ground truth proposal  likelihood  babenko  non-rigid
rectangle surrounding the object. We set the threshol@l 2o Pm PH 57.7 69.0

in order not to penalise fixed-size, fixed-ratio trackers um o b DS o3 a3

. . m El ’ . .
comparison. For every experiment and sequence, the pnxbpos_e Pm\Df  PH>DPS,PT 77.9 81.1
algorithm has been run 5 times and the average result is Pm, Pd PH>PS:PT 84.7 79.7
reported Pm,Pf,Pd PH,PS,PT 85.3 80.9
For the VOT datasets, we used the evaluation protocgl TABLE il

. PERCENTAGE OF CORRECTLY TRACKED FRAMES FOR THBABENKO AND
of the VOT2013/2014 challenges, which measures accuragy,y-ricip SEQUENCES WITH DIFFERENT COMBINATIONS OF PROPOSAL

and robustness. For evaluating the accuracy, the measure AND LIKELIHOOD TERMS (c.f. EQ.[AAND[T).

defined above, is used. The robustness is measured in terms of

number of tracking failures, where trackers are re-inged

after failures. Every sequence is evaluated 15 times and the

average results are reported. In addition to this “baselingnprovement is smaller because there are not many other
experiment, there are two other experiments using the safieving objects that can distract the tracker. On average, th
data. In the “region-noise” experiment the initial bourglrox ~ best strategy is “fixed+motion”, with a relative improverheh

is 5||ght|y shifted random|y for each run, and in the “gr@g{j around7.5%. In another experiment, we studied the influence
experiment (only in VOT2013), each video is transformed in©of each proposal and likelihood term (Ed. 2 ddd 7) on the

greyscale format. Seé [48] and [43] for more details. overall tracking performance. Taljle]lll summarises theltes
Some terms seem to be complementary, like the motion-based
D. Results proposalp; and the detector-based opg. On average, the

] ) ] .combination ofall terms gives the best performance. We

In the first experiments, we evaluated different strategig$her replaced OAB in our algorithm with the MIL Online
for the collection of negative examples of the discrimvelti gosting classifier[6] in order to see if our proposed method
OAB classifier, as explained in Sectipnl lll. We compared foyp, sampling negatives from motion context depends on the

different strategies: underlying classifier. The results are summarised in Ta@e |
» fixed: N7 negatives are taken from fixed positiongind we can see that for both classifiers OAB and MIL,
around the positive example inside the search windowe use of motion context outperforms the other sampling
which is twice the size of the object’s bounding box. strategies. We use this strategy in combination with OAB

« fixed+random: N~ /2 examples are taken from fixed pofor the following experiments and call the overall tracking

sition (as for “fixed”), andlV™~ /2 examples are sampledalgorithm “Motion Context Tracker” (MCT).

from random image positions. We compared the proposed Motion Context Tracker (MCT),

« motion: N~ negative examples are sampled from thgii, other state-of-the-art trackers on the two datasedsigh-
contextual motion distributiom: (Eq.[13).

« fixed+motion: N~ /2 examples are taken from fixed

positions, andN~ /2 examples are sampled from the fixed fixed+rand. motion  fixed+mot.

contextual motion distribution. Babenio  OAB  73.28 74.06 8230 8525
In any case, the negative examples do not overlap more than MIL  70.24 68.19 66.05  70.94
70% with the positive ones in the image. Non-rigid ~OAB  68.71 70.30 7429  80.87

Table[] anddl show the results for the first two datasets in  objects ~ MIL  74.04 7378 7749 75.95
terms of the percentage of correctly tracked frames. In most TABLE IV
H H BENKO SEQUENCESAVERAGE PERCENTAGE OF CORRECTLY TRACKED

CaS-eS, the Samplng Of ne”gatlve ?)_(amples f_roT the ConﬂeXtEé FRAMES WITH THE PROPOSED METHOD USING DIFFERENT ONLINE
motion PDF, i.e. “motion” and “fixed+motion”, improves CLASSIFICATION ALGORITHMS.

the tracking performance. For the Babenko sequences, the



HT[[I] TLD[7] PixelTrack [25] MIL[6] STRUCK [IZ] PF  MCT

David 44.0 95.3 100.0 76.2 58.0 58.7 100.0
Sylvester 100.0 86.6 49.4 56.9 99.6 96.7 96.2
Girl 60.7 92.0 92.8 97.0 98.6 46.1 51.9
Face Occlusions 1 99.4 99.4 100.0 100.0 100.0 100.0 95.5
Face Occlusions 2 100.0 84.0 515 98.8 99.4 97.9 93.6
Coke 33.9 74.6 69.5 49.2 83.1 13.9 90.5
Tiger 1 19.7 76.1 39.4 62.0 98.6 34.9 56.6
Tiger 2 30.1 575 24.7 84.9 86.3 70.1 97.7
average 61.0 83.2 65.9 78.1 90.4 64.8 85.3
TABLE V

BABENKO SEQUENCES PERCENTAGE OF CORRECTLY TRACKED FRAMES WITH VARIOUS TRACKG ALGORITHMS.

HT[I1] TLD[7] PixelTrack [25] MIL[6] STRUCK [Z] PF  MCT

Cliff-dive 1 100.0 94.1 100.0 100.0 97.1 88.4 96.8
Motocross 1 100.0 1.3 40.4 0.0 33.3 36.1 85.7
Skiing 95.9 11.0 100.0 9.6 4.1 84.2 79.2
Mountain-bike 100.0 13.6 38.6 0.5 36.8 100.0 100.0
Cliff-dive 2 90.2 4.9 26.2 13.1 9.8 51.5 51.6
Volleyball 43.1 35.0 86.2 86.0 37.2 85.4 78.1
Motocross 2 100.0 86.7 80.0 80.0 93.3 92.7 98.7
Transformer 36.3 8.1 84.7 33.9 43.5 88.5 89.7
Diving 7.8 14.7 55.0 44.6 46.8 52.3 60.8
High Jump 68.0 6.6 93.4 78.7 47.5 42.0 49.9
Gymnastics 87.9 65.3 98.7 46.3 97.9 98.3 99.1
average 75.4 31.0 73.0 44.8 49.8 74.5 80.9
TABLE VI

NON-RIGID OBJECT SEQUENCESPERCENTAGE OF CORRECTLY TRACKED FRAMES WITH VARIOUS TRACKG ALGORITHMS.

Track [11], Tracking-Learning-Detection (TLD)[7], Pixel baseline region-noise greyscale

Track [25], Multiple-Instance Learning (MIL) Trackel|[6], PLT 496 PLT 358 PLT 3.96
STRUCK [12], and a pure Particle Filter (PF) method (MCT ’;"OCTTE]] %6225 '\(A:%T\As 5-;23 ;@#51] g‘-2755
without the discriminative detector). For the Babenko se-gper 531 95  FoT[51] 9.04 EDFT[E2] “7s
guences, STRUCK showed the best average performancecms 9.54 LGT++[[5B] 9.04 GSDT[54] 9.5

which can be explained by the videos mostly being in grey-LGT++ [53] 102 EDFTI52] ~ 9.08 LGT++[53] ~ 9.58
. ) ) DFT [55] 111 LGT[14] 105 Matrioska [56]  10.7
scale, whereas MCT relies on colour information. However,
for the more difficult non-rigid dataset, the average perfor TABLE VII
f MCT i ior to the one of the other method OVERALL RANKING RESULT WITH THE VOT2013DATASET. ONLY THE
mance o IS Superlor 0 ; $IRST7 OUT OF 28 RANKS ARE SHOWN THE NUMBERS REPRESENT THE
Note that MCT also outperforms STRUCK in the two VOT ACTUAL AVERAGE RANKING .

benchmarks (see below). Taljlé V dnd VI show the results.

We further evaluated MCT with the VOT2013 dataset usink?.4 respectively. This clearly shows that the benefit of the
the protocol of the VOT challenge and comparing it wittmotion context-based discriminative classifier.
27 other state-of-the-art tracking methods. Tablg Vlisligte Figure[2 shows the accuracy-robustness ranking plots for
top 7 ranks for the experiments baseline, region-noise, ati® VOT2014 dataset as evaluated in the context of the
greyscale, combining accuracy and robustness. The raxfultd/isual Object Tracking Challenge 20114 [43]. The plots show
MCT are very competitive, being the second-best method fitre results on the “baseline” and “region noise” experirment
baseline and region-noise and the third-best for greyscdier 39 different state-of-the-art methods. It can be seen th
Only one method, the Pixel-based LUT Tracker (PLT), iMCT (yellow circle) is among the top-performing methods,
consistently outperforming MCT on this dataset. It is aits overall rank being four (counting PLT and its extension
optimisation of the tracker called STRUCK]12], currenthPLT_14 as one entry). Table V]Il lists the 10 best methods
unpublished but some explanation can be found_in [48]. Nofier VOT2014 and the respective accuracy ranks, robustness
that, PLT is a single-scale tracker and it uses differerntufea ranks, and overall ranks. Taking the average of accuracy
sets for greyscale and colour videos. As opposed to Pland robustness ranks, PLT and its extension_RWTare still
MCT fails for example in the “Hand” video (2.13 failuresslightly better, as well as the correlation filter-based hodt
on average), where large appearance changes, motion, 8AdMF [57], and the method DGT _[58] which relies on graph
difficult lighting occur at the same time (see Fid. 3). Othanatching and super-pixel representations. The methodéF,
failures may happen in the “Torus” and “Bolt” videos withMCT without the discriminative classifier, is only slightly
large object deformations and many similar distractingeotsi. worse on average with this benchmark. This might be due to
We also added the method PF (MCT without the detector) ke more challenging type of videos with deformable objects
the VOT2013 evaluation. Its overall ranks for the baselinér which the texture-based classifier is not powerful efoug
region-noise, and greyscale experiments are 16.1, 14, an
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Fig. 2. Accuracy-robustness ranking plots for 39 statéhefart methods evaluated with the VOT2014 datdset [43% iflore on the top right, the better.
The proposed method MCT (yellow circle) is among the todeparing methods.

accuracy rank  robustness rank  overall rank  generative and discriminative models, by effectively gné-

SAMF [57] 8.16 16.49 12.33 ing an on-line learning classifier. We propose a new method
PLT 14.28 10.41 12.35 to train this classifier that samples the position of negativ
DGT [58] 11.42 13.44 12.43 les f | . . d of a fixed rei
PLT 14 1746 1077 1412 examples from contextual motion cues instead of a fixed regio
MCT 13.52 14.76 14.14 around the tracked object. The advantage of MCT compared
PF 13.70 14.74 14.22 to others is that it effectively combines different disciriant
DSST [59] 13.51 15.54 14.53 sual - col h d ion. And ithier
KCF [60] 13.62 16.82 1522 visual cues: colour, shape, texture, and motion. And ithert -
HMMTxXD [43] 13.18 17.57 15.38 takes advantage the motion context in the scene, by using
MatFlow [5€] 16.90 15.29 16.10 a specific online learning scheme that is independent from
TABLE VIII the actual classification algorithm. Our extensive experital

OVERALL RANKING RESULT WITH THE VOT2014DATASET. ONLY THE results show that this procedure improves the overall track
FIRST100UT OF 39 RANKS ARE SHOWN THE NUMBERS REPRESENT THE

SEQUENCENORMALISED AVERAGE RANKING. performance with different discriminative classificatialgo-
rithms. Further, the proposed tracking algorithm givetestd-
accuracy robustness the-art results on four different challenging trackingasats,
base- region- grey- base- region- grey- . . . .
line  noise  scale line  noise scale €ffectively dealing with large object shape and appearance
VOT2013 060 058 059 046 042 087 chang_es, as well as compI_ex motion, varying illumination
VOT2014 054 051 - 0.99 1.19 - conditions and partial occlusions.
TABLE IX Possible future extensions to improve the tracking robust-

AVERAGE ACCURACY AND ROBUSTNESS OF THE PROPOSED METHOD FOR hess and precision would include the use of more scene
THE VOT2013AND VOT2014DATASETS. context, for example not only related to motion but also
appearance and the inference of higher-level scene infama

Table[TX summarises the average accuracy and robustngsisted to lighting, shape, and 3D positions.

values for VOT2013 and VOT2014.
Finally, Fig.[3 shows some qualitative tracking results on

some of the videos. One can see that the algorithm is very REEERENCES
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Fig. 3. Tracking results of MCT on the sequences “David”, thtrossl”, “Bolt”, “Sunshade”, “Woman”, “Gymnastics”, @rfHand” (VOT2013). MCT
is very robust to partial occlusions, illumination changdsformations, pose or other appearance changes. In then&Wovideo, the algorithm has some
problems adapting to the scale change; in the “Gymnastixainele, the aspect ratio is not adapted fast enough alththegtrack is not lost; and in the last
example the algorithm loses track due to deformation, imtaimotion blur, and low lighting.
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