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h i g h l i g h t s

! We study heat integration and mechanical heat pump processes for the extractive distillation.

! We propose a new objective function for optimizing heat integrated extractive distillation processes.

! We propose a novel partial heat integration process and two partial mechanical heat pump processes.

! The proposed optimal partial HI process gives the lowest TAC and the full BF process produces the lowest CO2 emissions.

! The novel mechanical heat pump processes can effectively reduce initial investments and total annual cost.
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a b s t r a c t

Double-effect heat integration and mechanical heat pump technique are investigated for the extractive

distillation process of the acetone–methanol minimum boiling azeotropic mixture with entrainer water

and compared from the economical view by the total annual cost (TAC) and environmental aspect by CO2

emissions. Firstly, A novel optimal partial heat integration (OPHI) process is proposed and optimized

through the minimization of a newly defined objective function called OF2 that describes the energy con-

sumption used per product unit flow rate and allows comparison with the literature direct partial and full

heat integration processes. We find that the minimum TAC is not achieved by the full heat integration

process as intuition, but by the new OPHI process. Secondly, the vapour recompression (VRC) and bottom

flash (BF) mechanical heat pump processes are evaluated with respect to energy and CO2 emissions. We

proposed a new partial VRC and a new partial BF process in order to reduce the high initial capital cost of

compressors. Overall the results show that compared to the conventional extractive distillation process

the proposed OPHI process gives a 32.2% reduction in energy cost and a 24.4% saving in TAC while the full

BF process has the best performance in environmental aspect (CO2 emissions reduce by 7.3 times).

1. Introduction

Distillation is a leading separation technology in chemical

industry but it is also very energy-intensive [1]. Therefore, devel-

oping alternative processes is interesting with the sake of reducing

the excessive energy (causing pollutants and global warming

gases) and the waste (e.g., waste forming in the column itself)

[2]. The evaluation of the environmental impacts is the key reasons

that drive the cleaner technologies which may seem not attractive

but are strongly competitive in an overall scenario [3].

For the common azeotropic mixtures special distillation pro-

cesses are required such as extractive distillation, which is the

most applied method in industry together with azeotropic distilla-

tion [4]. Thermodynamic insight for extractive distillation allows

one to assess which component will be withdrawn as product,

what the adequate column configuration is, and whether or not

it exists limiting operating parameter in both batch [5,6] and con-

tinuous modes [7,8].

In literature and industry, two approaches are commonly used

to improve the energy efficiency and reduce the total annual cost

(TAC) of distillation process: double-effect heat integration (DEHI

see Fig. 1) and heat pumps technology although they have draw-

back of high investment cost [9].

Firstly, regarding DEHI, literature results are equivoque in terms

of TAC savings while the energy savings are evident compared with
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conventional extractive distillation (CED). Gutierrez-Guerra et al.

[10] showed that thermally coupled extractive distillation can

achieve significant reductions of CO2 emissions due to the energy

savings. For the extractive distillation of the acetone–methanol

minimum boiling azeotropic mixture with entrainer water, Knapp

and Doherty [11] found that the DEHI process decreased the

energy cost by 40% but found little decrease in TAC whereas Luy-

ben [12] noted a 20.5% reduction in TAC. However, we showed that

Luyben’s CED design could be further optimized with a 17% savings

in energy [13]. For ethanol dehydration, the DEHI process reduced

the utility demand by 15% [14], but the increase in a DEHI equip-

ment cost may overcome the reduction of the utility cost and lead

to a less profitable process than a CED process [15]. Similarly, DEHI

extractive distillation for the separation of Diisopropyl ether and

isopropyl alcohol increases the TAC instead of decreasing it [16]

compared with CED. Therefore, benefits of DEHI process in terms

of TAC remain debatable.

Besides, all DEHI processes mentioned above are direct partial

integration processes. In this study, we discuss whether a further

optimization of other variables would decrease the TAC; whether

full DEHI behaves similarly and whether there is an optimal heat

duty to be integrated? What is the influence of the TAC payback

period?

Secondly, mechanical heat pump technologies like vapour com-

pression (VC) and vapour recompression (VRC) and bottom flash

(BF) shown in Fig. 2 [17] are useful way to improve energy quality

and reduce the greenhouse emissions in spite of disadvantages like

high investment cost and process complexity.

In VC, a working fluid absorbs the heat from condenser and

gives it off to the reboiler. In VRC, the working fluid is the top

vapour flow. It is directly compressed and condensed in the reboi-

ler after reducing pressure by valve, and then it is partially refluxed

to the column top while the other part is taken out as distillate. In

order to balance the heat input mainly generated by the compres-

sor, a small condenser is needed. The advantage of VRC over VC is

that a smaller condenser heat transfer area and a lower tempera-

ture lift are used because the heat is exchanged only once. Modla

and Lang [18] showed that the use of an external heat exchanger

in VRC batch distillation reduced a lot the payback times. Alterna-

tively, in the bottom flash heat pump (BF) [19], the bottom liquid is

cooled down by expansion over a throttle valve to a temperature

below that of the condenser. Then, it is evaporated at the

Nomenclature

AC condenser heat transfer area [m2]
AR reboiler heat transfer area [m2]
BF bottom flash (heat pump)
COP coefficient of performance (heat pump process)
COPc the critical (upper) theoretical value of COP
Costcap capital cost [106 $]
Costope operating cost [106 $]
CostCA column annual cost [106 $]
CostHA cost of heater for cooling recycling entrainer [106 $]
D distillate flow [kmol/h]
D1 distillate flow of extractive column
D2 distillate flow of regeneration column
Diameter diameter of column
DPHI direct partial heat integration
E entrainer
ED extractive distillation
F feed flow rate [kmol/h]
FAB original azeotropic mixtures feed flow rate [kmol/h]
FE entrainer feed flow rate [kmol/h]
FE/F feed ratio, continuous process
Fuelfactor the fuel factor, reflecting the types of the fuels
hproc the enthalpy of steam delivered to the process [kJ/kg]
Height height of column
Ics column shell investment cost [106 $]
IHE heat exchanger investment cost [106 $]
k product price factor for A vs B
m energy price difference factor for condenser vs reboiler
MHP mechanical heat pump
N number of theoretical stages
NE number of theoretical stages of extractive column
NFE entrainer feed stages
NFF original mixture feed stages
NHV the net heating value of a fuel with a carbon content

[kJ/kg]
NR number of theoretical stages of regeneration column
OF objective function (the energy consumption per product

flow rate)
OPC1 outlet pressure of compressor for extractive column

[atm]

OPC2 outlet pressure of compressor for regeneration column
[atm]

OPHI optimal partial heat integration
OFHI optimal full heat integration
OPT1 outlet pressures of throttle for extractive column [atm]
OPT2 outlet pressures of throttle for regeneration column

[atm]
p pressure [Hg mm] [atm]
Qc1 condenser heat duty of extractive column [MW]
Qc1 condenser heat duty of regeneration column [MW]
Qfuel the amount of fuel burnt [MW]
QHA heat duty of heater for cooling recycling entrainer [MW]
Qr1 reboiler heat duty of extractive column [MW]
Qr2 reboiler heat duty of regeneration column [MW]
R reflux ratio
SQP sequential quadratic programming
T temperature [K]
TC top temperature of column [K]
TD temperature difference [K]
TFTB the flame temperature ["C]
TR bottom temperature of column [K]
T0 the ambient temperature ["C]
Tstack the stack temperature ["C]
TAC total annual cost
V vapour flows [kmol h"1]
VRC vapour recompression
W bottom product flow rate [mol/h]
xD distillate fraction
xi liquid mole fraction of component i
xF original mixture liquid mole fraction
xE entrainer liquid mole fraction

Greek letters
a the molar masses content of carbon in CO2

aij volatility of component i relative to component j
ci activity coefficient of component i
kproc the latent heat of steam delivered to the process [kJ/kg]
s binary interaction parameter in NRTL model
g the Carnot efficiency



condenser to cool down the top vapour and then compressed to

reenter the column as bottom vapour flow.

In mechanical heat pumps, several studies [19–22] show that

VRC process seems to have better performance in economical

view over the VC and BF processes but it depends on the elec-

tricity price [23] and on the temperature lift [24]. However,

there is no unanimous thermodynamic reason to prefer VRC

process [25]. Useful selection schemes [26] and performance

maps [27] for a preliminary choice of different heat pump tech-

nologies must be supplemented by comparison of each process

simulation. Besides, all the mentioned heat pump processes are

usually used for low overall column temperature [28] difference

whereas in extractive distillation process, relatively high

temperature differences exist between the extractive and

regeneration columns.

In this study, Section 2 presents the methods for assessing the

performance of the processes, Section 3 is devoted to study DEHI

processes for extractive distillation and Section 4 to VRC and BF

mechanical heat pump processes. We consider the extractive dis-

tillation of the acetone – methanol azeotrope with water which

process without integration we have recently optimized and to

which we can compare. We propose for the first time an optimiza-

tion methodology with an objective function that allows to com-

pare in Section 3 all DEHI processes, including a new optimized

partial heat integration process optimizing the heat amount inte-

grated. In Section 4, we study a new mechanical heat pump

sequences that take advantage of the small temperature differ-

ences between the bottom of the extractive column and the top

of the regeneration column and in which we perform the heat inte-

gration between both columns. Since the top vapour components

of the two columns are compressed, the VC heat pump will not

be considered due to additional heat exchanger capital cost com-

pared with the VRC heat pump process.

2. Evaluation method of heat pump performance and CO2

emissions

2.1. Heat pump performance

Bruinsma and Spoelstra [17] gave a detail derivation of the coef-

ficient of performance (COP) in order to evaluate the heat pump

technique in distillation process. For heating application, it is the

ratio of the heat rejected at high temperature to the work input:

COP ¼
Qh

W
ð1Þ

The upper theoretical value of COP obtainable in a heat pump is

COPc, related to the Carnot cycle:

COPC ¼
Th

Th " Tc

ð2Þ

where the temperature lift (Th " Tc) is the sum of the temperature

difference over the column and the temperature difference over

the heat exchanger.

Plesu et al. [29] provide an easy way to check whether or not

the use of a heat pump can provide a more sustainable distillation

process decreasing its energy requirements in the early stages of

design. The simplified equation is as follow:

COPS ¼
Q

W
¼

TC

TR " TC

ð3Þ

where Q is the reboiler duty of column,W the work provided, TR and

TC temperature (K) of reboiler and condenser. They also pointed out

that when the Q/W ratio exceeds 10, a heat pump is clearly recom-

mended, between 5 and 10 it should be evaluated more detail, and

if it is lower than 5, using a heat pump should not bring any

benefits.

2.2. Evaluation of CO2 emissions for distillation column

Evaluation of CO2 emissions for distillation column with heat

pump process is a complex issue because the steam used for reboi-

ler could be generated from the traditional energy resources such

as coal, heavy fuel oil, nature gas, and the compressor for heat

pump could be steam turbine driving or electricity driving. Further,

the electricity could be generated by traditional energy resources

or new energy resources like wind, solar, biological energy. In this

study, heavy fuel oil is assumed for the steam used in reboiler, and

a given CO2 emissions value for the electric compressor.

In 1991, Smith and Delaby [30] have related energy targets to

the resulting flue gas emissions from the utility system for a given

process with fixed process conditions by considering the typical

process industry utility devices such as boilers, furnaces and

Fig. 1. Sketch for extractive distillation heat integration process.



turbines; the emitting gas being CO2, SO2 and NO2. Based on their

works, Gadalla et al. [31] proposed a simple model for the calcula-

tion of CO2 emissions for heat-integrated distillation system. The

model for calculating CO2 emissions is as follow, based on the

assumption that no carbon monoxide is formed during combustion

since the air is regarded as in excess.

½CO2'emiss ¼ Q fuel ( Fuelfactor ð4Þ

where Qfuel is the amount of fuel burnt, reflecting the heating device

and Fuelfactor is the fuel factor, reflecting the types of the fuel. It is

defined as follow:

Fuelfactor ¼
a

NHV

! "

(
C%

100

# $

ð5Þ

where a (=3.67) is the molar masses content of carbon in CO2, NHV

(kJ/kg) means the net heating value of a fuel with a carbon content

of C%. Fuelfactor takes the effect of the fuel on the process in terms of

C%, NHV and a. In this study, assume heavy fuel oil is used and

NHV = 39771 kJ/kg, C% = 86.5% [31].

In distillation system, steam is used for heating in reboiler. The

steam is produced by a boiler from the combustion of fuel. The the-

oretical flame temperature and the stack temperature are assumed

as 1800 "C and 160 "C. So QFuel can be calculated from following

equation:

Q fuel ¼
Qproc

kproc
( ðhproc " 419Þ (

TFTB " T0

TFTB " Tstack

ð6Þ

where kproc (kJ/kg) and hproc (kJ/kg) are the latent heat and enthalpy

of steam delivered to the process, respectively, while TFTB ("C), Tstack
("C) and T0 ("C) are the flame temperature, the stack temperature

and the ambient temperature. The boiler feed water is assumed to

be at 100 "C with an enthalpy of 419 kJ/kg [31]. The above equation

is obtained from a simple steam balance around the boiler to relate

the amount of fuel necessary in the boiler to provide a heat duty of

Qproc. After calculating the CO2 emissions of steam in reboiler

(heavy fuel oil) are 89.6 kg/GJ, the value agrees with the study of

Gutiérrez-Guerra et al. [10]. The CO2 emissions for the electricity

power of a compressor is taken as 51.1 kg CO2/GJ [32], that is

184 kg CO2/h for 1000 kW power which we use in this study.

Fig. 2. Mechanical heat pump flow sheet for extractive distillation columns (a) vapour compression (VC) and (b) vapour recompression (VRC), (c) bottom flash (BF).



2.3. Economic assessment

The total annualized cost TAC is used for the comparison of the

different designs. TAC includes capital cost per year and operating

costs and is computed from the following formula:

TAC ¼
capital cost

payback period
þ operating cost ð7Þ

The payback period is considered as 3 years in the base case,

and is later changed. Douglas’ cost formulas are used [33] with

Marshall and Swift (M&S) inflation 2011 index = 1518.1 [34]. The

energy cost of the reboiler is 3.8$ per GJ, after consulting a chem-

ical company in Chongqing China. The price of electricity is

assumed the same as the one used for the column reboiler duty.

The operating cost means the energy cost in reboiler and con-

denser, and more detail information is found in our previous works

[13,35]. To emphasize the effect of the entrainer flow rate recycle

on the process, the heat exchanger annual cost for cooling recy-

cling entrainer is taken into account. Other costs such as pumps,

pipes, valves are neglected at the conceptual design tray that we

consider. The price of electricity is the same as that of the one used

for the column reboiler duty based on the region of Chongqing in

China.

3. Extractive distillation with double-effect heat integration

Our basic case design used for comparison is shown in Fig. 3. It

is an extractive distillation process optimized in our previous

works by focusing on the energy saving of the process itself for

the separation of the minimum azeotropic mixture acetone–

methanol with heavy entrainer water [36]. That typical 1.0-1a class

extractive separation [37] is favored in energy cost at low operat-

ing pressure of the extractive column and the P = 0.6 atm is chosen

in order to use cooling water for the condenser [13].

The bottom temperature of extractive column is 348.3 K at

0.6 atm and the condenser temperature of entrainer regeneration

column is 337.7 K at 1 atm. The heat integration is therefore

impossible as there is no temperature difference. Hence, the oper-

ating pressure of regeneration column P2 is adjusted to a suitable

pressure to give a heat integration feasible condenser temperature.

Aiming at optimizing the two columns together, we proposed

the objective function OF for extractive distillation process in our

work [37] Based on OF, OF2 is used for the DEHI extractive distil-

lation process and it is as follow:

min OF2 ¼
ðQ r1 " Q c2Þ þ Q r2 þm ( Q c1

k ( D1 þ D2

Subject to : xacetone;D1 P 0:995

xacetone;W1 6 0:001

xmethanol;D2 P 0:995

xwater;W2 P 0:9999

ð8Þ

The meanings of the variables are shown in Fig. 3. Factors k and

m respectively describe the price differences between acetone and

methanol products and between the condenser cooling and reboi-

ler heat duties respectively: k = 3.9 (product price index),m = 0.036

(energy price index). The meaning of OF2 is the energy consump-

tion used per product unit flow rate (kJ/kmol). In OF2, the direct

partial and full heat integration could be regarded as the extremely

conditions where (Qr1–Qc2) taking the maximal value and the min-

imal value zero, respectively.

3.1. Direct partial heat integration

Direct partial heat integration (DPHI) of extractive distillation

means that the design variables of extractive column are taken

from Fig. 3, just adjusting the operating pressure of the regenera-

tion column from 1 atm to P2 atm and increasing R2 to make

methanol product satisfy the purity specification. The reboiler/con-

denser heat exchanger is sized by using an overall heat transfer

coefficient of 0.00306 GJ h"1 m"2 K"1 [38]. The effect of P2 on the

process TAC and OF2 of DPHI is shown in Fig. 4 and Table 1 shows

the TAC, OF and temperature difference (TD) of the reboiler/con-

denser heat exchanger (see Fig. 2).

From Fig. 4 and Table 1, we know that (1) when heat integration

is taken into account, both TAC and energy cost per unit product

flow rate OF2 decrease drastically, up to more than 15% and 30%,

respectively. It shows the strong interest to consider heat integra-

tion of the process. (2) OF2 increases linearly following the

increase of P2. This is because the separation of methanol and

water in regeneration column becomes more and more difficult

as shown in Fig. 5, the relative volatility of methanol-water at dif-

ferent pressure. (3) TAC firstly decreases quickly and then

increases when P2 increases. For the reboiler/condenser heat

exchanger, the heat transfer area decreases quickly as the temper-

ature difference increase from its small value, leading to the

Fig. 3. Extractive distillation of acetone–methanol with water, base case.



decrease of its capital cost and the TAC of the whole process. When

TD is high enough (29 K for P2 = 4 atm), the benefit of the increase

of TD on the process is lessened, meanwhile, the cost penalty in

the regeneration column caused by the increase of operating

pressure becomes more obvious and overcomes the benefit from

the heat exchanger smaller. (4) As the value with minimal TAC,

P2 = 3.5 atm is used hereafter which will give the reductions of

TAC and OF2 by 19.4% and 31.8%. The heat exchanger duty for heat

integration is 6.04 MW and the corresponding heat transfer area is

283 m2. (5) The differential temperature driving force is 25.1 K. The

results agree with the fact that the reasonable differential temper-

ature driving force is more than 20 K [38].

Based on the feasibility and univolatility analysis that led us to

select P1 = 0.6 atm [13,35], the choice of a lower pressure allows us

to choose P2 = 3.5 atm instead of P2 = 5 atm as used in Luyben’s

heat integrated design for the separation systems, our design with

P1 = 0.6 atm and P2 = 3.5 atm results in 16% TAC saving and 27.6%

OF2 (energy cost) saving compared to Luyben’s heat integrated

design with P1 = 0.6 atm and P2 = 3.5 atm.

Fig. 5 shows that following the increase of the pressure, the

volatility of methanol over water decreases. That means that more

energy is needed for their separation in the regeneration column.

This suggests that it is better to keep the pressure in the regener-

ation column as low as possible from the separation point of view.

3.2. Optimal partial heat integration

Optimal partial heat integration (OPHI) of extractive column

means all the design variables are being optimized with objective

function OF2 after the operating pressure of regeneration column

is changed to 3.5 atm from above results.

The two-step optimization procedure [13] for extractive distil-

lation is used since we keep fixing the two columns stage number

as base case. The results after recheck in closed loop flow sheet are

shown as OPHI in Tables 2 and 3. There is a small decrease of OF2

when more variables are taken into account. The optimal values of

FE, R1, D1 D2, NFE and NFF are almost similar to the DPHI case. Differ-

ences are seen in the R2 and NFR values. Indeed, the new regenera-

tion column design leads to a more suitable heat exchange duty for

heat integration and reduces the operating cost and the capital

cost, giving rise to the drops of TAC by 6%.

3.3. Optimal full heat integration

In optimal full heat integration of extractive distillation (OFHI),

the reboiler heat duty of extractive column equals to the condenser

heat duty of regeneration column. The process is achieved in Aspen

Plus by using design specification with the Qr1 " Qc2 = 0 as specifica-

tion and the reflux ratio of regeneration column R2 as variable. In

order to do a fair comparison, the variable of FE, R1, R2 (keep Qr1 -

" Qc2 = 0), D1, D2, NFE, NFF, and NFREG are also optimized by two step

optimization procedure [13]. After recheck in closed loop flow

sheet, the design parameters and the cost data of three DEHI

extractive distillation processes are shown in Tables 2 and 3.

From Tables 2 and 3, we know that (1) comparing heat integra-

tion process with no heat integration base case, TAC and energy

cost for per unit product decreases by 31.8% and 19.4% respec-

tively. (2) A counter-intuitive result is obtained: compared with

direct partial heat integration, optimal full heat integration is not

recommended because it gives a little increase in TAC although

the energy cost decreases a little. The reason is that in order to

achieve full heat integration, R2 increases a lot to make the con-

denser duty in regeneration column match the reboiler duty in

extractive column, leading to the increase of heat exchanger area

and the capital cost that overcome the operating cost reduction

Fig. 4. Effect of regeneration column pressure P2 on TAC and OF2, the performance

of the DPHI.

Table 1

Temperature difference, OF and TAC of the reboiler/condenser heat exchanger

following P2.

P2/atm 1 (base case) 2 3 3.5 4 5

TD/K "10.6 8.1 20.2 25.1 29.4 36.8

OF2/kJ/kmol 28326.3 18556.2 19100.1 19329.4 19541.9 19970.2

TAC/106 $ 3.107 2.583 2.508 2.503 2.506 2.521
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Fig. 5. Relative volatility of methanol over water at different pressures.

Table 2

Design parameters of three double-effect heat integration extractive distillation

processes, acetone–methanol with water.

Case DPHI Case OPHI Case OFHI

NE 65 65 65

NR 35 35 35

P1/atm 0.6 0.6 0.6

P2/atm 3.5 3.5 3.5

F/kmol/h 540 540 540

FE/kmol/h 560 552 574.3

R1 2.59 2.56 2.53

R2 1.46 1.78 2.44

D1/kmol/h 271.1 270.9 270.7

D1/kmol/h 271.0 271.1 271.1

NFE 34 35 36

NFF 55 56 55

NFR 25 19 20



in the extractive column. Besides, as R2 goes up, so does the reboi-

ler duty of regeneration column QR2 and the operating cost accord-

ingly. (3) The optimal partial heat integration proposed in this

study remains competitive because it gives a 6.2% reduction in

TAC compared with direct partial or optimal full heat integration,

and also a little decrease in energy cost following OF2. It demon-

strates that there exists an optimal heat duty to be integrated in

the extractive distillation process. Besides, more high price steam

is needed in case OFHI as more reboiler duty is needed in regener-

ation column and the bottom temperature (414 K) in regeneration

column is higher than that (348 K) in extractive distillation. (4) The

total columns reboiler heat duties (9.66 MW) in the heat integra-

tion case OPHI studied in this work has a 32.2% saving compared

with base case (14.24 MW) without heat integration. Compared

with the partial heat integration design in Luyben’s book [38], a

28.4% reduction in the total columns reboiler heat duties is

obtained for the same design purity objective. (6) OF2 proves sui-

ted as the objective function for extractive distillation to deal with

partial or full heat integration as full heat integration can be

regarded as the (Qr1 " Qc2) equal to zero. (7) With the lowest

TAC, case OPHI also shows a little less CO2 emissions and energy

consumption per unit product.

4. Extractive distillation with mechanical heat pump

4.1. Evaluation of VRC heat pump assisted distillation process

The base case without heat integration is shown in Fig. 3, the

COPS values for extractive column and regeneration column

calculated from Eq. (3) are 9.5 and 8.4, respectively. They are in

the value range where a heat pump assisted process should be

evaluated in detail according to Plesu et al. [29]. We notice that

the temperature difference (10.6 K) between the top of the

regeneration column and the bottom of the extractive column is

much smaller than that (40 K) between the top and the bottom

of the regeneration column which is commonly true for extractive

distillation, such a high temperature difference between the top

and the bottom of the column is adverse to the performance of

the heat pump process.

In extractive distillation, Luo et al. [39] obtained a 24% TAC

reduction by using the top vapour stream to drive the side reboiler.

Inspired by their study and by a recent pressure swing adsorption

study where heat integration between two consecutive columns is

done [40], we propose a new flow sheet sequence shown in Fig. 6

that one part of the extractive column reboiler duty is heated by

the top vapour of the regeneration column with heat pump 2,

and the left part is supplied by the top vapour of the extractive col-

umn with heat pump 1. Two heat exchangers are used for transfer-

ring the heats from the two top vapour streams. The heat transfer

areas are calculated separately. Auxiliary condenser is needed for

cooling the other part of the top vapour of the extractive column.

The design results are shown in Fig. 6, and please refer to Fig. 3

for the input information of the feed streams and columns.

In order to respectively show the cost saving of the extractive

and regeneration columns, we compared them separately with

their corresponding heat pump assisted process.

4.1.1. VRC heat pump assisted extractive column

For the heat pump assisted column, the choice of compression

ratio (the ratio of outlet and inlet pressure of compressor) reflects

whether the temperature driving force is enough to heat up the

column reboiler or not. In this study, the outlet pressure of com-

pressor (OPC1) for extractive column is regarded as variable to

evaluate the performance of compressor as the inlet pressure of

top vapour distillate is 0.6 atm that chosen from thermodynamic

insight [13]. The results are shown in Table 4 for a payback period

of 3 years and corresponding temperature difference.

As OPC1 increases, so does the temperature driving force, and

the energy cost increases due to a greater of compressor work,

but the capital cost and TAC with 3 years payback period of extrac-

tive column with heat pump decrease first and then increase. The

high values of capital cost and TAC at OPC1 = 2 atm is because the

temperature driving force is too small, leading to a big heat

exchanger area and capital cost. So OPC1 = 2.5 atm is used hereafter

and the comparison of extractive column with and without heat

pump are shown in Table 5.

From Table 4 and Fig. 7, we know that (1) there remains a con-

denser duty in VRC heat pump process. The reason is that after

being compressed and heat exchanged, the top vapour becomes

high pressure liquid, it is partial vaporized after throttle valve

and it needs to be cooled to the top temperature before being

refluxed into the column. (2) The energy cost in extractive column

is reduced by 77.0% as most of the condenser duty is reused for

heating up reboiler thanks to the heat pump. (3) The capital cost

increases 2.5 times as the compressor’s cost is much higher than

that of the heat exchanger and column shell. The heat transfer area

in the process with heat pump increases by 20% more than that

without heat pump. (4) Then for a 3 year payback period, the

VRC HP process is not competitive for the extractive column. How-

ever, the TAC for the process with VRC heat pump drops below the

no heat pump process if the payback period is greater than 6 years.

The 10 year total cost for the process with VRC heat pump

(10.07 * 106 $) is reduced by 23.5% compared with that of the pro-

cess without heat pump (13.17 * 106 $). (5) CO2 emissions (kg/h)

for the process with VRC heat pump is only 15.3% of that without

heat pump.

4.1.2. VRC heat pump assisted regeneration column

The outlet pressure of compressor for regeneration column

(OPC2) is regarded as variable to evaluate the performance of com-

pressor with the top vapour distillate at atmosphere. The results

are shown in Table 6.

As OPC2 increases, so does the temperature driving force and

the energy cost due to a greater compressor work while the capital

cost and TAC with 3 years payback period of extractive column

with heat pump decreases first and then increases. The high values

of capital cost and TAC at OPC2 = 4.5 atm is because the tempera-

ture driving force is relatively small, causing a big heat exchanger

Table 3

Sizing parameters and cost data of three double-effect heat integration extractive

distillation processes, acetone–methanol with water.

Case DPHI Case OPHI Case OFHI

Column C1 C2 C1 C2 C1 C2

Diameter/m 2.796 1.335 2.782 1.425 2.769 1.596

Height/m 45.72 23.78 45.72 23.78 45.72 23.78

ICS/10
6 $ 1.446 0.389 1.439 0.417 1.431 0.471

QC 8.21 0 8.14 0 8.06 0

QR 2.52 7.23 1.66 8.00 0 9.67

AR/m
2 128 366 84 345 0 490

AC/m
2 861 0 854 0 845 0

IHE/10
6 $ 0.976 0.435 0.920 0.418 0.749 0.525

Costcap/10
6 $ 2.742 0.877 2.676 0.894 2.495 0.996

Costope/10
6 $ 0.323 0.829 0.224 0.782 0.034 1.109

CostCA/10
6 $ 1.237 1.122 1.116 1.080 0.865 1.464

QH/MW 1.18 1.16 1.22

CostHA/10
6 $ 0.021 0.021 0.022

QHE/MW 6.04 6.82 8.42

AHE/m
2 284 318 395

CostHE/10
6 $ 0.123 0.132 0.153

TAC/106 $ 2.503 2.349 2.504

CO2 emissions/kg/h 3146.2 3117.2 3120.4

OF2/KJ/kmol 19329.4 19162.8 19178.4



area and capital cost. So OPC2 = 5 atm is used hereafter and the

comparison of the regeneration column with and without heat

pump are shown in Table 7.

From Table 6 and Fig. 8, we know that (1) the energy cost in

regeneration column with heat pump is reduced by 77.8% while

the capital cost increases 4.3 times. For a 3 year payback period,

the VRC heat pump is again not competitive. However, the CO2

emissions are reduced a lot, and the TAC for the VRC heat pump

assisted regeneration column gets competitive when the payback

period is over 8 year. The 10 year total cost for the process with

heat pump (6.66 * 106 $) is reduced by 16.0% compared with that

of the process without heat pump (7.93 * 106 $).

4.1.3. Full VRC heat pump process

Full VRC heat pump process means that both column reboiler

are heated up through heat pump as shown in Fig. 1(a). The outlet

pressures of compressors are 2.5 atm and 5 atm taking from above.

The cost data of the process full VRC are shown in Table 7. Again it

is better to use heat pump for both extractive and the regeneration

column from the economic and environmental views after payback

period is greater than 6.5 years.

Fig. 6. Partial VRC heat pump for extractive distillation process.

Table 4

Cost data for extractive column with heat pump at different compressor outlet

pressure.

OPC1/atm 2 2.5 3 4 5

TD/K 2.7 10.5 17.1 28.1 37.1

Energy cost/106 $ 0.199 0.234 0.266 0.319 0.365

Capital cost/106 $ 8.543 7.728 7.968 8.578 9.125

TAC at PP = 3/106 $ 3.046 2.81 2.921 3.178 3.406

Table 5

Comparison of extractive column with and without VRC heat pump.

Heat pump No Yes

QC/MW 8.21 1.63

QR/MW 8.56 0.42

QHE/MW 0 8.14

AC/m
2 861 171

AR/m
2 434 22

AHE/m
2 0 1365

Compressor work/MW No 1.559

COP – 5.2

Capital cost of compressor/106 $ 0 4.608

Energy cost per year/106 $ 1.016 0.234

Capital cost/106 $ 3.008 7.728

CO2 emissions/kg/h 2762.3 422.3

TAC at PP = 3/106 $ 2.018 2.810

TAC at PP = 10/106 $ 1.317 1.007
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Fig. 7. Comparison of total annual cost for no heat pump and VRC heat pump

extractive column following payback period.

Table 6

Cost data for regeneration column with heat pump at different compressor outlet

pressure.

OPC2/atm 4.5 5 5.5 6 7

TD/K 3.8 7.3 10.6 13.7 19.2

Energy cost/106 $ 0.141 0.149 0.156 0.164 0.178

Capital cost/106 $ 5.489 5.169 5.147 5.202 5.384

TAC at PP = 3/106 $ 1.970 1.872 1.872 1.898 1.972



4.1.4. Partial VRC heat pump

After validation, the outlet pressure of compressor2 is 2 atm

due to the decrease of temperature difference, and much reduction

in capital cost for heat pump is possible.

The cost data of the process without heat pump, and partial VRC

are shown in Table 8 and the TAC at different payback periods are

shown in Fig. 9

From Fig. 9 and Table 8, we know that (1) the VRC heat pump

process for a 3 year payback period is much higher than the pro-

cess without heat pump. Compared with the process without heat

pump, the total heat transfer area (AC + AR + AHE) in full heat pump

process and partial heat pump process increases by 1.65 times and

1.48 times instead of decrease. Indeed, the condenser area AC is

spared by the VRC heat pump technique, but this is overweighed

by the increase of the heat transfer area AHE for heat exchanger

due to the small temperature driving force (7.3 K). Another reason

is that the capital cost of the necessary compressor is huge and

increase quickly following the increase of compression ratio. (2)

On the other hand, the energy cost per year decreases by 2.1 times

in the process with partial VRC heat pump, and 4.4 times in the

process with full VRC heat pump. The CO2 emissions in partial

VRC and full VRC heat pump process reduce by 2.3 and 6.8 times

compared the process without heat pump. (3) Hence, the capital

cost payback periods are 6.8 years and 5 years for full VRC process

and partial VRC process. The 10 years total capital and energy cost

are reduced by 20.7% and 21.6%, from (21.16 * 106 $) to

(16.77 * 106 $) with full VRC and (16.77 * 106 $) with partial

VRC. (4) The initial capital cost decrease by 33.4% in the proposed

partial VRC process compared with full VRC process because the

process coefficient of performance (COP) increase from 5.1 to 8.2.

In summary, from the view of economic, the partial VRC heat

pump process is the preferred choice, but from the environmental

aspect, the full VRC heat pump process is better than the partial

VRC as the CO2 emissions are reduced by almost 3 times from

2025.7 to 673.0 kg/h.

4.2. Evaluation of BF heat pump assisted distillation process

The key parameter in the BF heat pump process is the outlet

pressure of the throttle valve since it determines whether or not

there is enough temperature driving force to remove the condenser

heat duty. So the outlet pressure of throttle valve (OPT) is used as

the variable for the evaluation of BF heat pump assisted distillation

process. Notice that the operating pressures of the base case are

0.6 atm for the extractive column and 1 atm for regeneration col-

umn, so the outlet pressure of throttle valves will be lower than

1 atm.

4.2.1. BF heat pump assisted extractive column

For the extractive column, the bottom liquid is the mixture of

non-product component and entrainer instead of high purity pro-

duct stream. So the saturated vapour pressure of that mixture will

determine the feasibility of the BF heat pump process. As the

entrainer is usually a heavy boiling component with a low

Table 7

Comparison of regeneration column with and without heat pump.

Heat pump No Yes

QC/MW 5.30 0.75

QR/MW 5.68 0.15

QHE/MW 0 5.53

AC/m
2 182 26

AR/m
2 288 8

AHE/m
2 0 1334

Compressor work/MW No 1.117

COP – 4.9

Capital cost of compressor/106 $ 0 3.506

Energy cost per year/106 $ 0.673 0.149

Capital cost/106 $ 1.192 5.169

CO2 emissions/kg/h 1832.9 253.9

TAC at PP = 3/106 $ 1.071 1.872

TAC at PP = 10/106 $ 0.793 0.666

0.6

0.9

1.2

1.5

1.8

2 4 6 8 10

T
A

C
  /

1
0

6
$

Payback period  /year

NO HP

VRC HP

Fig. 8. Comparison of total annual cost for no heat pump and VRC heat pump

regeneration column following payback period.

Table 8

Cost data of the process without heat pump, full and partial VRC heat pump.

VRC heat pump No Partial Full

QC/MW 13.51 5.96 2.38

QR/MW 14.24 5.68 0.56

QHE/MW 0 8.56 13.68

AC/m
2 1043 606 197

AR/m
2 722 288 28

AHE/m
2 0 1720 2683

Compressor work/MW No 1.048 2.676

COP – 8.2 5.1

Capital cost of compressor/106 $ 0 3.763 8.113

Energy cost per year/106 $ 1.692 0.799 0.384

Capital cost/106 $ 4.244 8.612 12.932

CO2 emissions/kg/h 4595.1 2025.7 673.0

TAC at PP = 3/106 $ 3.107 3.670 4.695

TAC at PP = 10/106 $ 2.116 1.660 1.677
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Fig. 9. Total annual cost of three different processes following payback period: no

heat pump, partial VRC heat pump and full VRC heat pump.



saturated vapour pressure, it will give benefit to use BF heat pump

in the extractive distillation process.

The effect of throttle outlet pressures (OPT1) is shown in Table 9,

starting from 0.07 atm to provide enough temperature difference.

As OPT1 increases, the bubble point and dew point of the bot-

tom liquid mixtures increase, leading to the decrease of the tem-

perature driving force to remove the condenser duty. Meanwhile,

the energy cost decreases as the compressor duty decreases. How-

ever, the capital cost decreases until OPT1 = 0.1 atm, after that the

capital cost increase due to the increase of heat exchanger cost

overwhelms the benefit caused by the decrease of the compressor

duty. The TAC at 3 year payback period quantitatively shows the

effect of OPT1 on the extractive column. So OPT1 = 0.1 atm is used

hereafter and the comparison of extractive column with and with-

out BF heat pump are shown in Table 10.

Just like the process with VRC heat pump, the BF heat pump

process also increases the total heat transfer area instead of

decrease. The energy cost per year decreases by 3.9 times but the

capital cost increases by 3 times. In summary, the 10 year total cost

is saved by 11.8% and the CO2 emissions is reduced by 6.8 times.

Over the long term, the benefits of the BF heat pump assisted

extractive distillation column are obvious in both economic cost

and environmental impact.

4.2.2. BF heat pump assisted regeneration column

The effect of the outlet pressures of throttle for regeneration

column (OPT2) is regarded as the main variable of the process

and the results are shown in Table 11.

Again, as OPT2 increases, the temperature driving force for

removing the condenser duty decreases, and the energy cost

decrease as the compressor duty decrease. At OPT2 = 0.22 atm,

the cost for heat exchanger increases quickly leading to the

increase of capital cost. Considering the TAC at 3 year payback per-

iod, OPT2 = 0.2 atm is chosen hereafter for regeneration column

with BF heat pump and the results are shown in Table 12.

The energy cost per year for the regeneration column with BF

heat pump decreases by 4.6 times, and the capital cost increases

by 4.6 times. Generally speaking, the 10 year total cost is reduced

by 12.4% and the CO2 emissions are reduced from 1832.9 kg/h to

226.3 kg/h. Again, over the long term, the benefits of BF heat pump

for the entrainer regeneration column than base case is obvious in

both economic and environment aspect.

4.2.3. Full BF heat pump process

Full BF heat pump process means that both column condensers

are cooled down by the vaporization of the bottom liquid streams

after throttle valve as shown in Fig. 1(b). The outlet pressures of

the two throttle valves are 0.1 atm and 0.2 atm taking from above,

and the design results are shown in Table 12.

4.2.4. Partial BF heat pump process

Again, in order to reduce the capital cost of full BF heat pump

process, a new partial BF heat pump flow sheet is proposed as

shown in Fig. 10. One part of the bottom liquid of the extractive

columns is throttled to a specified pressure in order to move heat

from the top vapour of the entrainer regeneration column, and the

other part is throttled to another pressure to cool down the top

vapour of the extractive column. Auxiliary condenser is used to

match the top demand of heat duty of the extractive column. The

design results are shown in Fig. 10, and please refer to Fig. 3 for

the input information of the feed streams and columns.

After validation, 0.3 atm is chosen for the OPT2 in partial BF heat

pump process instead of 0.2 atm in full BF heat pump process

because the decrease of temperature difference, leading to much

reduction in capital cost for heat pump.

The cost data of the process without heat pump, full and partial

BF heat pump are shown in Table 13 and the TAC at different pay-

back periods are shown in Fig. 11.

From Fig. 11 and Table 13, we know that (1) compared with the

process without heat pump, the total heat transfer area in full and

partial BF heat pump process increase by 1.73 times and 1.28

times. (2) The energy cost per year dramatically by 2.0 times in

the process with partial BF heat pump, and 4.2 times in the process

with full BF heat pump. The CO2 emissions in partial BF and full BF

heat pump process reduce by 2.2 and 7.3 times compared the pro-

cess without heat pump. This is the main advantages of heat pump

technique. (3) Meanwhile, the total capital cost increase dramati-

cally due to the cost of compressors. (4) The capital cost payback

Table 9

Cost data for the extractive column with BF heat pump at different throttle valve

outlet pressures.

OPT1/atm 0.07 0.09 0.1 0.11

TD/K 13.6 8.8 6.5 3.8

Energy cost/106 $ 0.305 0.272 0.258 0.246

Capital cost/106 $ 9.550 9.116 9.038 9.238

TAC at PP = 3/106 $ 3.489 3.311 3.271 3.325

Table 10

Comparison of the extractive column with and without BF heat pump.

Heat pump No Yes

QC/MW 8.21 1.87

QR/MW 8.56 0

QHE/MW 0 8.15

AC/m
2 861 43

AR/m
2 434 0

AHE/m
2 0 1472

Compressor work/MW No 2.183

COP – 3.7

Capital cost of compressor/106 $ 0 6.072

Energy cost per year/106 $ 1.016 0.258

Capital cost/106 $ 3.008 9.038

CO2 emissions/kg/h 2762.3 401.6

TAC at PP = 3/106 $ 2.018 3.271

TAC at PP = 10/106 $ 1.317 1.162

Table 11

Cost data for the entrainer regeneration column with BF heat pump at different

throttle valve outlet pressure.

OPT2/atm 0.1 0.15 0.2 0.22

TD/K 18.5 10.3 4.2 2.1

Energy cost 0.212 0.172 0.146 0.137

Capital cost 6.201 5.579 5.494 5.934

TAC at PP = 3/106 $ 2.279 2.032 1.977 2.115

Table 12

Comparison of the entrainer regeneration column with and without BF heat pump.

Heat pump No Yes

QC/MW 5.30 1.01

QR/MW 5.68 0

QHE/MW 0 5.46

AC/m
2 182 16

AR/m
2 288 0

AHE/m
2 0 1526

Compressor work/MW No 1.230

COP – 4.4

Capital cost of compressor/106 $ 0 3.794

Energy cost per year/106 $ 0.673 0.146

Capital cost/106 $ 1.192 5.494

CO2 emissions/kg/h 1832.9 226.3

TAC at PP = 3/106 $ 1.071 1.977

TAC at PP = 10/106 $ 0.793 0.695



periods are 8.0 years and 6.2 years for full and partial BF process.

(5) The 10 years total capital and energy cost are reduced by 7.3%

and 14.8%, from (21.16 * 106 $) to (19.61 * 106 $) with the full

BF and to (18.03 * 106 $) with partial BF. (6) The partial BF gives

a 33.3% reduction in the capital cost compared with full BF process.

Meanwhile, the process coefficient of performance increases by

40%.

In summary, from the view of economics, the partial BF heat

pump process is better than the full BF heat pump process, but

from the environmental aspect, the full BF heat pump process is

better than the partial BF process as the CO2 emissions is reduced

by 3.3 times from 2106.8 to 627.9 kg/h.

4.3. Summary of mechanical heat pump assisted extractive distillation

process

In general, compared with the traditional process, the full heat

pump assisted extractive distillation process demonstrates a

strong advantage in both economical and environmental aspects.

The full VRC heat pump shows a better performance than the full

BF heat pump since the 10 year total cost is further reduced by

14.5%, but and CO2 emissions increase by 6.7%. The partial VRC

heat pump process proposed in this study has 1.7 * 105 $ reduc-

tion in 10 year total cost and 3.8% CO2 emissions reduction com-

paring with the proposed partial BF heat pump process. The CO2

emissions in partial VRC heat pump process are only 44.1% of that

in traditional process though it is 3 times compared with full VRC

heat pump process. The proposed partial heat pump (partial VRC

and partial BF) processes based on the character of extractive dis-

tillation can effectively decrease the initial capital cost and

increase the process coefficient of performance. In summary, from

the economical view, the partial VRC heat pump process is the best

choice in mechanical heap pump process, but from the environ-

mental aspect, the full BF heat pump process is better than other

alternatives.

Fig. 10. Partial BF heat pump for extractive distillation process.

Table 13

Cost data of the process without heat pump, partial and full BF heat pump.

BF Heat pump No Partial Full

QC/MW 13.51 6.44 2.88

QR/MW 14.24 5.68 0

QHE/MW 0 8.27 13.61

AC/m
2 1043 575 59

AR/m
2 722 288 0

AHE/m
2 0 1401 2998

Compressor work/MW No 1.489 3.413

COP – 5.6 4.0

Capital cost of compressor/106 $ 0 5.024 9.866

Energy cost per year/106 $ 1.692 0.828 0.404

Capital cost/106 $ 4.244 9.682 14.532

CO2 emissions/kg/h 4595.1 2106.8 627.9

TAC at PP = 3/106 $ 3.107 4.072 5.265

TAC at PP = 10/106 $ 2.116 1.803 1.961
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Fig. 11. Total annual cost of three different processes following payback period: no

heat pump, partial BF heat pump and full BF heat pump.



4.4. Comparison of OPHI and partial VRC

As shown before, OPHI is the best choice in DEHI processes,

whereas partial VRC gives the lowest TAC. Thus, we show the com-

parison of OPHI and partial VRC in Fig. 12 and Table 14.

From Table 14 and Fig. 12, we remark that (1) the optimal par-

tial heat integration process is preferable from the economical

point of view. It gives a 2.46 * 106 $ and a 7.02 * 106 $ total pro-

cess cost saving over a 10 year period compared with partial VRC

and base case, respectively. The optimal partial heat integration

process overwhelms the partial VRC heat pump process because

the temperature differences between the extractive and regenera-

tion columns are higher, leading to relatively poor coefficient of

performance of heat pump process. (2) On the contrary, CO2 emis-

sions are reduced by more than 35% in partial VRC heat pump pro-

cess comparing to optimal partial heat integration process. The

potential of heat pump process in reducing CO2 emissions con-

tributes its interest.

5. Conclusions

Double-effect heat integration (DEHI) and mechanical heat

pump for the separation of minimum azeotropic mixture ace-

tone–methanol with heavy entrainer water have been

investigated.

Firstly, three kinds of DEHI processes are studied. Optimization

is carried out with the SQP method in Aspen plus software by using

an objective function where the commonly found in literature

direct partial heat integration and full partial heat integration pro-

cesses represent extremum behaviour. We propose a novel optimal

partial heat integration process that goes further than direct partial

heat integration by optimizing all other variables as well. The

results show that all DEHI processes give a massive reduction in

TAC, energy cost and CO2 emissions. The optimal partial heat inte-

gration achieves 32.3% and 24.4% savings in energy cost and TAC

compared with the optimally designed CED process without heat

integration and is better than other DEHI processes.

Secondly, the mechanical heat pump processes VRC and BF are

evaluated. New partial VRC and partial BF heat pump are proposed

to benefit from that the small temperature difference between the

bottom of the extractive column and the top of the regeneration

column. The process coefficient of performance increases by

60.7% and 40.0% compared with the full VRC and full BF heat pump

process. The results show that partial VRC process gives better per-

formance from economical view while full BF process leads better

performance in environmental aspect.

In summary, the lowest TAC process is the proposed optimal

partial heat integration and the lowest CO2 emissions process is

the full BF process. Partial VRC process gives a trade-off between

TAC and CO2 emissions comparing to full VRC process, and it also

significantly reduces the initial investment.
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