Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes

Abstract : The axisymmetric deformations of thick circular rings are investigated. Four materials are explored: linear material, incompressible Neo-Hookean material and Ogden's and Bower's forms of compressible Neo-Hookean material. Radial distributed forces and a displacement-dependent pressure are the external loads. This problem is relatively simple and allows analytical, or semi-analytical, solution; therefore it has been chosen as a benchmark to test commercial finite element software for various material laws at large strains. The solutions obtained with commercial finite element software are almost identical to the present semi-analytical ones, except for the linear material, for which commercial finite element programs give incorrect results.

Highlights:
  1. Linear, incompressible and compressible Neo-Hookean materials are used.
  2. Analytical benchmark solution to test commercial programs.
  3. Two commercial FE programs give incorrect results for large strains and linear elastic material.
Type de document :
Article dans une revue
International Journal of Non-Linear Mechanics, Elsevier, 2016, 84, pp.39-45. 〈10.1016/j.ijnonlinmec.2016.04.011〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01339533
Contributeur : Mathias Legrand <>
Soumis le : mercredi 29 juin 2016 - 20:03:09
Dernière modification le : mercredi 31 octobre 2018 - 16:48:02

Fichier

BALA.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ivan Breslavsky, Marco Amabili, Mathias Legrand, Farbod Alijani. Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes. International Journal of Non-Linear Mechanics, Elsevier, 2016, 84, pp.39-45. 〈10.1016/j.ijnonlinmec.2016.04.011〉. 〈hal-01339533〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

441