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Abstract
This study follows the Radial Interactionism (RI) cognitive modeling paradigm introduced pre-
viously by Georgeon and Aha (2013). An RI cognitive model uses sensorimotor interactions
as primitives—instead of observations and actions—to represent Piagetian (1955) sensorimotor
schemes. Constructivist epistemology suggests that sensorimotor schemes precede perception and
knowledge of the external world. Accordingly, this paper presents a learning algorithm for an
RI agent to construct observations, actions, and knowledge of rudimentary entities, from spatio-
sequential regularities observed in the stream of sensorimotor interactions. Results show that the
agent learns to categorize entities on the basis of the interactions that they afford, and appropriately
enact sequences of interactions adapted to categories of entities. This model explains rudimen-
tary goal construction by the fact that entities that afford desirable interactions become desirable
destinations to reach.

1. Introduction

Georgeon and Aha (2013) introduced a novel approach to cognitive modeling called Radical Interac-
tionism (RI), which invites designers of artificial agents to consider the notion of sensorimotor inter-
action as a primitive notion, instead of perception and action. A sensorimotor interaction represents
an indivisible cognitive cycle, consisting of sensing, attending, and acting. Within constructivist
epistemology, it corresponds to a Piagetian (1955) sensorimotor scheme from which the subject
constructs knowledge of reality. RI suggests a conceptual inversion of the learning process as com-
pared to traditional cognitive models: instead of learning sensorimotor interactions from patterns
of observations and actions, RI recommends constructing observations and actions as secondary
objects. This construction process rests upon regularities observed in sensorimotor experience, and
happens concurrently with the construction of knowledge of the environment. Figure 1 illustrates
the RI cognitive modeling paradigm.
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Figure 1. The Radical Interactionism modeling paradigm (adapted from Georgeon & Aha 2013). At time
t, the agent chooses an intended primitive interaction it from among the set of interactions I . The attempt
to enact it may change the environment. The agent then receives the enacted primitive interaction et. If
et = it then the attempt to enact it is considered a success, otherwise, a failure. The agent’s "perception of
its environment" is an internal construct rather than the input et.

The algorithm begins with a predefined set of sensorimotor interactions I , called primitive inter-
actions. At time t, the agent chooses a primitive interaction it that it intends to enact, from among I .
The agent ignores this enaction’s meaning; that is, the agent has no rules that would exploit knowl-
edge of how the designer programmed the primitive interactions through actuator movements and
sensory feedback (such as: "if a specific interaction was enacted then perform a specific computa-
tion"). As a response from the tentative enaction of it, the agent receives the enacted interaction et,
which may differ from it. The enacted interaction is the only data available to the agent that carries
some information about the external world, but the agent ignores the meaning of this information.

An RI agent is programmed to learn to anticipate the enacted interactions that will result from its
intentions, and to tend to select intended interactions that are expected to succeed (et = it). Such a
behavior selection mechanism implements a type of self-motivation called autotelic motivation (the
motivation of being "in control" of one’s activity, Steels, 2004). Additionally, the designer associates
a numerical valence with primitive interactions, which defines the agent’s behavioral preferences
(some primitive interactions that the agent innately likes or dislikes). Amongst sequences of inter-
actions that are expected to succeed, an RI agent selects those that have the highest total valence,
which implements an additional type of self-motivation called interactional motivation (Georgeon,
Marshall, & Gay, 2012).

Our previous RI agents (Georgeon & Ritter, 2012; Georgeon, Marshall, & Manzotti, 2013)
learned to organize their behaviors so as to exhibit rudimentary autotelic and interactional moti-
vation without constructing explicit observations and actions. Here we introduce an extension to
construct instances of objects (in the object-oriented programming sense of "object") that represent
explicit observations and actions learned through experience. Our motivation is to design future RI
agents that will use these to learn more sophisticated knowledge of their environment and develop
smarter behaviors. In particular, we address the problem of autonomous goal construction by mod-
eling how an observable entity in the environment that affords positive interactions can become a
desirable destination to reach.
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2. Agent

Our agent has a rudimentary visual system that generates visual interactions with entities present in
the environment. A visual interaction is a sort of sensorimotor interaction generated by the relative
displacement of an entity in the agent’s visual field as the agent moves. The agent is made aware
of the approximate relative direction of the enacted visual interaction et by being provided with
the angular quadrant ρt in which et was enacted. Additionally, the agent is made aware of its
displacement in space through the angle of rotation θt ∈ R induced by the enaction of et. The
information θt corresponds to the information of relative rotation given by the vestibular system in
animals. It can be obtained through an accelerometer in robots. Figure 2 illustrates these additions
to the RI model.

Environment

�� ∈ ��� �� ��
Agent

Figure 2. The Directional Radical Interactionism (DRI) model. Compared to RI (Figure 1), the DRI model
provides additional directional information ρt and θt when a primitive interaction et is enacted at time t. ρt
represents the directional quadrant where the interaction et is enacted relative to the agent, and θt the angle
of rotation of the environment relative to the agent, generated by the enaction of et.

3. Experiment

We propose an implementation (see Figure 3) using the DRI model to study how agents constructs
observations and actions from spatio-sequential regularities observed in its stream of sensorimo-
tor interactions. This experiment was implemented in Java in our environment using the Enactive
Cognitive Architecture (ECA). ECA is a cognitive architecture based on sensorimotor modeling,
inspired by the Theory of Enaction, to control an agent that learns to fulfill its autotelic and in-
teractional motivation. Also, ECA allows implementing self-motivation in the agent1(Georgeon,
Marshall, & Manzotti, 2013). The environment consists of a grid of empty cells (white squares)
where the agent (represented by the brown arrowhead) tries to move one cell forward, turn to left or
to the right. The experimenter can flip any cell from empty to wall or vice versa by clicking on it at
any time. Also, the environment is composed of walls (gray squares) where the agent could bump
if it tries to move through them.

1. http://e-ernest.blogspot.fr/2013/09/ernest-12.html
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The agent has a rudimentary distal sensory system was inspired by the visual system of an
arachaic arthropod, the limulus: the limulus’s eyes responds to movement, and the limulus has to
move to "see" immobile things. The agent "likes" to eat blue fish (called target). When the agent
reaches a target, the target disappears as if the agent had eaten it. The experimenter can introduce
other targets by clicking on the grid. The agent’s visual system consists of one simple detector
(violet half-circle on the agent) for detecting target. His detector covers a 180◦ span. This visual
system is not sensitive to static elements of the visual field (such as the presence and the position
of the target) but to changes in the visual field as the agent moves: closer, appears, unchanged and
disappeared. Moreover, the agent divides his visual field in three area: A, B and C. These area
inform the agent in which directional quadrant the entity is detected.

The designer can also specify the numerical valence associated with primitive interactions be-
fore running the simulation. The values chosen implement a behavioral proclivity to move towards
targets because the agent has positive satisfaction when the targets appears or closer, and negative
satisfaction when the target disappears.

a) Primitive interactions (valence) Meaningf(ignoredfbyfthefagent)f

b) Environment:

i7 (-1) i8 (-1)

i3 (3) i4 (3)

i1 (10) i2 (10)

i5 (-1) i6 (-1)

i9 (15) i10 (-1)

i11 (-5) i12 (-5)

i13 (-6) i14 (-6)

turn rightftarget closer,fturn left target closer

turn rightftarget appears,fturn left target appears

turn rightfvisual field unchanged,fturn left visual field unchanged

turn rightftarget disappeared,fturn left target disappeared

movefforward target eaten,fbump

movefforward target disappeared,fmovefforward target appears

movefforward visual field unchanged,fmovefforward target closer

Visual field

Area A

Area B

Area C

Figure 3. a) The 14 primitive interactions available to the agent with their numerical valence in parentheses,
set by the experimenter. This valence system implements the motivation to move towards targets because the
valence is positive when the target appears or approaches, and negative when the target disappears. b) The
agent in the environment with the agent’s visual field overprinted. There are three directional quadrants in
which visual interactions can be localized: ρt ∈ {A,B,C}. Non-visual interactions are localized in a fourth
abstract quadrant labeled "O".
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To understand how the agent, during interactions with the environment, constructs its actions
and its observations, we propose a simplified UML model and an example in Figure 4, and finally
the algorithm.
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Figure 4. Simplified UML model (left): the modeler defines primitive interactions as instances of sub-
classes of the Interaction class (left) and programs their effects in the TryToEnact() method. The agent
constructs actions as instances of the Agent_Action class (top-right) and observations as instances of the
Agent_Observation class (bottom-right) from sequential and spatial regularities observed while enacting in-
teractions. Example constructed instances (right): the action Move Forward can be enacted through the
interactions i9, i10, i11, i12, i13, i14. The observation Target affords interactions i1, i2, i3, i4, i11, i12, i14.

To interact with the environment, the agent utilizes a set of primitive interactions defined by the
designer. The designer programs primitive interactions in a way that involves both commending
motors and reading sensors. But, the agent originally ignores this distinction and must learn that
some interactions inform it about the presence of an entity in its surrounding space, while simulta-
neously learning to categorize these entities. Each interaction can be afforded by a specific type of
entity. In using the model DRI, see section 2, at decision step t, the agent tries to enact an intended
interaction it and get the actually enacted interaction, enacted interaction, et at the end of step t.
If the enacted interaction differs from the intended interaction (et 6= it) then the agent considers
that these interactions produce two different actions a1, a2. Thus, a first action is represented by
interaction et and a second action is represented by interaction it (a1 = {et} and a2 = {it}). In
case of et = it, the agent considers that these interactions produce the same action, which can be
represented by the set of these interactions (a1 = a2 = {et, it}).

A type of entity present in the world affords a collection of interactions. When a set of inter-
actions consistently overlaps in space, the agent infers the existence of a kind of entity that affords
these interactions. To be concrete, a physical object would be an entity that is solid and persistent.
The agent uses spatial information from DRI model to learn to categorize the entity with it can
interact, according to the collection of interactions that this entity affords. At decision step t the
agent tries to enact an intended interaction it and get the interaction effectively enacted, enacted
interaction, et at the end of step t. In each enacted interaction there is the directional quadrants
(A, B, C or O) where it enacted. If the enacted interaction et is in the same area that enacted
interaction et−1 then the agent considers that these interactions are afforded by the same entity
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(entity1 = entity2 = {et, et−1}). In case of these interactions are enacted in two different area,
the agent infer it exists two kind of entity (entity1 = {et} and entity2 = {et−1}).

4. Result

During the learning phase, the agent learns a behavior that it then uses to reach subsequent targets
introduced by the experimenter. Different instances of agents may learn different behaviors as a
result of having different learning experiences. Figure 5 and 6 show traces of two behaviors learned
by two different agents. Once a behavior has been learned, the agent keeps using it indefinitely to
reach subsequent targets.
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Figure 5. First 97 steps in Example 1. Tape 1 represents the primitive interactions enacted, in directional
quadrant A (top), B (center), C (bottom), with the same symbols as in Figure 3. Tape 2 represents the
valence of the enacted primitive interactions as a bar graph (green when positive, red when negative). Tape
3 represents the progressive aggregations of interactions to form actions. The shape represents the action
and the color is the color of the enacted interaction aggregated to this action at a particular time step. The
triangles correspond to the move forward action, the inferior half-circles to the turn right action, and the
superior half-circles to the turn left action. Tape 4 represents the progressive aggregation of interactions to
form observations. The shape represents the category of observation and the color is the color of the enacted
interaction aggregated to this category of observation at a particular time step. The circles represent the
observation of a target, and the squares the observation of void. The agent also constructs a third category of
observation: the observation of walls. However, since walls are only observable through a single interaction
(i10, red rectangles), there is no aggregation of other interactions to the wall observation. In this example, the
agent ate the first target on step 20 (blue rectangle in Tape 1). The experimenter introduced the second target
on step 30, and the agent ate it on step 70. The third target was introduced on step 74 and eaten on step 97.
The agent learned to reach the target through a "stair step" behavior consisting of repeating the sequence turn
left - move forward - turn right - move forward, until it aligns itself with the target and then keeps moving
forward until it reaches the target (steps 78 to 97).

A different choice of valence or modification of the environment by the experimenter at dif-
ferent times shows that behavior depends on the motivation that drives the agent and environment
configuration. For example, if the experimenter add a target earlier than in Example 1, the agent
acts differently. This behavior has been observed in Experiment 2 illustrated by the example trace
in Figure 6.
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Figure 6. First 99 steps in Example 2. The behavior is the same as in Example 1 up to step 25. The ex-
perimenter introduced the second target on step 26 rather than 30 in Example 1. This difference caused the
agent to learn a different behavior to reach the target, consisting in moving in a straight line until the target
disappears from the visual field, then getting aligned with the target by enacting the sequence turn right – turn
right – move forward – turn right, then keeping moving forward until it reaches the target (episodes 26 to 44,
50 to 67, 71 to 86 and 89 to 99).

This experiment also demonstrates the interesting property of individuation: different instances
of agents with the same algorithm may learn different behaviors due to the specific learning expe-
riences that they had. From step 26, behaviors are different. Such individuation occurs through "en
habitus deposition" as conceptualized by the theory of enaction.

5. Conclusion

This work addresses the problem of implementing agents that learn to master the sensorimotor
contingencies afforded by their coupling with their environment (O’Regan & Noë, 2001). In our
approach, the modeler specifies the low-level sensorimotor contingencies through a set of sensori-
motor interactions, which corresponds to what Buhrmann, Di Paolo, and Barandiaran (2013) have
called the sensorimotor environment. The learning consists for the agent to simultaneously learn
actions and categories of observable entities as second-order constructs. Here, we use the concept
of action in its cognitive sense of "intentional action" (Engel et al., 2013). Our algorithm offers a
solution to implements Engel et al.’s (2013, p203) view that "agents first exercise sensorimotor con-
tingencies, that is, they learn to associate movements with their outcomes, such as ensuing sensory
changes. Subsequently, the learned patterns can be used for action selection and eventually enable
the deployment of intentional action".

Our agent has no pre-implemented strategy to fulfill his inborn motivation (approaching the
target). We show two examples in which the agent learns two different deployments of actions to
fulfill this motivation (Figure 5 and 6). These deployments of actions can be considered intentional
because the agent anticipates the consequences of actions and use anticipation to select actions.
In future studies, we plan on designing agents capable of reasoning upon their intentionality to
learn to explicitly consider observable entities as possible goals to reach. We expect that emergent
intentionality associated with explicit goal construction will make the agents capable of exhibiting
more sophisticated behaviors in more complex environments, and contribute more broadly to the
research effort on goal reasoning.
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