Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification

Kai Wang Charles-Edmond Bichot 1 Chao Zhu 1 Bailin Li
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : In this paper we explore local image descriptors fortexture classification. We mainly propose two novel contributions:an effective sampling structure based on Pixel To Patch (PTP)to mimic the retinal sampling pattern; and a novel LocalNeighboring Intensity Relationship Pattern (LNIRP) descriptorto extract texture feature by exploring neighboring gray-scaleproperties. The LNIRP descriptor is extended by using the PTPsampling structure which aims to capture not only micro-patternsbut also macro-patterns, while reducing feature dimensionalityand improving computational efficiency. The proposed descriptorhas advantages of robustness to image rotation, computationalsimplicity, no texton dictionary learning step and training-free.Moreover, the LNIRP descriptor is complementary to the LocalBinary Pattern (LBP) descriptor. Extensive experiments wereconducted on Outex database to evaluate the proposed descriptorand sampling structure. The proposed descriptor can achievesuperior classification performance compared to most of thestate-of-the-art methods, including what we believe to be thebest results reported for Outex, while offering a smallest featuredimension.
Type de document :
Article dans une revue
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2013, 9, 20, pp.853-856. 〈10.1109/LSP.2013.2270405 〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01339227
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : mercredi 29 juin 2016 - 15:49:33
Dernière modification le : lundi 16 juillet 2018 - 17:03:25

Identifiants

Citation

Kai Wang, Charles-Edmond Bichot, Chao Zhu, Bailin Li. Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification. IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2013, 9, 20, pp.853-856. 〈10.1109/LSP.2013.2270405 〉. 〈hal-01339227〉

Partager

Métriques

Consultations de la notice

96