Impartial coloring games

Gabriel Beaulieu Kyle Burke Eric Duchene 1, 2
1 GrAMA - Graphes, Algorithmes et Multi-Agents
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
2 GOAL - Graphes, AlgOrithmes et AppLications
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Coloring games are combinatorial games where the players alternate painting uncolored vertices of a graph one of k > 0 colors. Each different ruleset specifies that game's coloring constraints. This paper investigates six impartial rulesets (five new), derived from previously-studied graph coloring schemes, including proper map coloring, oriented coloring, 2-distance coloring, weak coloring, and sequential coloring. For each, we study the outcome classes for special cases and general computational complexity. In some cases we pay special attention to the Grundy function.
Document type :
Journal articles
Complete list of metadatas
Contributor : Équipe Gestionnaire Des Publications Si Liris <>
Submitted on : Wednesday, June 29, 2016 - 3:47:16 PM
Last modification on : Thursday, November 21, 2019 - 2:30:16 AM


  • HAL Id : hal-01339160, version 1


Gabriel Beaulieu, Kyle Burke, Eric Duchene. Impartial coloring games. Theoretical Computer Science, Elsevier, 2013, 485, pp.49-60. ⟨hal-01339160⟩



Record views