Infinitary proof theory: the multiplicative additive case
David Baelde, Amina Doumane, Alexis Saurin

To cite this version:
David Baelde, Amina Doumane, Alexis Saurin. Infinitary proof theory: the multiplicative additive case. 2016. hal-01339037

HAL Id: hal-01339037
https://hal.archives-ouvertes.fr/hal-01339037
Submitted on 29 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
Infinitary proof theory: the multiplicative additive case

David Baelde¹, Amina Doumane², and Alexis Saurin³

1 LSV, ENS Cachan {baelde}@lsv.ens-cachan.fr
2,3 IRIF, PPS, CNRS, Université Paris Diderot & Inria
{amina.doumane,alexis.saurin}@pps.univ-paris-diderot.fr

Abstract

Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediate devices between semantics and traditional finitary proof systems, they are commonly found in completeness arguments, automated deduction, verification, etc. However, their proof theory is surprisingly underdeveloped. In particular, very little is known about the computational behavior of such proofs through cut elimination. Taking such aspects into account has unlocked rich developments at the intersection of proof theory and programming language theory. One would hope that extending this to infinitary calculi would lead, e.g., to a better understanding of recursion and corecursion in programming languages. Structural proof theory is notably based on two fundamental properties of a proof system: cut elimination and focalization. The first one is only known to hold for restricted (purely additive) infinitary calculi, thanks to the work of Santocanale and Fortier; the second one has never been studied in infinitary systems. In this paper, we consider the infinitary proof system \(\mu MALL^\infty \) for multiplicative and additive linear logic extended with least and greatest fixed points, and prove these two key results. We thus establish \(\mu MALL^\infty \) as a satisfying computational proof system in itself, rather than just an intermediate device in the study of finitary proof systems.

1 Introduction

Proof systems based on non-well-founded derivation trees arise naturally in logic, even more so in logics featuring fixed points. A prominent example is the long line of work on tableaux systems for modal \(\mu \)-calculi, e.g., [16, 24, 14, 11], which have served as the basis for analysing the complexity of the satisfiability problem, as well as devising practical algorithms for solving it. One key observation in such a setting, and many others, is that one needs not consider arbitrary infinite derivations but can restrict to regular derivation trees (also known as circular proofs) which are finitely representable and amenable to algorithmic manipulation. Because infinitary systems are easier to work with than the finitary proof systems (or axiomatizations) based on Kozen-Park (co)induction schemes, they are often found in completeness arguments for such finitary systems [16, 27, 28, 29, 15, 12]. We should note, however, that those arguments are far from being limited to translations from (regular) infinitary to finitary proofs, since such translations are very complex and only known to work in limited cases. There are many other uses of infinite (or regular) derivations, e.g., to study the relationship between induction and infinite descent in first-order arithmetic [8], to generate invariants for program verification in separation logic [7], or as an intermediate between ludics’ designs and proofs in linear logic with fixed points [5]. Last but not least, Santocanale introduced circular proofs [22] as a system for representing morphisms in \(\mu \)-bicocomplete categories [21, 23], corresponding to simple computations on (co)inductive data.

Surprisingly, despite the elegance and usefulness of infinitary proof systems, few proof theoretical studies are directly targeting these objects. More precisely, we are concerned with an analysis of proofs that takes into account their computational behaviour in terms...
of cut elimination. In other words, we would hope that the Curry-Howard correspondence extends nicely to infinitary proofs. In this line of proof-theoretical study, two main properties stand out: cut elimination and focalization; we shall see that they have been barely addressed in infinitary proof systems. The idea of cut elimination is as old as sequent calculus, and at the heart of the proof-as-program viewpoint, where the process of eliminating cuts (indirect reasoning) in proofs is seen as computation. Considering logics with least and greatest fixed points, the computational behavior of induction and coinduction is recursion and corecursion, two important and complex programming principles that would deserve a logical understanding. Note that the many completeness results for infinitary proof systems (e.g., for modal μ-calculi) only imply cut admissibility, but say nothing about the computational process of cut elimination. To our knowledge, leaving aside an early and very restrictive result of Santocanale [22], cut elimination has only been studied by Fortier and Santocanale [13] who considered an infinitary sequent calculus for lattice logic (purely additive linear logic with least and greatest fixed points) and showed that certain cut reductions converge to a limit cut-free derivation. Their proof involves a mix of combinatorial and topological arguments. So far, it has resisted attempts to extend it beyond the purely additive case. The second key property, much more recently identified than cut elimination, is focalization. It has appeared in the work of [3] on proof search and logic programming in linear logic, and is now recognized as one of the deep outcomes of linear logic, putting to the foreground the role of polarity in logic. In a way, focalization generalizes the invertibility results that are notably behind most deductive systems for classical μ-calculi, by bringing some key observations about non-invertible connectives. Besides its deep impact on proof search and logical frameworks, focalization resulted in important advances in all aspects of computational proof theory: in the game-semantical analysis of logic [17, 19], the understanding of evaluation order of programming languages, CPS translations, or semantics of pattern matching [10, 30], the space compression in computational complexity [26, 6], etc. Briefly, one can say that while proof nets have led to a better understanding of phenomena related to parallelism with proof-theoretical methods, polarities and focalization have led to a fine-grained understanding of sequentiality in proofs and programs. To the best of our knowledge, while reversibility has since long been a key-ingredient in completeness arguments based on infinitary proof systems, focalization has simply never been studied in such settings.

Organization and contributions of the paper. In this paper, we consider the logic μMALL, that is multiplicative additive linear logic extended with least and greatest fixed point operators. It has been studied in finitary sequent calculus [4]: it notably enjoys cut elimination, and focalization has been shown to extend nicely (though not obviously) to it. We give in Section 2 a natural infinitary proof system for μMALL, called μMALL^∞, which not only extends that of Santocanale and Fortier [13]. The system μMALL^∞ is also related to μMALL in the sense that any μMALL derivation can be turned into a μMALL^∞ proof, with cuts. We study the focalization of μMALL^∞ in Section 3. We find out that, even though fixed point polarities are not forced in the finitary sequent calculus for μMALL, they are uniquely determined in μMALL^∞. Despite some novel aspects due to the infinitary nature of our calculus, we are able to re-use the generic focalization graph argument [20] to prove that focalized proofs are complete. We then turn to cut elimination in Section 4 and show that (fair) cut reductions converge to an infinitary cut free derivation. We could not apply any standard cut elimination technique (e.g., induction on formulas and proofs, reducibility arguments, topological arguments as in [13]) and propose instead an unusual argument in which a coarse truth semantics is used to show that the cut elimination process cannot go wrong. We also note here that, even for the regular fragment of μMALL^∞, it would be
highly non-trivial to obtain cut elimination from the result for μMALL, since it is not known whether regular μMALL derivations can be translated to μMALL derivations (even without requiring that this translation preserves the computational behaviour of proofs). We conclude in Section 5 with directions for future work. Appendices provide technical details, proofs, and additional background material.

2 μMALL and its infinitary proof system μMALL$^\infty$

In this section we introduce multiplicative additive linear logic extended with least and greatest fixed point operators, and an infinitary proof system for it.

Definition 1. Given an infinite set of propositional variables $\mathcal{V} = \{X, Y, \ldots\}$, μMALL$^\infty$ pre-formulas are built over the following syntax:

$$\varphi, \psi ::= 0 \mid X \mid \varphi \otimes \varphi \mid \varphi \& \psi \mid \perp \mid 1 \mid \varphi \varpi \psi \mid \varphi \& \psi \mid \mu X. \varphi \mid \nu X. \varphi \mid X \quad \text{with} \quad X \in \mathcal{V}.$$

The connectives μ and ν bind the variable X in φ. From there, bound variables, free variables and capture-avoiding substitution are defined in a standard way. The subformula ordering is denoted \preceq and $\text{fv}(\ast)$ denotes free variables. Closed pre-formulas are simply called formulas.

Note that negation is not part of the syntax, so that we do not need any positivity condition on fixed point expressions.

Definition 2. Negation is the involution on pre-formulas written φ^\perp and satisfying

$$(\varphi \varpi \psi)^\perp = \psi^\perp \otimes \varphi^\perp, \quad (\varphi \& \psi)^\perp = \varphi^\perp \& \psi^\perp, \quad \perp^\perp = 1, \quad 0^\perp = \top, \quad (\nu X. \varphi)^\perp = \mu X. \varphi^\perp, \quad X^\perp = X.$$

Having $X^\perp = X$ might be surprising, but it is harmless since our proof system will only deal with closed pre-formulas. Our definition yields, e.g., $(\mu X.X)^\perp = (\nu X.X)$ and $(\mu X.1 \oplus X)^\perp = (\nu X.X \& \perp)$, as expected [4]. Note that we also have $(\varphi^\perp \psi^\perp/X) = \varphi^\perp \psi^\perp /X$.

Sequent calculi are sometimes presented with sequents as sets or multisets of formulas, but most proof theoretical observations actually hold in a stronger setting where one distinguishes between several occurrences of a formula in a sequent, which gives the ability to precisely trace the provenance of each occurrence. This more precise viewpoint is necessary, in particular, when one views proofs as programs. In this work, due to the nature of our proof system and because of the operations that we perform on proofs and formulas, it is also crucial to work with occurrences. There are several ways to formally treat occurrences; for the sake of clarity, we provide below a concrete presentation of that notion which is well suited for our needs.

Definition 3. An address is a word over $\Sigma = \{l, r, i\}$, which stands for left, right and inside. We define a duality over Σ^* as the morphism satisfying $l^\dagger = r^\dagger = 1$ and $i^\dagger = i$. We say that α' is a sub-address of α when α is a prefix of α', written $\alpha \subseteq \alpha'$. We say that α and β are disjoint when α and β have no upper bound wrt. \subseteq.

Definition 4. A (pre)formula occurrence (denoted by F, G, H) is given by a (pre)formula φ and an address α, and written φ_α. We say that occurrences are disjoint when their addresses are. The occurrences φ_α and ψ_{β} are structurally equivalent, written $\varphi_\alpha \equiv \psi_{\beta}$, if $\varphi = \psi$. Operations on formulas are extended to occurrences as follows: $(\varphi_\alpha)^\perp = (\varphi^\perp)_\alpha^\dagger$; for any $* \in \{\otimes, \&\}$, $F * G = (\varphi * \psi)_\alpha$ if $F = \varphi_\alpha$ and $G = \psi_{\alpha^\dagger}$; for any $\sigma \in \{\mu, \nu\}$, $\sigma X.F = (\sigma X.\varphi)_\alpha$ if $F = \varphi_\alpha$; we also allow ourselves to write units as formula occurrences without specifying their address, which can be chosen arbitrarily. Finally, substitution of occurrences forgets addresses: $(\varphi_\alpha)[\psi_{\beta}/X] = (\varphi[\psi/X])_\alpha$.

Example. Let $F = \varphi_{\alpha l}$ and $G = \psi_{\alpha r}$. We have, on the one hand, $(F \varpi G)^\perp = ((\varphi \varpi \psi)_\alpha)^\perp = (\psi^\perp \varpi \varphi^\perp)_\alpha^\dagger$ and, on the other hand, $G^\perp \varpi F^\perp = (\psi^\perp)^{\alpha^r} (\varphi^\perp)^{\alpha^l} = (\psi^\perp \varpi \varphi^\perp)^{\alpha^l \& \alpha^r}$. Thus,
We say that formulas that occur infinitely often in a condition will reflect the nature of our two fixed point connectives. From pre-proofs, we will add a validity condition. This is a back-mapping of a propositional rule. Moreover, there is an infinite supply of these conditions to prevent the same sequent from engendering a common sub-occurrence. Clearly, the condition on sequents never prevents the same sequent from engendering a common sub-occurrence.

Definition 5. The Fischer-Ladner closure of a formula occurrence F, denoted by $\text{FL}(F)$, is the least set of formula occurrences such that $F \in \text{FL}(F)$ and, whenever $G \in \text{FL}(F)$,

$G_1, G_2 \in \text{FL}(F)$ if $G = G_1 \star G_2$ for any $\star \in \{\oplus, \otimes, \oslash\}$;

$B[G/X] \in \text{FL}(F)$ if $G = \sigma X. B$ for $\sigma \in \{\nu, \mu\}$.

We say that G is a sub-occurrence of F if $G \in \text{FL}(F)$. Note that, for any F and α, there is at most one φ such that φ_α is a sub-occurrence of F.

We are now ready to introduce our infinitary sequent calculus. Details regarding formula occurrences can be ignored at first read, and will only make full sense when one starts permuting inferences and eliminating cuts.

Definition 6. A sequent, written $\vdash \Gamma$, is a finite set of pairwise disjoint, closed formula occurrences. A pre-proof of μMALL^∞ is a possibly infinite tree, coinductively generated by the rules of Figure 1, subject to the following conditions: any two formulas occurrences appearing in different branches must be disjoint except if the branches first differ right after a $(\&)$ inference; if φ_α and $\psi_{\alpha'}$ occur in a pre-proof, they must be the respective sub-occurrences of the formula occurrences F and F^\perp introduced by a (Cut) rule.

The disjointness condition on sequents ensures that two formula occurrences from the same sequent will never engender a common sub-occurrence, i.e., we can define traces uniquely. The disjointness condition on pre-proofs is there to ensure that the proof transformations used in focusing and cut elimination preserve the disjointness condition on sequents. Note that these conditions are not restrictive. Clearly, the condition on sequents never prevents the (backwards) application of a propositional rule. Moreover, there is an infinite supply of disjoint addresses, e.g., $\{r^n l : n > 0\}$. One may thus pick addresses from that supply for the conclusion sequent of the derivation, and then carry the remaining supply along proof branches, splitting it on branching rules, and consuming a new address for cut rules.

Pre-proofs are obviously unsound: the pre-proof schema shown on the right allows to derive any formula. In order to obtain proper proofs from pre-proofs, we will add a validity condition. This condition will reflect the nature of our two fixed point connectives.

Definition 7. Let $\gamma = (s_i)_{i \in \omega}$ be an infinite branch in a pre-proof of μMALL^∞. A thread t in γ is a sequence of formula occurrences $(F_i)_{i \in \omega}$ with $F_i \in s_i$ and $F_i \subseteq F_{i+1}$. The set of formulas that occur infinitely often in $(F_i)_{i \in \omega}$ (when forgetting addresses) admits a minimum...
wrt. the subformula ordering, denoted by $\min(t)$. A thread t is valid if $\min(t)$ is a ν formula and the thread is not eventually constant, i.e., the formulas F_i are always eventually principal.

Definition 8. The proofs of μMALL^∞ are those pre-proofs in which every infinite branch contains a valid thread.

This validity condition has its roots in parity games and is very natural for infinitary proof systems with fixed points. It is somehow independent of the ambient logic, and only deals with fixed points. It is commonly found in deductive systems for modal μ-calculi: see [11] for a closely related presentation, which yields a sound and complete sequent calculus for linear time μ-calculus. The validity conditions of Santocanale’s circular proofs [22, 13], with and without cut, are also instances of the above notion.

In the rest of the paper, we work mostly with formula occurrences and will often simply call them formulas when it is not ambiguous. As usual in sequent calculus, π for a closely related presentation, which yields a sound and complete sequent calculus dealing with fixed points. It is commonly found in deductive systems for modal proof systems with fixed points. It is somehow independent of the ambient logic, and only

Proposition 9. Rule ($\lambda\alpha$) is admissible in μMALL^∞.

This basic observation, proved in appendix A, justifies that the ($\lambda\alpha$) rule will be ignored in the rest of the paper. In particular, we consider that axioms are expanded away before dealing with cut elimination. Our system μMALL^∞ is naturally equipped with the cut elimination rules of MALL, extended with the obvious principal and auxiliary rules for fixed point connectives (we do not show symmetric cases):
branch, validated by the thread starting with N. If we cut that proof against an arbitrary

Now let $\varphi_{stream} = \nu X. \varphi_{nat} \otimes X$

be the formula representing in-

finite streams of natural num-

bers, whose occurrences will be
denoted by S, S', etc. Let us
consider the derivation shown
on the right, where F is an ar-

bitrary, useless formula occur-

rence for illustrative purposes.

It is a valid proof thanks to the thread on S. By cut elimination, the computational behaviour
of that proof is to take a natural number n, and some irrelevant f, and compute the stream
$n :: (n + 1 :: (n + 2 :: \ldots)$. However, unlike in the two previous examples, the result of the
computation is not obtained in finite time; instead, we are faced with a productive process
which will produce any finite prefix of the stream when given enough time. The presence of
the useless formula F illustrates here that weakening may be admissible in μMALL^∞ under
some circumstances, and that cutting against some formulas (F in this case) will form a
redex that will be delayed forever. These subtleties will show up in the next two sections,
devoted to showing our two main results.

3 Focalization

Focalization in linear logic. MALL connectives can be split in two classes: positive (\otimes, \oplus, 0, 1) and negative ($\&$, \otimes, \top, \bot) connectives. The distinction can be easily understood in terms
of proof search: negative inferences ($\&$, \otimes, \top) and (\bot) are reversible (meaning that
provability of the conclusion transfers to the premisses) while positive inferences require
choices (splitting the context in (\otimes) or choosing between (\oplus_1) and (\oplus_2) rules) resulting in a
possible of loss of provability. Still, positive inferences satisfy the **focalization** property [3]:
in any provable sequent containing no negative formula, some formula can be chosen as a
focus, hereditarily selecting its positive subformulas as principal formulas until a negative
subformula is reached. It induces the following complete proof search strategy:

<table>
<thead>
<tr>
<th>Sequent Γ contains a negative formula</th>
<th>Sequent Γ contains no negative formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose any negative formula (e.g. the leftmost one) and decompose it using the only possible negative rule.</td>
<td>Choose some positive formula and decompose it (and its subformulas) hereditarily until we get to atoms or negative subformulas.</td>
</tr>
</tbody>
</table>

Focalization graphs. Focused proofs are complete for proofs, not only provability: any linear
proof is equivalent to a focused proof, up to cut-elimination. Indeed, focalization can be
proved by means of proof transformations [18, 20, 6] preserving the denotation of the proof.
A flexible, modular method for proving focalization that we shall apply in the next sections
has been introduced by Miller and the third author [20] and relies on **focalization graphs**.
The heart of the focalization graph proof technique relies on the fact the positive inference,
while not reversible, all permute with each other. As a consequence, if the positive layer of
some positive formula is completely decomposed within the lowest part of the proof, below
any negative inference, then it can be taken as a focus. Focalization graphs ensure that it is
always possible: their acyclicity provides a source which can be taken as a focus.
Focusing infinitary proofs. The infinitary nature of our proofs interferes with focalization in several ways. First, while in μMALL μ and ν can be set to have an arbitrary polarity, we will see that in μMALL$^\infty$, ν must be negative. Second, permutation properties of the negative inferences, which can be treated locally in μMALL, now require a global treatment due to infinite branches. Last, focalization graphs strongly rely on the finiteness of maximal positive subtrees of a proof: this invariant must be preserved in μMALL$^\infty$.

For simplicity reasons, we restrict our attention to cut-free proofs in the rest of this section. The result holds for proofs with cuts thanks to the usual trick of viewing cuts as \otimes.

3.1 Polarity of connectives

Let us first consider the question of polarizing μMALL$^\infty$ connectives. Unlike in μMALL, we are not free to set the polarity of fixed points formulas: consider the proof π of sequent $\vdash \mu X.\nu Y. Y$ which alternates inferences (ν) and (μ). Assigning opposite polarities to dual formulas (an invariant necessary to define properly cut-elimination in focused proof systems), this sequent contains a negative formula; each polarization of fixed points induces one focused pre-proof, either π_ν which always unrolls μ or π_μ which repeatedly unrolls ν.

Only π_ν happens to be valid, leaving but one possible choice, $\nu X.F$ negative and $\mu X.F$ positive, resulting in the following polarization:

- **Definition 10. Negative formulas** are formulas of the form $\nu X.F$, $F \otimes G$, $F \& G$, \bot and \top, positive formulas are formulas of the form $\mu X.F$, $F \& G$, $F \& G$, \top and \bot. A μMALL$^\infty$ sequent containing only positive formulas is said to be positive. Otherwise, it is negative.

The following proposition will be useful in the following:

- **Proposition 11.** An infinite branch of a pre-proof containing only negative (resp. positive) rules is always valid (resp. invalid).

3.2 Reversibility of negative inferences

The following example with $F = \nu X.(X \& X) \oplus \bot$ shows that, unlike in (MA)LL, negative inferences cannot be permuted down locally: no occurrence of a negative inference (\otimes) on $P \otimes Q$ can be permuted below ν since it is never available in the left premise. We thus introduce a global proof transformation (which could be realized by means of cut, as is usual).

Negative rules have a uniform structure: $\vdash (\Gamma, \nu X.(N_i)_{1 \leq i \leq n}) \rightarrow (\Gamma, N)$. **Sub-occurrence families** of N are thus defined as $N(N) = (N_i^N)_{1 \leq i \leq n}$, its **slicing index** being $sl(N) = \#N(N)$.

$$
N | \quad F_1 \otimes F_2 | \quad \bot | \quad F_1 \& F_2 | \quad \top | \quad \nu X.F
\begin{array}{|c|c|c|c|c|}
\hline
\mathcal{N}(N) & \{1 \mapsto \{F_1, F_2\}\} & \{1 \mapsto \emptyset\} & \{1 \mapsto \{F_1\}, 2 \mapsto \{F_2\}\} & \emptyset & \{1 \mapsto \{F[\nu X,F/X]\}\} \\
\hline
\end{array}
$$

The following two definitions define what the reversibility of a proof π, $\text{rev}(\pi)$, is:

- **Definition 12 (\pi(i,N)).** Let π be a proof of $\vdash \Gamma$ of last rule r and premises π_1, \ldots, π_n.

 If $1 \leq i \leq \text{sl}(N)$, we define $\pi(i,N)$ coinductively:

 - if N does not occur in $\vdash \Gamma$, $\pi(i,N) = \pi$;
 - if r is the inference on N, then $\pi(i,N) = \pi_i$; (which is legal since in this case $n = \text{sl}(N)$);
 - if r is not the inference on N, then $\pi(i,N) = \pi_i(i,N) \ldots \pi_n(i,N)$.

$$
\vdash \Gamma, N_i^N \quad (r).
$$
Lemma 13 (rev(\pi)). Let \pi be a \muMALL\infty proof of \vdash \Gamma. rev(\pi) is a pre-proof non-

deterministically defined as \pi if \vdash \Gamma is positive and, otherwise, when N \in \Gamma and n = \text{sl}(N),
as \text{rev}(\pi) = \frac{\text{rev}(\pi(1,N)) \ldots \text{rev}(\pi(n,N))}{\vdash \Gamma}.

Reversed proofs formalize the requirement for the whole
negative layer to be reversed:

Definition 14. Reversed pre-proofs are defined to be
the largest set of pre-proofs such that: (i) every pre-proof of
a positive sequent is reversed; (ii) a pre-proof of a negative
sequent is reversed if it ends with a negative inference and
if each of its premises is reversed.

Proposition 15. rev is illustrated on the proof starting this
subsection (N = P \otimes Q, sl(N) = 1) in Figure 2

Definition 16. Let \pi be a \muMALL\infty proof. rev(\pi) is a
reversed proof of the same sequent.

3.3 Focalization Graph

In this section, we adapt the focalization graphs introduced
in [20] to our setting. Considering the permutability prop-
erties of positive inferences in \muMALL\infty, finiteness of positive trunks and acyclicity of
focalization graphs will be sufficient to make the proof technique of [20] applicable. In order
to illustrate this subsection, an example is fully explained in appendix B.5

Definition 17 (Positive trunk, positive border, active formulas). Let \pi be a \muMALL\infty proof
of S. The positive trunk \pi^+ of \pi is the tree obtained by cutting (finite or infinite) branches
of \pi at the first occurrence of a negative rule. The positive border of \pi is the collection
of lowest sequents in \pi which are conclusions of negative rules. P-active formulas of \pi are
those formulas of \mathcal{S} which are principal formulas of an inference in \pi^+.

Proposition 18. The positive trunk of a \muMALL\infty proof is always finite.

Definition 19 (Focalization graph). Given a \muMALL\infty proof \pi, we define its focalization
graph \mathcal{G}(\pi) to be the graph whose vertices are the P-active formulas of \pi and such that
there is an edge from F to G iff there is a sequent \mathcal{S}' in the positive border containing a
negative sub-occurrence \mathcal{F}' of F and a positive sub-occurrence \mathcal{G}' of G.

\muMALL\infty positive inferences are those of MALL extended with (\mu) which is not branching;
this ensures both that any two positive inferences permute and that the proof of acyclicity of
MALL focalization graphs can easily be adapted, from which we conclude that:

Proposition 20. Focalization graphs are acyclic.

Acyclicity of the focalization graph implies in particular that it has a source, that is a
formula \mathcal{P} of the conclusion sequent such that whenever one of its subformulas \mathcal{F}
appears in a border sequent, \mathcal{F} is negative. This remark, together with the fact that the trunk is finite
ensures that the positive layer of \mathcal{P} is completely decomposed in the positive trunk.

Definition 21 (foc(\pi, \mathcal{P})). Let \pi be a \muMALL\infty proof of \vdash \Gamma, \mathcal{P} with \mathcal{P} a source of \pi’s
focalization graph. One defines foc(\pi, \mathcal{P}) as the \muMALL\infty proof obtained by permuting down
all the positive inferences on \mathcal{P} and its positive subformulas (all occurring in \pi^+).
3.4 Productivity and validity of the focalization process

Reversibility of the negative inferences and focalization of the positive inferences allow to consider the following (non-deterministic) proof transformation process:

Focalization Process: Let \(\pi \) be a \(\mu \text{MALL}^\infty \) proof of \(S \). Define \(\text{Foc}(\pi) \) as follows:

- **Asynchronous phase**: If \(S \) is negative, transform \(\pi \) into \(\text{rev}(\pi) \) which is reversed. At least one negative inference has been brought to the root of the proof. Apply (corecursively) the synchronous phase to the proofs rooted in the lowest positive sequents of \(\text{rev}(\pi) \).
- **Synchronous phase**: If \(S \) is positive, let \(P \in S \) be a source of the associated focalization graph. Transform \(\pi \) into a proof \(\text{foc}(\pi, P) \). At least one positive inference on \(P \) has been brought to the root of the proof. Apply (corecursively) the asynchronous phase to the proofs rooted in the lowest negative sequents of \(\text{foc}(\pi, P) \).

Each of the above phases produces one non-empty phase, the above process is thus productive. It is actually a pre-proof thanks to theorem 16 and by definition of \(\text{foc}(\pi, P) \). It remains to show that the resulting pre-proof is actually a proof. The following property is easily seen to be preserved by both transformations \(\text{foc} \) and \(\text{rev} \) and thus holds for \(\text{Foc}(\pi) \):

Proposition 23. Let \(\pi \) be a \(\mu \text{MALL}^\infty \) proof, \(r \) a positive rule occurring in \(\pi \) and \(r' \) be a negative rule occurring below \(r \) in \(\pi \). If \(r \) occurs in \(\text{Foc}(\pi) \), then \(r' \) occurs in \(\text{Foc}(\pi) \), below \(r \).

Lemma 24. For any infinite branch \(\gamma \) of \(\text{Foc}(\pi) \) containing an infinite number of positive rules, there exists an infinite branch in \(\pi \) containing infinitely many positive rules of \(\gamma \).

Theorem 25. If \(\pi \) is a \(\mu \text{MALL}^\infty \) proof then \(\text{Foc}(\pi) \) is also a \(\mu \text{MALL}^\infty \) proof.

Proof sketch, see appendix. An infinite branch \(\gamma \) of \(\text{Foc}(\pi) \) may either be obtained by reversibility only after a certain point, or by alternating infinitely often synchronous and asynchronous phases. In the first case it is valid by proposition 11 while in the latter case, lemma 24 ensures the existence of \(\gamma \) as a branch \(\delta \) of \(\pi \) containing infinitely many positive rules of \(\gamma \), with a valid thread \(t \) of minimal formula \(F_m \): every rule \(r \) of \(\delta \) in which \(F_m \) is principal is below a positive rule occurring in \(\gamma \). Thus \(r \) occurs in \(\gamma \), which is therefore valid.

4 Cut elimination

In this section, we show that any \(\mu \text{MALL}^\infty \) proof can be transformed into an equivalent cut-free derivation. This is done by applying the cut reduction rules described in Section 2, possibly in infinite reductions converging to cut-free proofs. As usual with infinitary reductions it is not the case that any reduction sequence converges: for instance, one could reduce only deep cuts in a proof, leaving a cut untouched at the root. We avoid this problem by considering a form of head reduction where we only reduce cuts at the root.

Cut reduction rules are of two kinds, principal reductions and auxiliary ones. In the infinitary setting, principal cut reductions do not immediately contribute to producing a cut-free pre-proof. On the contrary, auxiliary cut reductions are productive in that sense. In other words, principal rules are seen as internal computations of the cut elimination process, while auxiliary rules are seen as a partial output of that process. Accordingly, the former will be called internal rules and the latter external rules.
When analyzing cut reductions, cut commutations can be troublesome. A common way to avoid this technicality \cite{13}, which we shall follow, is to introduce a \textit{multicut} rule which merges multiple cuts, avoiding cut commutations.

\textbf{Definition 26.} Given two sequents \(s\) and \(s'\), we say that they are cut-connected on a formula occurrence \(F\) when \(F \in s\) and \(F' \in s'\). We say that they are cut-connected when they are connected for some \(F\). We define the \textit{multicut} rule as shown above with conclusion \(s\) and premisses \(\{s_i\}_i\), where the set \(\{s_i\}_i\) is connected and acyclic with respect to the cut-connection relation, and \(s\) is the set of all formula occurrences \(F\) that appear in some \(s_i\), but such that no \(s_j\) is cut-connected to \(s_j\) on \(F\).

From now on we shall work with \(\mu\text{MALL}^\infty\) derivations, which are \(\mu\text{MALL}^\infty\) derivations in which the multicut rule may occur, though only at most once per branch. The notions of thread and validity are unchanged. In \(\mu\text{MALL}^\infty_m\) we only reduce multicuts, in a way that is naturally obtained from the cut reductions of \(\mu\text{MALL}^\infty\). A complete description of the rules is given in Definition 49, appendix C.1; only the \((\text{Cut})/\text{(mcut)}\) and \((\oplus_1)/(\&)_i\) internal reduction cases and the \(\&(\&)/(\&)/\text{(mcut)}\) external reduction case are shown in figure 3. As is visible in the last reduction, applying an external rule on a multicut may yield multiple multicuts, though always on disjoint subtrees.

We will be interested in a particular kind of multicut reduction sequences, the \textit{fair} ones, which are such that any redex which is available at some point of the sequence will eventually have disappeared from the sequence (being reduced or erased), details are provided in appendix C.1. We will establish that these reductions eliminate multicuts:

\textbf{Theorem 27.} \textit{Fair multicut reductions on }\mu\text{MALL}^\infty_m\textit{ proofs produce }\mu\text{MALL}^\infty\textit{ proofs.}

Additionally, if all cuts in the initial derivation are above multicuts, the resulting \(\mu\text{MALL}^\infty\) derivation must actually be cut-free: indeed, multicut reductions never produce a cut. Thus Theorem 27 gives a way to eliminate cuts from any \(\mu\text{MALL}^\infty\) proof \(\pi\) of \(\vdash \Gamma\) by forming a multicut with conclusion \(\vdash \Gamma\) and \(\pi\) as unique subderivation, and eliminating multicuts (and cuts) from that \(\mu\text{MALL}^\infty_m\) proof. The proof of Theorem 27 is in two parts. We first prove that fair internal multicut reductions cannot diverge (Proposition 37), hence fair multicut reductions are productive, \textit{i.e.}, reductions of \(\mu\text{MALL}^\infty_m\) proofs converge to \(\mu\text{MALL}^\infty\) pre-proofs. We then establish that the obtained pre-proof is a valid proof (Proposition 38).

Regarding productivity, assuming that there exists an infinite sequence \(\sigma\) of internal cut-reductions from a given proof \(\pi\) of \(\Gamma\), we obtain a contradiction by extracting from \(\pi\) a...
proof of the empty sequent in a suitably defined proof-system. More specifically, we observe
that no formula of Γ is principal in the subtree π_σ of π visited by σ. Hence, by erasing every
formula of Γ from π_σ, local correctness of the proof is preserved, resulting in a tree deriving
the empty sequent. This tree can be viewed as a proof in a new proof-system $\mu\textsf{MALL}^\infty$ which
is shown to be sound (Proposition 34) with respect to the traditional boolean semantics of
the μ-calculus, thus the contradiction. The proof of validity of the produced pre-proof is
similar: instead of extracting a proof of the empty sequent from π we will extract, for each
invalid branch of π, a $\mu\textsf{MALL}^\infty$ proof of a formula containing neither 1, \top, nor ν formulas,
contradicting soundness again.

4.1 Extracting proofs from reduction paths

We define now a key notion to analyze the behaviour of multicut-elimination: given a
multicut reduction starting from π, we extract a (slightly modified) subderivation of π which
corresponds to the part of the derivation that has been explored by the reduction. More
precisely, we are interested in reduction paths which are sequences of proofs that end with
a multicut rule, obtained by tracing one multicut through its evolution, selecting only one
sibling in the case of ($\&$) and (\otimes) external reductions. Given such a reduction path starting
with π, we consider the subtree of π whose sequents occur in the reduction path as premises
of some multicut. This subtree is obviously not always a $\mu\textsf{MALL}^\infty$ derivation since some of
its nodes may have missing premises. We will provide an extension of $\mu\textsf{MALL}^\infty$ where these
trees can be viewed as proper derivations by first characterizing when this situation arises.

Definition 28 (Useless sequents, distinguished formula). Let \mathcal{R} be a reduction path starting
with π. A sequent $s = (\vdash \Gamma, F)$ of π is said to be useless with distinguished formula F
when in one of the following cases:

1. The sequent eventually occurs as a premise of all multicuts of \mathcal{R} and F is the principal
 formula of s in π. (Note that the distinguished formula F of a useless sequent s of sort
 (1) must be a sub-occurrence of a cut formula in π. Otherwise, the fair reduction path
 \mathcal{R} would eventually have applied an external rule on s. Moreover, F^\perp never becomes
 principal in the reduction path, otherwise by fairness the internal rule reducing F and
 F^\perp would have been applied.)

2. At some point in the reduction, the sequent is a premise of ($\&$) on F on $F \& F'$ or $F' \& F$ which
 is erased in an internal ($\&$)/(\oplus) multicut reduction. (In the (\oplus_1)/($\&_1$) internal reduction
 of figure 3, the sequent $\vdash G^\perp$, G is useless of sort (2).)

3. The sequent is ignored at some point in the reduction path because it is not present in the
 selected multicut after a branching external reduction on $F \ast F'$ or $F' \ast F$, for $\ast \in \{\otimes, \&\}$.
 (In the ($\&$)/(mcut) external reduction of figure 3, if one is considering a reduction path
 that follows the multicut having $\vdash \Gamma, F$ as a premise, then the sequent $\vdash \Gamma, G$ is useless
 of sort (3), and vice versa.)

4. The sequent is ignored at some point in the reduction path because a (\otimes)/(mcut) external
 reduction distributes s to the multicut that is not selected in the path. This case will be
 illustrated next, and is described in full details in appendix C.1.

Note that, although the external reduction for \top erases sequents, we do not need to
consider such sequents as useless: indeed, we will only need to work with useless sequents in
infinite reduction paths, and the external reduction associated to \top terminates a path.

Example. Consider a multicut composed of the last example of Section 2 and an arbitrary
proof of $\vdash F, \Delta$ where F is principal. In the reduction paths which always select the right
premise of an external \((\otimes)\)/(\text{mcut})\) corresponding to the \(N' \otimes S'\) formulas, the sequent \(\Gamma, \Delta' \vdash F, \Delta\) will always be present and thus useless by case (1). In the reduction paths which eventually select a left premise, the sequent \(N_2, F \vdash S'\) is useless of sort (3) with \(S'\) distinguished, and \(\vdash F, \Delta\) is useless of sort (4) with \(F\) distinguished.

In order to obtain a proper pre-proof from the sequents occurring in a reduction path, we need to close the derivation on useless sequents. This is done by replacing distinguished formulas by \(\top\) formulas. However, a usual substitution is not appropriate here as we are really replacing formula occurrence, which may be distributed in arbitrarily complex ways among sub-occurrences.

\[\text{Definition 29.} \quad \text{A truncation} \; \tau \; \text{is a partial function from} \; \Sigma^* \; \text{to} \; \{\top, \bot\} \; \text{such that:}
\]

- For any \(\alpha \in \Sigma^*\), if \(\alpha \in \text{Dom}(\tau)\), then \(\alpha^\bot \in \text{Dom}(\tau)\) and \(\tau(\alpha) = \tau(\alpha^\bot)^\bot\).
- If \(\alpha \in \text{Dom}(\tau)\) then for any \(\beta \in \Sigma^+, \alpha, \beta \notin \text{Dom}(\tau)\).

\[\text{Definition 30 (Truncation of a reduction path).} \; \text{Let} \; \mathcal{R} \; \text{be a reduction path. The truncation} \; \tau \; \text{associated to} \; \mathcal{R} \; \text{is defined by setting} \; \tau(\alpha) = \top \; \text{and} \; \tau(\alpha^\bot) = \bot \; \text{for every formula occurrence} \varphi_\alpha \; \text{that is distinguished in some useless sequent of} \; \mathcal{R}.
\]

The above definition is justified because \(F\) and \(F^\bot\) cannot both be distinguished, by fairness of \(\mathcal{R}\). We can finally obtain the pre-proof associated to a reduction path, in a proof system slightly modified to take truncations into account.

\[\text{Definition 31 (Truncated proof system).} \; \text{Given a truncation} \; \tau, \; \text{the infinitary proof system} \; \mu\text{MALL}^\infty \; \text{is obtained by taking all the rules of} \; \mu\text{MALL}^\infty, \; \text{with the proviso that they only apply when the address of their principal formula is not in the domain of} \; \tau, \; \text{with the following extra rule:}
\]

\[
\frac{\vdash \tau(\alpha)_{\alpha.i}, \Delta}{\vdash F, \Delta} \quad (\tau)
\]

The adress \(\alpha.i\) associated with \(\tau(\alpha)\) in the rule \((\tau)\) forbids loops on a \((\tau)\) rule. Indeed if \(\alpha \in \text{Dom}(\tau)\) then \(\alpha.i \notin \text{Dom}(\tau)\).

\[\text{Definition 32 (Truncated proof associated to a reduction path).} \; \text{Let} \; \mathcal{R} \; \text{be a fair infinite reduction path starting with} \; \pi \; \text{and} \; \tau \; \text{be the truncation associated to it. We define} \; TR(\mathcal{R}) \; \text{to be the} \; \mu\text{MALL}^\infty \; \text{proof obtained from} \; \pi \; \text{by keeping only sequents that occur as premise of some multicut in} \; \mathcal{R}, \; \text{using the same rules as in} \; \pi \; \text{whenever possible, and deriving useless sequents by rules} \; (\tau) \; \text{and} \; (\top).
\]

This definition is justified by definition of \(\tau\) and because only useless sequents may be selected without their premises (in \(\pi\)) being also selected. Notice that the dual \(F^\bot\) of a distinguished formula \(F\) may only occur in \(\mathcal{R}\) for distinguished formulas of type (1) and (4); in these cases \(F^\bot\) is never principal in \(\mathcal{R}\) by fairness. Thus, there is no difficulty in constructing \(TR(\mathcal{R})\) with a truncature defined on the address of \(F^\bot\). Finally, note that \(TR(\mathcal{R})\) is indeed a valid \(\mu\text{MALL}^\infty\) pre-proof, because its infinite branches are infinite branches of \(\pi\).

\[\text{Example.} \; \text{Continuing the previous example, we consider the path where the left premise of the tensor is selected immediately.}
\]

The associated truncation is such that \(\tau(S') = \top\) and \(\tau(F) = \top\) by (3) and (4) respectively. The derivation \(TR(\mathcal{R})\) is shown below, where \(\Pi_{\text{ax}}\) denotes the expansion of the axiom given by Prop 9.

\[
\begin{array}{c}
\Pi_{\text{dup}} \quad \Pi_{\text{ax}} \\
\frac{\vdash F, \Delta \quad \vdash N, F \vdash S}{\vdash N, N_1 \otimes N_2, F \vdash N' \otimes S'} \quad \vdash N_1 \vdash N' \otimes S' \quad \vdash N_2 \vdash S' \\
\frac{\vdash F, \Delta \quad \vdash N, F \vdash S}{\vdash N, F \vdash S' \quad \vdash N, F \vdash S} \\
\end{array}
\]

\[\text{(mcut)}
\]
4.2 Truncated truth semantics

We fix a truncation \(\tau \) and define a truth semantics with respect to which \(\mu \text{MALL}^{\infty} \) will be sound. The semantics is classical, assigning a boolean value to formula occurrences. For convenience, we take \(B = \{ 0, \top \} \) as our boolean lattice, with \(\land \) and \(\lor \) being the usual meet and join operations on it. The following definition provides an interpretation of \(\mu \text{MALL} \) formulas which consists in the composition of the standard interpretation of \(\mu \)-calculus formulas with the obvious linearity-forgetting translation from \(\mu \text{MALL} \) to classical \(\mu \)-calculus.

\[\nu X.\phi \]

▶ Definition 33. Let \(\varphi_\alpha \) be a pre-formula occurrence. We call \textit{environment} any function \(E \) mapping free variables of \(\varphi \) to (total) functions of \(E := \Sigma^* \to B \). We define \([\varphi_\alpha]^E \in B \), the \textit{interpretation} of \(\varphi_\alpha \) in the environment \(E \), by \([\varphi_\alpha]^E = \tau(\alpha) \) if \(\alpha \in \text{Dom}(\tau) \), and otherwise:

\[[\varphi_\alpha]^E = E(\alpha), \quad [\top_\alpha]^E = [\bot_\alpha]^E = \top \quad \text{and} \quad [0_\alpha]^E = [1_\alpha]^E = 0. \]

\[[\varphi \land \psi]^E_\alpha = [\varphi_\alpha]^E \land [\psi_\alpha]^E, \quad [\varphi \lor \psi]^E_\alpha = [\varphi_\alpha]^E \lor [\psi_\alpha]^E, \quad [\varphi \land \psi]^E_\alpha = [\varphi_\alpha]^E \lor [\psi_\alpha]^E \]

\[[\nu X.\phi_\alpha]^E = \text{lfp}(f)(\alpha) \quad \text{and} \quad [\nu X.\phi_\alpha]^E = \text{gfp}(f)(\alpha) \]

where \(f : E \to E \) is given by

\[f : h \mapsto \beta \mapsto (\tau(\beta) \land \text{ if } \beta \in \text{Dom}(\tau) \text{ and } [\nu X.\phi_\alpha]^E \text{ otherwise).} \]

When \(F \) is closed, we simply write \([F] \) for \([F]^0 \).

We refer the reader to the appendix for details on the construction of the interpretation.

We simply state here the main result about it.

▶ Proposition 34. If \(\Gamma \vdash \Gamma \) is provable in \(\mu \text{MALL}^{\infty} \), then \([F] = \top \) for some \(F \in \Gamma \).

We only sketch the soundness proof (see appendix C for details) which proceeds by contradiction. Assuming we are given a proof \(\pi \) of a formula \(F \) such that \([F] = 0 \), we exhibit a branch \(\beta \) of \(\pi \) containing only formulas interpreted by \(0 \). A validating thread of \(\beta \) unfolds infinitely often some formula \(\nu X.\varphi \). Since the interpretation of \(\nu X.\varphi \) is defined as the gfp of a monotonic operator \(f \) we have, for each occurrence \((\nu X.\varphi)_\alpha \) in \(\beta \), an ordinal \(\lambda \) such that

\[[\nu X.\varphi_\alpha]^E = f^\lambda(\nu E^E)(\alpha), \quad \text{where } \nu E \text{ is the supremum of the complete lattice } E. \]

We show that this ordinal can be forced to decrease along \(\beta \) at each fixed point unfolding, contradicting the well-foundedness of the class of ordinals.

▶ Definition 35. A truncation \(\tau \) is \textit{compatible} with a formula \(\varphi_\alpha \) if \(\alpha \notin \text{dom}(\tau) \) and, for any \(\alpha \sqsubseteq \beta, d \in \text{Dom}(\tau) \) where \(d \in \{ l, r, i \} \), we have that \(\varphi_\alpha \) admits a sub-occurrence \(\psi_\beta \) with \(\otimes \) or \(\& \) as the toplevel connective of \(\psi \), \(d \in \{ l, r \} \), and \(\alpha.d' \notin \text{Dom}(\tau) \) for any \(d \neq d' \).

In other words, a truncation \(\tau \) is compatible with a formula \(F \) if \(F \) truncates only sons of \(\otimes \) or \(\& \) nodes in the tree of the formula \(F \) and at most one son of each such node.

▶ Proposition 36. If \(F \) is a formula compatible with \(\tau \) and containing no \(\nu \) binders, no \(\top \) and no \(1 \), then \([F] = 0 \).

4.3 Proof of cut elimination

Multicut reduction is shown productive and then to result in a valid cut-free proof.

▶ Proposition 37. Any fair reduction sequence produces a \(\mu \text{MALL}^{\infty} \) pre-proof.

Proof. By contradiction, consider a fair infinite sequence of internal multicut reductions. This sequence is a fair reduction path \(R \). Let \(\tau \) and \(TR(R) \) be the associated truncations and truncated proof. Since no external reduction occurs, it means that conclusion formulas of \(TR(R) \) are never principal in the proof, thus we can transform it into a proof of the empty sequent, which contradicts soundness of \(\mu \text{MALL}^{\infty} \). □
We have established focalization and cut elimination for μMALL\(^{\infty}\), the infinitary sequent calculus for μMALL. Our cut elimination result extends that of Santocanale and Fortier [13], but this extension has required the elaboration of a radically different proof technique.

An obvious direction for future work is now to go beyond linear logic, and notably handle structural rules in infinitary cut elimination. But many interesting questions are also left in the linear case. First, it will be natural to relax the hypothesis on fairness in the cut-elimination result. Other than cut elimination, the other long standing problem regarding μMALL\(^{\infty}\) and similar proof systems is whether regular proofs can be translated, in general, to finitary proofs. Further, one can ask the same question, requiring in addition that the computational content of proofs is preserved in the translation. It may well be that regular μMALL\(^{\infty}\) contains more computations than μMALL; even more so if one considers other classes of finitely representable infinitary proofs. It would be interesting to study how this could impact the study of programming languages for (co)recursion, and understanding links with other approaches to this question [1, 2]. In this direction, we will be interested in studying the computational interpretation of focused cut-elimination, providing a logical basis for inductive and coinductive matching in regular and infinitary proof systems.
References

Contents

1 Introduction 1

2 μMALL and its infinitary proof system μMALL$^\infty$ 3

3 Focalization 6
 3.1 Polarity of connectives 7
 3.2 Reversibility of negative inferences 7
 3.3 Focalization Graph 8
 3.4 Productivity and validity of the focalization process 9

4 Cut elimination 9
 4.1 Extracting proofs from reduction paths 11
 4.2 Truncated truth semantics 13
 4.3 Proof of cut elimination 13

5 Conclusion 14

A Appendix relative to Section 2 17
 A.1 Details on the validity condition 17
 A.2 Admissibility of the axiom 17
 A.3 Translating from μMALL to μMALL$^\infty$ 18

B Appendix relative to Section 3 20
 B.1 Polarity of connectives 20
 B.2 Reversibility 20
 B.3 Focalization graphs 21
 B.4 Productivity and validity of the focalization process 22
 B.5 An Example of Focalization 23

C Appendix relative to Section 4 25
 C.1 Detailed definitions 25
 C.2 Truncated truth semantics 27
A Appendix relative to Section 2

In this appendix we provide a proof of Proposition 9, but also supplementary material that may be useful to better understand \(\mu \text{MALL}^\infty \), its validity condition and its relationship to \(\mu \text{MALL} \). Most of this material is adapted directly from classical observations about \(\mu \)-calculi, with the exception of the translation from \(\mu \text{MALL} \) to \(\mu \text{MALL}^\infty \): it is unpublished, but we view it more as folklore than as a contribution of this paper.

A.1 Details on the validity condition

We first provide more details and intuitions about the notion of valid thread. If a thread \((F_i)_{i \in \omega} \) is eventually constant in terms of formula occurrences, it simply means that it traces a formula that is never principal in the branch: this formula plays no role in the proof, and there is no reason to declare the thread valid. Otherwise, addresses keep growing along the thread: at any point in the thread there is a later point where the address increases. Forgetting addresses and considering the set \(S \) of formulas that appear infinitely often in the thread, we immediately see that any two formulas \(\varphi, \psi \in S \) are co-accessible, i.e., \(\psi \in \text{FL(} \varphi \))

Indeed, if \(F_i = \varphi_\alpha \), there must be some \(j > i \) such that \(F_j = \psi_\beta \). In that case, the thread is valid iff the minimum of \(S \) wrt. the subformula ordering is a \(\nu \)-formula. As we shall see, this definition makes sense because that minimum is always defined. Moreover, it is always a fixed point formula, so what the definition really says is that this minimum fixed point must be a greatest fixed point for the thread to be valid. All this is justified by the following classical observation about \(\mu \)-calculi, which we restate next in our setting.

> **Proposition 39.** Let \(t = (F_i)_{i \in \omega} \) be a thread that is not eventually constant. The set \(S \) of formulas that occur infinitely often in \(t \) admits a minimum with respect to the subformula ordering, and that minimum is a fixed point formula.

Proof. We assume that all formulas of \(t \) occur infinitely often in \(t \), and that \(F_i = \psi_\alpha \) implies \(F_{i+1} = \psi'_a \) for some \(a \in \Sigma \), i.e., \(F_{i+1} \) is an immediate descendant of \(F_i \). This is without loss of generality, by extracting from \(t \) the infinite sub-thread of occurrences \(F_i \) whose formulas are in \(S \) and which are principal, i.e., for which \(F_{i+1} \neq F_i \).

Let \(|\varphi| \) be the size of a formula, i.e., the number of connectives used to construct the formula. Take any \(\varphi \in S \) that has minimum size, i.e., \(|\varphi| \leq |\psi| \) for all \(\psi \in S \). We shall establish that \(\varphi \) must in fact be a minimum for the subformula ordering, i.e., \(\varphi \leq \psi \) for all \(\psi \in S \). It suffices to prove that if \(F_1 = \psi_\alpha \) and \(F_j = \varphi_\beta \), then \(\varphi \leq \psi \). We proceed by induction on \(\beta \). The result is obvious if \(\beta \) is empty, since one then has \(\varphi = \psi \). Otherwise, we distinguish two cases:

- If \(\psi = \psi^l \ast \psi^r \) and \(F_{i+1} = (\psi^a)_\alpha \) for some \(a \in \{ l, r \} \), we have \(\beta = a \beta' \).
- Other \(\psi = \sigma X.\psi' \), \(F_{i+1} = (\psi'[\psi/X])_\alpha \) and \(\beta = i \beta' \). By induction hypothesis, \(\varphi \leq \psi'[\psi/X] \). Since \(|\varphi| \leq |\psi| \), \(\varphi \) is a subformula of \(\psi'[\psi/X] \) which cannot strictly contain \(\psi \). Thus we either have \(\varphi = \psi \) or \(\varphi \leq \psi' \). In both cases, we conclude immediately.

We finally show that \(\varphi \) must be a fixed point formula. Take any \(i \) such that \(F_i = \varphi_\alpha \). We have \(F_{i+1} = \psi_\alpha \). Assuming that \(\varphi \) is not a fixed point expression, it would be of the form \(\varphi_1 \ast \varphi_2 \) with \(\varphi = \varphi_1 \) for some \(1 \leq i \leq 2 \), contradicting \(|\varphi| \leq |\psi| \).

A.2 Admissibility of the axiom

We now prove the admissibility of \((A_\nu)\), by showing that infinite \(\eta \)-expansions are valid.
We actually have that, for all which shall be useful to present the translation from the finitary sequent calculus pre-proof F be a collection of pre-proofs of respective conclusions its infinitary counterpart Generalizing the previous construction, we now introduce the functoriality construction, A.3 Translating from one of the two threads validates the branch. Constant is necessarily a fixed point formula, thus sequences of distinct sub-occurrences, $\text{on } (\text{is expanded by using rules } (\&), (\otimes))$, and then axioms on $\vdash \varphi_{\alpha}^{\perp}, \varphi_{\beta}^{\perp}$, and $\vdash \psi_{\alpha r}, \psi_{\beta r}$. In μMALL^∞ we can co-iterate this expansion to obtain an axiom-free pre-proof from any instance of $(\exists x)$ on $\vdash F, G^{\perp}$. On any infinite branch of that pre-proof, there are exactly two threads and they are not eventually constant. Let $t = (F_i)_{i \in \omega}$ and $t' = (G_i)_{i \in \omega}$ be the corresponding sequences of distinct sub-occurrences, i.e., keeping an occurrence only when it is principal. We actually have that, for all i, $F_i \equiv G_i^\perp$. The minimum of a thread that is not eventually constant is necessarily a fixed point formula, thus $\min(t)$ is a ν formula iff $\min(t')$ is a μ, and one of the two threads validates the branch.

A.3 Translating from μMALL to μMALL^∞

Generalizing the previous construction, we now introduce the functoriality construction, which shall be useful to present the translation from the finitary sequent calculus μMALL to its infinitary counterpart μMALL^∞.

Definition 40. Let F be a pre-formula such that $\text{fv}(F) \subseteq \{X_i\}_{1 \leq i \leq n}$, and let $\overline{\Pi} = (\Pi_i)_{1 \leq i \leq n}$ be a collection of pre-proofs of respective conclusions $\vdash P_i, Q_i$. We define coinductively the pre-proof $F(\overline{\Pi})$ of conclusion $\vdash F^\perp[P_i/X_i]_{1 \leq i \leq n}, F^\perp[Q_i/X_i]_{1 \leq i \leq n}$ as follows:

- If $F = X_i$ then $F(\overline{\Pi}) = \Pi_i$ up to relocalization, i.e., changing the addresses of occurrences in Π_i to match the required ones.
- If $F = F_1 \otimes F_2$, then $F(\overline{\Pi})$ is:
 $$ F_1(\overline{\Pi}) \quad F_2(\overline{\Pi}) $$

 $$ \vdash F_1^\perp[P_i/X_i], F_1[Q_i/X_i], \quad \vdash F_2^\perp[P_i/X_i], F_2[Q_i/X_i], \\ \vdash F_1^\perp[P_i/X_i], F_2^\perp[P_i/X_i], (F_1 \otimes F_2)[Q_i/X_i] $$

- If $F = F_1 \oplus F_2$, then $F(\overline{\Pi})$ is:
 $$ F_1(\overline{\Pi}) \quad F_2(\overline{\Pi}) $$

 $$ \vdash F_1^\perp[P_i/X_i], F_1[Q_i/X_i], \quad \vdash F_2^\perp[P_i/X_i], F_2[Q_i/X_i], \\ \vdash (F_1 \oplus F_2)[P_i/X_i], F_1 \otimes F_2)[Q_i/X_i] $$

- If $F = \mu X.G$ then $F(\overline{\Pi})$ is obtained from applying functoriality on G with $F(\overline{\Pi})$ as the derivation for the new free variable $X_{n+1} := X$:

 $$ G(\overline{\Pi}, F(\overline{\Pi})) $$

 $$ \vdash G^\perp[(\mu X.G^\perp)/X][P_i/X_i], G[(\mu X.G)/X][Q_i/X_i] $$

 $$ \vdash G^\perp[(\mu X.G^\perp)/X][P_i/X_i], (\mu X.G)[Q_i/X_i] $$

- If $F = 0$ then $F(\overline{\Pi})$ is directly obtained by applying (\top) on $F^\perp[P_i/X_i]$.
- If $F = 1$ then $F(\overline{\Pi})$ is obtained by applying rule (\bot) followed by (\top).

Proposition (9). Rule $(\exists x)$ is admissible in μMALL^∞.

Proof. As is standard, any instance of $(\exists x)$ can be expanded by introducing two dual connectives and concluding by $(\exists x)$ on the sub-occurrences. For instance, $(\exists x)$ on $\vdash (\varphi \otimes \psi)^{\perp}_x, (\psi^{\perp} \otimes \varphi^{\perp})^\alpha_x$ is expanded by using rules $(\&), (\otimes)$, and then axioms on $\vdash \varphi_{\alpha l}, \varphi_{\beta l}, \psi_{\alpha r}, \psi_{\beta r}$. In μMALL^∞ we can co-iterate this expansion to obtain an axiom-free pre-proof from any instance of $(\exists x)$ on $\vdash F, G^{\perp}$. On any infinite branch of that pre-proof, there are exactly two threads and they are not eventually constant. Let $t = (F_i)_{i \in \omega}$ and $t' = (G_i)_{i \in \omega}$ be the corresponding sequences of distinct sub-occurrences, i.e., keeping an occurrence only when it is principal. We actually have that, for all i, $F_i \equiv G_i^\perp$. The minimum of a thread that is not eventually constant is necessarily a fixed point formula, thus $\min(t)$ is a ν formula iff $\min(t')$ is a μ, and one of the two threads validates the branch.
Other cases are treated symmetrically.

As said above, the construction $F(\hat{\Pi})$ is a generalization of the infinitary η-expansion, where the derivations Π_i are plugged where free variables are encountered. In fact, if F is a closed pre-formula, then $F()$ is the derivation constructed in the proof of Proposition 9.

Also note that, since only finitely many sequents may arise in the process of constructing $F(\hat{\Pi})$, and since the construction is entirely guided by its end sequent, the derivation $F(\hat{\Pi})$ is actually regular as long as the derivations Π_i are regular as well.

An infinite branch of $F(\hat{\Pi})$ either has an infinite branch of some Π_i as a suffix, or is only visiting sequents of $F(\hat{\Pi})$ that are not sequents of the input derivations $\vec{\Pi}$. In the former case, the branch is valid provided that the input derivations are valid. In the latter case, the branch contains exactly two dual threads (as in the proof of Proposition 9), one of which must be valid. Thus, $F(\hat{\Pi})$ is a proof provided that the input derivations are proofs. This result is however not usable directly to prove the validity of a pre-proof in which we make repeated use of functoriality, i.e., one where branches may go through infinitely many successive uses of functoriality.

We now make use of functoriality to translate finitary μMALL proofs (corresponding to the propositional fragment of [4]) to infinitary derivations.

Definition 41 (μMALL sequent calculus). The sequent calculus for the propositional fragment of μMALL is a finitary sequent calculus whose rules are the same as those of $\mu\text{MALL}\infty$, except that the ν rule is as follows:

\[
\begin{array}{c}
\vdash S_\bot, F[S/X] \\
\vdash S_\bot, \nu X.F
\end{array}
\]

The ν rule corresponds to reasoning by coinduction. In [4] it is found in a slightly different form, which can be obtained from the above version by means of cut:

\[
\begin{array}{c}
\vdash \Gamma, S \\
\vdash S_\bot, F[S/X]
\end{array} \\
\vdash \Gamma, \nu X.F
\]

Definition 42 (Translation from μMALL to $\mu\text{MALL}\infty$). Given a μMALL proof Π of $\vdash \Gamma$, we define coinductively the $\mu\text{MALL}\infty$ pre-proof Π^* of $\vdash \Gamma$, as follows:

- If Π starts with an inference that is present in $\mu\text{MALL}\infty$, we use the same inference and proceed co-recursively. For instance,

\[
\begin{array}{c}
\Pi_1 \\
\Pi_2
\end{array} \\
\vdash \Gamma'', F \\
\vdash G, \Gamma'' \\
\vdash \Gamma', F \otimes G, \Gamma'' \\
yields \Pi^* = \\
\begin{array}{c}
\Pi_1 \\
\Pi_2
\end{array} \\
\vdash \Gamma', F \\
\vdash G, \Gamma'' \\
\vdash \Gamma', F \otimes G, \Gamma''
\]

- Otherwise, Π starts with an instance of the ν rule of μMALL:

\[
\Pi = \\
\vdash S_\bot, F[S/X] \\
\vdash S_\bot, \nu X.F
\]

We transform it as follows, where (F) denotes a use of the functoriality construction:

\[
\Pi^* = \\
\begin{array}{c}
\Pi_1 \\
\Pi_2
\end{array} \\
\vdash S_\bot, F[S/X] \\
\vdash F_\bot[S_\bot/X], F[(\nu X.F)/X] \\
(F) \\
\vdash S_\bot, F[(\nu X.F)/X] \\
\vdash S_\bot, \nu X.F
\]

\[
(Cut)
\]
This construction induces infinite branches, some of which being contained in the functoriality construct, and some of which that encounter infinitely often the sequent \(\vdash S_\perp, \nu X.F \) (up-to structural equivalence). Note that a branch that eventually goes to the left of the above (Cut) cannot cycle back to \(\vdash S_\perp, \nu X.F \) anymore. It may still be infinite, going through other cycles obtained from the translation of other coinduction rules in \(\Pi_1 \).

As a side remark, note that if \(\Pi \) is cut-free, then so is \(\Pi_i \). Of course, if \(\Pi \) is cut-free but uses the version of the \(\nu \) rule that embeds a cut, this is not true anymore.

Proposition 43. For any \(\mu \text{MALL} \) derivation \(\Pi \), its translation \(\Pi_i \) is a \(\mu \text{MALL}^\infty \) proof.

Proof sketch. We have to check that all infinite branches of \(\Pi_i \) are valid. Consider one such infinite branch. After a finite prefix, the branch must be contained in the pre-proof obtained from the translation of a coinduction rule (second case in the above definition). If the branch is eventually contained in a functoriality construct, then it contains two dual threads, and is thus valid. Otherwise, the branch visits infinitely often (up-to structural equivalence) the sequent \(\vdash S_\perp, \nu X.F \) corresponding the our translated coinduction rule. The branch in \(\Pi_i \) contains a thread that contains the successive sub-occurrences of \(\nu X.F \) in those sequents.

More specifically, that formula is principal infinitely often in the thread. It only remains to show that it is minimal among formulas that appear infinitely often: this simply follows from the fact that formulas encountered along the thread inside the functoriality construct \((F) \) all contain \(\nu X.F \) as a subformula.

B Appendix relative to Section 3

In this appendix, we first prove results corresponding to Section 3 and then develop a complete example of focusing process, in order to examplify the different concepts and objects defined in Section 3:

- reversibility of negative inference;
- focalization graph;
- focusing on positive inference;
- stepwise construction, by alternation of the two above – asynchronous and synchronous – phases, of a focusing proof from any given proof.

B.1 Polarity of connectives

Proposition (11). An infinite branch of a pre-proof containing only negative (resp. positive) rules is always valid (resp. invalid).

Proof. An infinite negative branch contains only greatest fixed points. Among the threads, some are not eventually constant and their minimal formulas are \(\nu \)-formulas: they are valid threads.

An infinite positive branch cannot be valid since for any non-constant thread \(t, \min(t) \), its minimal formula, is a \(\mu \)-formula.

B.2 Reversibility

Before proving that \(\text{rev} \) actually builds a reversed proof, we first consider a simplified proof transformation for a proof \(\pi \) of a sequent \(\vdash \Gamma, N \), \(\text{rev}_0(\pi, N) \), the effect of which being to reverse only the topmost connective of \(N \). It is defined similarly to \(\text{rev} \) except that the procedure is not called on the subproofs contrarily to definition 13.
Definition 44 \((\text{rev}_0(\pi, N))\). We define \(\text{rev}_0(\pi, N)\) to be the pre-proof

\[
\pi(1, N) \ldots \pi(s(N), N) \vdash \Gamma, N^{(n)}.
\]

Proposition 45. Let \(\pi\) be a \(\mu\text{MALL}^\infty\) proof of \(\vdash \Gamma, N\). \(\text{rev}_0(\pi, N)\) is a \(\mu\text{MALL}^\infty\) proof.

Proof. The reader will easily check that any infinite branch \(\beta\) of \(\text{rev}_0(\pi, N)\) is obtained from a branch \(\alpha\) of \(\pi\), either of the form \((r_N) \cdot \alpha\) when \(\alpha\) does not contain an inference on \(N\) or \((r_N) \cdot \alpha_1 \ldots \alpha_{n-1} \cdot \alpha_{n+1} \ldots\) where \(\alpha_n\) has \(N\) a principal formula (occurrence). Validating threads are therefore preserved. ▶

We can now consider the general case of \(\text{rev}\):

Theorem (16). Let \(\pi\) be a \(\mu\text{MALL}^\infty\) proof. \(\text{rev}(\pi)\) is a reversed proof of the same sequent.

Proof. \(\text{rev}\) is obviously productive: each recursive call is guarded. Inferences of \(\text{rev}(\pi)\) are locally valid: if \(\pi\) is a preproof, so is \(\text{rev}(\pi)\).

If moreover \(\pi\) is a proof, infinite branches of \(\text{rev}(\pi)\) are valid: indeed, infinite branches of \(\text{rev}(\pi)\) are either fully negative (and therefore valid) or after a certain point they coincide with inferences of an infinite branch of \(\pi\) and their validity follows that of \(\pi\).

The resulting proof is obviously shown to be reversed: we do not find any positive inference on any branch of \(\text{rev}(\pi)\), until the first positive sequent is reached. ▶

B.3 Focalization graphs

Proposition (18). The positive trunk of a \(\mu\text{MALL}^\infty\) proof is always finite.

Proof. The positive trunk of a proof cannot have infinite branches, because they would be infinite positive branches of the original proof, thus necessarily invalid by proposition 11. ▶

Proposition (20). Focalization graphs are acyclic.

Even though the proof directly adapts the argument from [20], we provide it for completeness:

Proof. We prove the result by \textit{reductio ad absurdum}. Let \(S\) be a positive sequent with a proof \(\pi\). Let \(\pi^+\) be the corresponding positive trunk and \(\mathcal{G}\) the associated Focalization Graph. Suppose that \(\mathcal{G}\) has a cycle and consider such a cycle of minimal length \((F_1 \rightarrow F_2 \rightarrow \cdots \rightarrow F_n \rightarrow F_1)\) in \(\mathcal{G}\) and let us consider \(S_1, \ldots, S_n\) sequents of the border justifying the arrows of the cycle.

These sequents are actually uniquely defined or the exact same reason as in MALL [20]. With the same idea we can immediately notice that the cycle is necessarily of length \(n \geq 2\) since two \(-\)subformulas of the same formula can never be in the same sequent in the border of the positive trunk.

Let \(S_0 = \bigwedge_{i=1}^{n} S_i\) be the highest sequent in \(\pi\) such that all the \(S_i\) are leaves of the tree rooted in \(S_0\). We will obtain the contradiction by studying \(S_0\) and we will reason by case on the rule applied to this sequent \(S_0\):

the rule cannot be (1) rule since this rule produces no premiss and thus we would have an empty cycle which is non-sens. Any rule with no premmiss would lead to the same contradiction.
If the rule is one of \((\oplus_i)\) or \((\mu)\), then the premiss \(S_0'\) of the rule would also satisfy the condition required for \(S_0\) (all the \(S_i\) would be part of the proof tree rooted in \(S_0'\)) contradicting the maximality of \(S_0\). If the rule is any other non-branching rule, maximality of \(S_0\) would also be contradicted.

Thus the rule shall be branching: it shall be a \((\otimes)\). Write \(S_L\) and \(S_R\) for the left and right premisses of \(S_0\). Let \(G = G_L \otimes G_R\) be the principal formula in \(S_0\) and let \(F\) be the active formula of the Trunk such that \(F \prec G\).

There are two possibilities:

(i) either \(F \in \{F_1, \ldots, F_n\}\) and \(F\) is the only formula of the cycle having at the same time \(\prec\)-subformulas in the left premiss and in the right premiss,

(ii) or \(F \notin \{F_1, \ldots, F_n\}\) and no formula of the cycle has \(\prec\)-subformulas in both premisses.

Let thus \(I_L\) (resp. \(I_R\)) be the sets of indices of the active formulas of the root \(S\) having \((\prec\)-related) subformulas only in the left (resp. right) premiss. Clearly neither \(I_L\) nor \(I_R\) is empty since it would contradict the maximality of \(S_0\). Indeed if \(I_L = \emptyset\), then \(S_R\) satisfies the condition of being dominated by all the \(S_i\), \(1 \leq i \leq n\) and \(S_0\) is not maximal anymore. By definition of the two sets of indices we have of course \(I_L \cap I_R = \emptyset\) and the only formula of the cycle possibly not in \(I_L \cup I_R = F\) if we are in the case (i): all other formulas in the cycle have their index either in \(I_L\) or in \(I_R\).

As a consequence there must be an arrow in the cycle (and thus in the graph) from a formula in \(I_L\) to a formula in \(I_R\) (or the opposite). Let \(i \in I_L\) and \(j \in I_R\) be such indexes (say for instance \(F_i \rightarrow F_0\) in \(G\)) and let \(S'\) be the sequent of the border responsible for this edge. \(S'\) contains \(F_i\) and \(F_0\) and by definition of the sets \(I_L\) and \(I_R\), \(S'\) cannot be in the tree rooted in \(S_0\) which is in contradiction with the way we constructed \(S_0\).

Then there cannot be any cycle in the focalization graph.

\[\blacktriangle\]

Proposition (22). Let \(S\) be a lowest sequent of \(\text{foc}(\pi, P)\) which is not conclusion of a rule on a positive subformula of \(P\). Then \(S\) contains exactly one subformula of \(P\), which is negative.

Proof. \(\text{foc}(\pi, P)\) is such that the maximal prefix containing only rules applied to \(P\) and its positive subformulas decomposes \(P\) up to its negative subformulas. Uniqueness of the subformula in the case of MALL, treated in [20], can be directly adapted here.

\[\blacktriangle\]

B.4 Productivity and validity of the focalization process

Proposition (23). Let \(\pi\) be a \(\mu\text{MALL}^\infty\) proof, \(r\) a positive rule occurring in \(\pi\) and \(r'\) be a negative rule occurring below \(r\) in \(\pi\). If \(r\) occurs in \(\text{Foc}(\pi)\), then \(r'\) occurs in \(\text{Foc}(\pi)\), below \(r\).

Proof. The proposition amounts to the simple remark that none of the transformation we do, for foc and rev, will ever permute a positive below a negative.

The proposition is thus satisfied by both transformations foc and rev and thus holds for \(\text{Foc}(\pi)\) which results from the iteration of the reversibility and focalization processes.

Lemma (24). For any infinite branch \(\gamma\) of \(\text{Foc}(\pi)\) containing an infinite number of positive rules, there exists an infinite branch in \(\pi\) containing infinitely many positive rules of \(\gamma\).

Proof. The lemma results from a simple application of Koenig’s lemma.

Theorem (25). If \(\pi\) is a \(\mu\text{MALL}^\infty\) proof then \(\text{Foc}(\pi)\) is also a \(\mu\text{MALL}^\infty\) proof.
Proof. Let \(\gamma \) be an infinite branch of \(\text{Foc}(\pi) \). If, at a certain point, \(\gamma \) is obtained by
reversibility only, then it contains only negative rules and is therefore valid.

Otherwise, \(\gamma \) has been obtained by alternating infinitely often focalization phases \(\text{foc} \) and
reversibility phases \(\text{rev} \) as described above. It therefore contains infinitely many positive
inferences. By Lemma 24, there exists an infinite branch \(\delta \) of \(\pi \) containing an infinite number
of positive rules of \(\gamma \). Since \(\delta \) is valid, it contains a valid thread \(t \).

Let \(F_m \) be the minimal formula of thread \(t \), a \(\nu \)-formula, and \((\tau_i)_{i \in \omega}\) the rules of \(\delta \) in
which \(F_m \) is the principal formula.

For any \(i \), there exists a positive rule \(\tau'_i \) occurring in \(\gamma \) which is above \(\tau_i \) and \(\tau_i \) therefore
also appears in \(\gamma \) by Proposition 23, which is therefore valid. \(\blacklozenge \)

B.5 An Example of Focalization

To conclude this section of the appendices, we present a detailed example of a focalization
process in order to illustrate the material developed in the section of the paper devoted to
focalization.

Let us consider the following proof of sequent

\[\vdash 0 \oplus ((\nu X).X) \otimes ((\nu X).X), (\nu X).X \otimes (1 \otimes 0), (\mu X).X \otimes 1. \]

\[\vdash \mu X.X, 1 \quad (\nu) \quad \vdash \mu X.X, 0 \quad (\nu) \quad \vdash \mu X.X \oplus (\nu X).X, 1 \quad (\otimes) \]

\[\vdash (\nu X).X \otimes (\nu X).X, 1, 0 \quad (\otimes) \quad \vdash \mu X.X, \mu X.X \quad (\nu) \quad \vdash \nu X.X, \mu X.X \quad (\otimes) \]

\[\vdash (\nu X).X \otimes (\nu X).X, 1 \otimes 0, \mu X.X \quad (\oplus_2) \]

\[\vdash 0 \oplus ((\nu X).X) \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), \mu X.X \quad (\mu) \quad \vdash 1 \quad (1) \]

\[\vdash 0 \oplus ((\nu X).X) \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), (\mu X.X) \otimes 1 \quad (\otimes) \]

The Positive Trunk corresponding to this proof is:

\[\vdash (\nu X).X \otimes (\nu X).X, 1 \otimes 0 \quad \vdash \nu X.X, \mu X.X \]

\[\vdash (\nu X).X \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), \mu X.X \quad (\otimes) \]

\[\vdash 0 \oplus ((\nu X).X) \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), \mu X.X \quad (\oplus_2) \]

\[\vdash 0 \oplus ((\nu X).X) \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), \mu X.X \quad (\mu) \quad \vdash 1 \quad (1) \]

\[\vdash 0 \oplus ((\nu X).X) \otimes (\nu X).X, (\nu X).X \otimes (1 \otimes 0), (\mu X.X) \otimes 1 \quad (\otimes) \]

and the Border is made of only two sequents:

\[\{ \vdash (\nu X).X \otimes (\nu X).X, 1 \otimes 0 \quad \vdash \nu X.X, \mu X.X \} \]

the Active Formulas of the positive trunk are thus:

\[0 \oplus ((\nu X).X) \otimes (\nu X).X) \]

\[(\nu X).X) \otimes (1 \otimes 0) \]

\[(\mu X).X) \otimes 1 \]
the Focalization Graph, which has thus those three formulas as vertices, is the following:

\[(\mu X.X) \otimes 1 \leftarrow (\nu X.X) \otimes (1 \otimes 0) \rightarrow 0 \oplus ((\nu X.X) \otimes (\nu X.X))\]

which is indeed acyclic and has a single source, \((\nu X.X) \otimes (1 \otimes 0))\), which we pick as focus.

By rewriting the Prostive Trunk we arrive at

\begin{align*}
\gamma_1 & \vdash 0 \oplus ((\nu X.X) \otimes (\nu X.X)), 1 \otimes 0 \\
\gamma_2 & \vdash (\nu X.X), (\mu X.X) \otimes 1 \tag{\otimes}
\end{align*}

with

\[
\pi_1 = \vdash 0 \oplus ((\nu X.X) \otimes (\nu X.X)), 1 \otimes 0 \tag{\oplus_2} \quad \text{and} \quad \pi_2 = \vdash (\nu X.X), (\mu X.X) \otimes 1 \tag{\otimes}
\]

and we continue by focalizing \(\pi_1\) and \(\pi_2\).

As for \(\pi_1\), its conclusion is a negative sequent, so that one first considers \(\text{rev}(\pi_1)\):

\[
\begin{align*}
\vdash \nu X.X, 1 \quad & \quad \vdash \nu X.X, 0 \tag{\nu} \\
\vdash (\nu X.X) \otimes (\nu X.X), 1, 0 \tag{\otimes} \\
\vdash 0 \oplus ((\nu X.X) \otimes (\nu X.X)), 1 \otimes 0 \tag{\oplus_2}
\end{align*}
\]

\(\text{rev}(\pi_1)\) is actually already focused: the conclusion of

\[
\begin{align*}
\vdash \nu X.X, 1 \quad & \quad \vdash \nu X.X, 0 \tag{\nu} \\
\vdash (\nu X.X) \otimes (\nu X.X), 1, 0 \tag{\otimes} \\
\vdash 0 \oplus ((\nu X.X) \otimes (\nu X.X)), 1, 0 \tag{\oplus_2}
\end{align*}
\]

is a positive sequent and its positive trunk is:

\[
\begin{align*}
\vdash \nu X.X, 1 \quad & \quad \vdash \nu X.X, 0 \tag{\nu} \\
\vdash (\nu X.X) \otimes (\nu X.X), 1, 0 \tag{\otimes} \\
\vdash 0 \oplus ((\nu X.X) \otimes (\nu X.X)), 1, 0 \tag{\oplus_2}
\end{align*}
\]

This positive trunk contains only one active formula which therefore is automatically chosen as a focus (and the positive trunk actually already focused on it).

Subproofs

\[
\begin{align*}
\vdash \nu X.X, 1 \quad & \quad \vdash \nu X.X, 0 \tag{\nu}
\end{align*}
\]

are infinite negative branches and therefore reversed, focused proofs.

As for \(\pi_2\), its conclusion is also a negative sequent so that we build \(\text{rev}(\pi_2)\) which turns out to be focused as it is reduced to an infinite negative branch of \((\nu)\) rules:
To sum up, the focused proof associated with our starting proof object is:

\[
\vdash \nu X.X, (\mu X.X)\otimes 1 \quad (\nu)
\]

\[
\vdash \nu X.X, 1 \quad (\nu) \\
\vdash \nu X.X, 0 \quad (\otimes) \\
\vdash (\nu X.X) \odot (\nu X.X), 1, 0 \quad (\otimes_2) \\
\vdash 0 \odot ((\nu X.X) \odot (\nu X.X)), 1 \otimes 0 \quad (\otimes) \\
\vdash 0 \odot ((\nu X.X) \odot (\nu X.X)), (\nu X.X) \odot (1 \otimes 0), (\mu X.X) \otimes 1 \\
\]

\[\vdash \nu X.X, (\mu X.X) \otimes 1 \quad (\otimes)\]

C Appendix relative to Section 4

C.1 Detailed definitions

We first give a detailed description of the multicut reduction rules. In order to treat the external reduction for the tensor, we first need to introduce a few preliminary definitions. Given a sequent \(\vdash \Gamma, \Delta, F \otimes G \) that is a premise of a multicut, we need to define which part of the multicut is connected to \(\Gamma \) and which part is connected to \(\Delta \). These two sub-nets, respectively called \(C_\Gamma \) and \(C_\Delta \), will be split apart in the external tensor reduction.

Definition 46. We call cut net any set of sequents \(\{s_i\} \), that forms a valid set of premises for the multicut rule, i.e., a connected acyclic graph for the cut-connection relation. The conclusion of a cut net is the conclusion that the multicut rule would have with the cut net as premise, i.e., the set of formula occurrences that appear in the net but not as cut formulas.

Definition 47. Let \(M \) be a cut net, and \(F \) be a formula occurrence appearing in some \(s \in M \). We define \(C_F \subseteq M \) as follows. If \(F \perp \in s' \) for some \(s' \in M \), then \(C_F \) is the connected component of \(M \setminus \{s\} \) containing \(s' \). Otherwise, \(C_F = \emptyset \). If \(\Delta \) is a set of formula occurrences, we define \(C_\Delta := \bigcup_{F \in \Delta} C_F \).

Proposition 48. Let \(s = \vdash F, \Delta, \Gamma \) be a sequent, and \(M = \{s\} \cup C \) be a cut net of conclusion \(\vdash F, \Sigma \). One has \(C = C_\Delta \cup C_F \). Moreover, \(\{\vdash \Gamma\} \cup C_F \) and \(\{\vdash \Delta\} \cup C_\Delta \) are cut nets and, if \(\Sigma_\Gamma \) and \(\Sigma_\Delta \) are their respective conclusions, we have \(\Sigma = \Sigma_\Delta \cup \Sigma_\Gamma \).

Definition 49 (Multicut reduction rules). Principal and external reductions are respectively defined in Figure 4 and 5. Internal reduction is the union of merge and principal reductions. Merge reduction is defined as follows, with \(r = (\text{merge}, \{F, F'\}) \):

\[
\begin{array}{c}
C \vdash \Delta, F \\
\vdash \Gamma, F' \\
\vdash \Delta, \Gamma \quad \text{(mcut)}
\end{array}
\]

\[
\begin{array}{c}
C \vdash \Delta, F \\
\vdash \Gamma, F' \\
\vdash \Delta, \Gamma \quad \text{(mcut)}
\end{array}
\]

We can now provide more explicit notions of reduction sequences and fairness.

Definition 50. A multicut reduction sequence is a finite or infinite sequence \(\sigma = (\pi_1, r_1) \in \lambda \), with \(\lambda \in \omega + 1 \), where the \(\pi_i, r_i \) are pairs of \(\mu \text{MALL}_m^{\infty} \) proofs and \(r_i \) is label identifying a multicut reduction rule and, whenever \(i + 1 \in \lambda \), \(\pi_i \rightarrow r_i \rightarrow \pi_{i+1} \).

The following definition of fair reduction is standard from rewriting theory (see for instance chapter 9 of [25], definition 4.9.10):
Figure 4 Principal reductions, where \(r = \text{principal}(\{F, F^\perp\}) \) with \(\{F, F^\perp\} \) the principal formulas that have been reduced.

Figure 5 External reductions rules, where \(r = \text{ext}(F) \) and \(F \) is the formula occurrence that is principal after the rule application.
Definition 51 (Fair reduction sequences). A **multicut reduction sequence** \((\pi_i, r_i)_{i \in \lambda} \) is **fair** if for every \(i \in \lambda \) and \(r \) such that \(\pi_i \rightarrow_r \pi' \), there is some \(j \geq i, j \in \lambda \), such that \(\pi_j \)
contains no residual of \(r \).

Fairness is defined in the same way for a reduction path rather than a reduction sequence.

In that case, fairness can be rephrased in a simpler way: A **multicut reduction path** \((\pi_i, r_i)_{i \in \lambda} \) is **fair** if for every \(i \in \lambda \) and \(r \) such that \(\pi_i \rightarrow_r \pi' \), there is some \(j \geq i, j \in \lambda \), such that \(r \) has disappeared from \(\pi_{j+1} \) (or: \(r_j \) is \(r \) or \(r_j \) erases \(r \)).

Note that reduction paths issued from a fair reduction sequence are always fair.

We end this section with more details on definition 28, which defines useless sequents. Useless sequents of sort (3) and (4) are useless only because we are considering a reduction path and not a reduction sequence. Writing \(\Rightarrow \) for the reduction steps associated to reduction paths, we can more explicitly say that the sequent \(\vdash \Gamma, F_i \) is useless of sort (3) with distinguished formula \(F_i \) if, at some point in the reduction path, one of the following reductions is performed (with \(\{i, j\} = \{1, 2\} \)):

\[
\begin{align*}
\frac{C \vdash \Gamma, F_1 \Gamma, F_2 \quad (\&)}{\vdash \Sigma, F_1 \otimes F_2} (\text{mcut}) \rightarrow_r \frac{C \vdash \Gamma, F_j \quad \Delta, F_2}{\vdash \Sigma, F_j} (\text{mcut})
\end{align*}
\]

Moreover, the second reduction renders all sequents of \(C_{1\forall} \) useless of sort (4). Their distinguished formulas are cut formulas, chosen based on a traversal of the acyclic graph \(C_{1\forall} \), in a way which ensures that \(G \) and \(G^\perp \) are never both distinguished. In particular, for each \(s' \in C_{1\forall} \) that is cut-connected to \(\vdash \Gamma, F_i \) on \(G \), we choose \(G^\perp \) as the distinguished formula of \(s' \). More precisely, we define the distinguished formulas of \(C_{1\forall} \) inductively as follows:

1. The distinguished formula of \(\Gamma, F_i \) is \(F_i \).
2. If the distinguished formula of a sequent \(s \) has been defined, and if \(s' \) cut-connected to \(s \) on \(G \in s' \), we choose \(G \) as the distinguished formula of \(s' \).

Notice that two dual cut formulas \(G \) and \(G^\perp \) can never both be distinguished.

C.2 Truncated truth semantics

In order to develop the soundness argument for the interpretation of truncated formula occurrences, we need to work with a slightly enriched notion of formula. We thus introduce below a generalization of formulas and of the interpretation of Definition 33.

Definition 52. **Marked pre-formulas** are built over the following syntax, where \(\theta \) is an ordinal:

\[\varphi, \psi ::= 0 \mid \top \mid \varphi \oplus \psi \mid \varphi \otimes \psi \mid \bot \mid 1 \mid \varphi \otimes \psi \mid \varphi \vee \psi \mid \mu X. \varphi \mid \nu^\theta X. \varphi \mid X \text{ with } X \in \mathcal{V}.\]

A marked formula is a marked pre-formula with no free variables. A marked formula occurrence is given by a marked formula \(\varphi \) and an address \(\alpha \) and is written \(\varphi_\alpha \).

Definition 53. Let \(\bigvee E \) be the truncation \(\alpha \mapsto \top \). Let \(f \) be an operator over \(E \). We define the iterations of \(f \) starting from \(\bigvee E \) by:
We define the interpretation of a marked formula occurrence as follows, generalizing Definition 33:

Definition 54. Let φ_α be a marked formula occurrence and E be an environment, i.e., a function mapping every free variable of φ to an element of E. We define $[\varphi_\alpha]^E \in B$, the interpretation of φ_α in the environment E as follows: if $\alpha \in \text{Dom}(\tau)$ then $[\varphi_\alpha]^E = \tau(\alpha)$; otherwise:

1. $[X_\alpha]^E = E(X)(\alpha)$, $[\top]^E = \top$, $[0_\alpha]^E = 0$, $[1_\alpha]^E = \top$ and $[\bot_\alpha]^E = 0$.
2. $[[\varphi \otimes \psi_\alpha]]^E = [\varphi_\alpha]^E \land [\psi_\alpha]^E$, for $\otimes \in \{\&, \otimes\}$.
3. $[[\mu X.\varphi_\alpha]]^E = \text{lfp}(f)(\alpha)$ and $[[\nu X.\varphi_\alpha]]^E = f^\delta(\top)$ where $f : E \rightarrow E$ is defined by:

$$f : h \mapsto \beta \mapsto \begin{cases}
\tau(\beta) & \text{if } \beta \in \text{Dom}(\tau) \\
[\varphi_\beta]^E & \text{if } \beta \notin \text{Dom}(\tau)
\end{cases}$$

We denote by $O(\varphi, X, E)$ the operator f and we set $[\varphi]^E := ([\varphi_\alpha]^E)$.

As is standard, the least fixed point of f is guaranteed to exist in the above definition because $[\varphi]^E$ is a monotonic operator in the complete lattice E, obtained by lifting the lattice B where $0 \leq \top$ with a pointwise ordering.

Proposition 55 (Cousot & Cousot). Let λ the least ordinal such that the class $\{\delta : \delta \in \lambda\}$ has a cardinality greater than the cardinality $\text{Card}(E)$. Let f be a monotonic operator over E. The sequence $(f^\delta(\top))_{\delta \in \lambda}$ is a stationary decreasing chain, its limit $f^\lambda(\top)$ is the greatest fixed point of f.

Let \mathcal{F} be the marked formula occurrence obtained from F by marking every ν binder by λ. As a consequence of Proposition 55, one has that $[F] = [\mathcal{F}]$.

Lemma 56. Let φ, ψ be marked pre-formulas such that $X \notin \text{fv}(\psi)$. One has:

$$[[\varphi_\alpha]^{E, X \mapsto \psi}]^E = [[\varphi[\psi/X], \alpha]]^E.$$

Proof. The proof is by induction on φ. We treat only the cases where φ is a fixed point formula; the other cases are immediate.

Suppose that $\varphi = \nu Y^\varphi \xi$ and let $f = O(\xi, Y, E, X \mapsto [\psi]^E)$ and $g = O(\xi[\psi/X], Y, E)$. By induction hypothesis one has $f^\delta(\top) = g^\delta(\top)$, which concludes this case.

Suppose now that $\varphi = \mu Y^\varphi \xi$, then we have:

$$[[\mu Y^\varphi \xi_\alpha]]^{E, X \mapsto \psi} = \text{lfp}(O(\xi, Y, E, X \mapsto [\psi]^E))(\alpha)$$

$$\triangleq \text{lfp}(O(\xi, Y, E, X \mapsto [\psi]^E,Y \mapsto h))(\alpha)$$

$$\uparrow \downarrow$$

$$\text{lfp}(O(\xi[\psi/X], Y, E))(\alpha)$$

$$= [[\mu Y^\varphi \xi[\psi/X], \alpha]]^E$$

We are considering capture-free substitutions, hence $Y \notin \text{fv}(\psi)$ and $[\psi]^E,Y \mapsto f = [\psi]^E$.

An immediate consequence of this proposition is that the interpretation of a least fixed point formula is equal to the interpretation of its unfolding:
Lemma 57. If $\alpha \notin \text{Dom}(\tau)$, $[(\mu X.\varphi)_{\alpha}]^E = [(\varphi[\mu X.\varphi/X])_{\alpha.i}]^E$

Proof. We set $f = \mathcal{O}(\varphi, X, E)$. Let us notice first that for all $\alpha \in \Sigma^*$, one has $[(\mu X.\varphi)_{\alpha}]^E = \text{lfp}(f)(\alpha)$. Indeed, one has the equality by definition when $\alpha \notin \text{Dom}(\tau)$ and it is easy to prove it when $\alpha \in \text{Dom}(\tau)$ since both sides are equal to $\tau(\alpha)$.

$$[(\mu X.\varphi)_{\alpha}]^E = \text{lfp}(f)(\alpha)$$
$$= [\varphi_{\alpha.i}]_{\alpha.i}^E$$
$$= [\varphi_{\alpha.i}]_{\alpha.i}^E$$

Lemma 58. If $[(\nu X^\theta.\varphi)_{\alpha}]^E = 0$ and $\alpha \notin \text{Dom}(\tau)$ then there is an ordinal $\gamma < \theta$ s.t. $[(\varphi[\nu X^\theta.\varphi/X])_{\alpha.i}]^E = 0$.

Proof. We set $f = \mathcal{O}(\varphi, X, E)$. If θ is a successor ordinal $\delta + 1$, then:

$$[(\nu X^\theta.\varphi)_{\alpha}]^E = f^{\delta+1}(\mathcal{V}E)(\alpha)$$
$$= [\varphi_{\alpha.i}]_{\alpha.i}^E$$

We take γ to be the ordinal δ and we have obviously that $[(\varphi[\nu X^\theta.\varphi/X])_{\alpha.i}]^E = 0$.

If θ is a limit ordinal, then:

$$[(\nu X^\theta.\varphi)_{\alpha}]^E = f^\theta(\mathcal{V}E)(\alpha)$$
$$= \bigcap_{\beta < \theta} f^{\beta}(\mathcal{V}E)$$
$$= \bigcap_{\delta + 1 < \theta} f^{\delta+1}(\mathcal{V}E)$$

Hence there is a successor ordinal $\delta + 1$ such that $[(\nu X^\theta.\varphi)_{\alpha}]^E = f^{\delta+1}(\mathcal{V}E)(\alpha)$ and we continue as before.

We prove easily the following lemma by induction on F:

Lemma 59. Let F be an (unmarked) formula occurrence. One has $[F^\perp] = [F]^\perp$.

We can finally establish our soundness result:

Proposition (34). If Γ is provable in μMALL_∞, then $[F] = \top$ for some $F \in \Gamma$.

Proof. If F is a marked formula occurrence, we denote by F^* the formula occurrence obtained by forgetting the marking information.

Suppose that Γ has a μMALL_∞ proof π and that $[F] = 0$ for all $F \in \Gamma$. We will construct a branch $\gamma = s_0s_1...$ of π and a sequence of functions $f_0, f_1, ...$ where f_i maps every formula occurrence G of s_i to a marked formula occurrence $f_i(G)$ such that $[f_i(G)] = 0$ and $f_i(G^*) = G$ unless $G = \varphi_{\alpha.i}$ with $\alpha \in \text{Dom}(\tau)$. We set $s_0 = \Gamma$ and $f_0(F) = \overline{F}$. One has $[\overline{F}] = [F] = 0$. Suppose that we have constructed s_i and f_i. We construct s_{i+1} depending on the rule applied to s_i:

- If the rule is a logical rule, G being principal in s_i, we set $G_m := f_i(G)$, we have the following cases:
ν is thus still compatible with

If is compatible with a truncation τ is compatible with

The cases when π is compatible with

Suppose that the rule applied to

If G = H ⊗ K, then G_m is of the form G_m = H_m ⊗ K_m. We set s_{i+1} to be the unique premise of s_i, f_{i+1}(H) = H_m and f_{i+1}(K) = K_m. Since [G_m] = 0 and [G_m] = [H_m] ∨ [K_m], one has [G_m] = 0 and [K_m] = 0. For every other formula occurrence L of s_{i+1} we set f_{i+1}(L) = f_i(L).

If G = H ⊕ K, we proceed exactly in the same way as above.

If G = H ⊗ K, then G_m is of the form G_m = H_m ⊗ K_m. Since [G_m] = 0 and [G_m] = [H_m] ∧ [K_m], one has [H_m] = 0 or [K_m] = 0. Suppose wlog that [H_m] = 0. We set s_{i+1} to be the premise of s_i that contains H and f_{i+1}(H) = H_m. For every other formula occurrence L of s_{i+1} we set f_{i+1}(L) = f_i(L).

If G = H & K, we proceed exactly in the same way as above.

If G = μX.K, then G_m is of the form G_m = μX.K_m. We set s_{i+1} to be the unique premise of s_i, and f_{i+1}(K[G/K]) = K_m[G_m/X]. By Corollary 57 and since [G_m] = 0, one has [K_m[G_m/X]] = 0. For every other formula occurrence L of s_{i+1}, we set f_{i+1}(L) = f_i(L).

If G = νX.H, then G_m is of the form G_m = νX^δ.K_m. Let s_{i+1} be the unique premise of s_i. By corollary 58 and since [G_m] = 0, there is an ordinal δ < θ such that [K_m[νX^δ.K_m/X]] = 0. We set f_{i+1}(H[G/X]) = K_m[νX^δ.K_m/X] and for every other formula occurrence L of s_{i+1}, we set f_{i+1}(L) = f_i(L).

Suppose that the rule applied to s_i is a cut on the formula occurrence G. By Lemma 59, either [G] = 0 or [G^⊥] = 0, suppose wlog that [G] = 0. We set s_{i+1} to be the premise of s_i containing G, f_{i+1}(G) = G and for every other formula occurrence L of s_{i+1}, we set f_{i+1}(L) = f_i(L).

If the rule applied to s_i is the rule (τ) with a principal formula G = φ_α, then α ∈ Dom(τ) and f_i(G) = ψ_α where ψ^τ = φ. Hence [f_i(G)] = τ(α). By construction [f_i(G)] = 0, hence τ(α) = 0 and [τ(α, i)] = 0. We set s_{i+1} to be the unique premise of s_i.

Since π is a valid pre-proof, its branch γ must contain a valid thread t = F_0 F_1 Let νX.φ be the minimal formula of t and i_0 i_1 ... be the sequence of indices where νX.φ gets unfolded. By construction, for all k > 0 one has f_{i_k}(F_k) = νX^θ_k G_k and the sequence of ordinals (θ_k)_k is strictly decreasing, which contradicts the well-foundedness of ordinals.

We finally prove Proposition 36, generalized as follows:

Proposition 60. Let φ_α be a pre-formula occurrence compatible with τ and containing no ν binders, no ⊃ and no 1 subformulas. Let E be an environment such that for all β /∈ Dom(τ), E(X)(β) = 0. We have [φ_α]^E = 0.

Proof. The proof is by induction on φ.

The cases when φ = 0 or ⊥ are trivial.

If φ = X, then [X_α]^E = E(X)(α) = 0 by hypothesis on E and since α /∈ Dom(τ) by compatibility with τ.

If φ = ξ ⊕ ψ, where ⊕ ∈ {⊕, ⊃}, then [([ξ ⊕ ψ])_α]^E = [ξ_α]^E ∨ [ψ_α]^E. Since (ξ ⊕ ψ)_α is compatible with τ, one has α.l /∈ Dom(τ) and α.r /∈ Dom(τ). Indeed, if a formula is compatible with a truncation τ, then τ cannot truncate a son of ⊕ or a ⊃ node. We can thus apply our induction hypothesis, obtaining [ξ_α]^E = [ψ_α]^E = 0, hence [([ξ ⊕ ψ])_α]^E = 0.

If φ = ξ ⊕ ψ, where ⊕ ∈ {⊥, ⊃}, then [([ξ ⊕ ψ])_α]^E = [ξ_α]^E ∧ [ψ_α]^E. Since (ξ ⊕ ψ)_α is compatible with τ, one has α.l /∈ Dom(τ) or α.r /∈ Dom(τ). Indeed, if a formula is compatible with a truncation τ, then τ cannot truncate both sons of a ⊃ or a ⊗ node.

We conclude by induction as before on the subformula that is not truncated, and which is thus still compatible with τ.
If $\varphi = \mu X.\psi$, then $[\mu X.B]^E = \operatorname{lfp}(f)(\tau)$ where f is as in the definition 33. By Cousot’s theorem [9], $[(\mu X.B)_\alpha]^E = \bigvee_{\delta < \lambda} \varphi^\delta(\land E)(\alpha)$. We show by an easy transfinite induction that for all $\delta < \lambda$ and $\beta \notin \operatorname{Dom}(\tau)$, we have $\varphi^\delta(\land E)(\beta) = 0$. This concludes the proof.