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DENSITY OF THE SPAN OF POWERS OF A FUNCTION À LA

MÜNTZ-SZÁSZ

PHILIPPE JAMING & ILONA SIMON

Abstract. The aim of this paper is to establish density properties in Lp spaces of the span of
powers of functions {ψλ : λ ∈ Λ}, Λ ⊂ N in the spirit of the Müntz-Szász Theorem. As density
is almost never achieved, we further investigate the density of powers and a modulation of powers
{ψλ, ψλeiαt : λ ∈ Λ}. Finally, we establish a Müntz-Szász Theorem for density of translates of
powers of cosines {cosλ(t − θ1), cosλ(t − θ2) : λ ∈ Λ}. Under some arithmetic restrictions on
θ1 − θ2, we show that density is equivalent to a Müntz-Szász condition on Λ and we conjecture
that those arithmetic restrictions are not needed. Some links are also established with the recently
introduced concept of Heisenberg Uniqueness Pairs.

1. Introduction

The aim of this paper is to establish density properties in Lp spaces of the span of powers of a
single or a pair of functions in the spirit of the Müntz-Szász Theorem.

Representing a generic function of some function space in terms of a family of simple functions
is one of the main tasks in analysis. For instance, complex analysis deals with functions that can
be expressed as power series, that is, the span of the functions {xk, k ∈ N}. Fourier analysis
deals with the representation of functions in terms of the simple functions {cos 2kπt, sin 2kπt}k∈Z

or alternatively {e2ikπt =
(
e2iπt

)k}k∈Z. Exploring the spanning properties (basis, minimal set,...)

of the restricted trigonometric system {e2ikπt}k∈Λ, Λ ⊂ Z in various function spaces has lead to
a considerable bulk of Literature (see e.g. [Ru] as a starting point). In order to establish good
spanning properties of the restricted trigonometric system, the first step consists in knowing if this
system is total (that is, if its span is dense) in a given function space. Our aim here is to set a basic
stone for similar properties when the basic brick e2iπt is replaced by some other functions.

When considering the power functions {tλ, λ ∈ Λ}, the problem dates back to the early 20th
century. This problem leads to one of the most intriguing results, the Müntz-Szász Theorem [Mu, Sz]
which relates the density of powers {xλ : λ ∈ Λ} in C([0, 1]) with an arithmetic property of Λ, namely

the divergence of the series
∑

λ∈Λ\{0}

1

λ
. This theorem has been extended in many ways, in particular

to Lp spaces, see e.g. [BE, CE, Er, EJ, S] and the nice survey [Al] for more on the subject. We will
recall precise statements needed here in the next section.

The question we are asking here is of the same nature but we want to allow powers of more general
functions than the identity. More precisely, we want to investigate the density of systems of the form
{ψλ : λ ∈ Λ} in Lp([a, b]) or C([a, b]) when ψ : [a, b] → R is a smooth function and Λ is a set of
integers (ψ may change sign). It is rather easy to notice that such a density can only occur when ψ is
monotonic (see Proposition 3.1 below). On the other hand, if ψ has a local extrema then ψ has some
symmetry and this symmetry will also occur in the entire closed span of {ψλ : λ ∈ Λ}. Therefore,
density can not be achieved for such functions. The question then arises on how to complete this
system in order to obtain density.
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One idea is to add translations of ψ. For instance, for a given f ∈ C([0, 1]) (here seen as the space
of 1-periodic functions), we can consider the space

T (f) = span{fn(t− τ), n ∈ N, τ ∈ [0, 1]}.
As T (cos 2πt) is an algebra under pointwise multiplication, then, according to the Stone-Weierstrass
Theorem, it is dense in C([0, 1]). This has been further investigated by Kerman and Weit [KW] who
gave a characterization of the f ’s for which T (f) is dense in C([0, 1]). Further generalizations can
be found e.g. in [RSW]. We address here a similar question for f(t) = cos 2πt and we show that the
set of powers and translates can then be substantially reduced. This should call for more research
on density of

TΛ,T (f) = span{fλ(t− τ), λ ∈ Λ, τ ∈ T }.
A second option consists in adding modulations, instead of translate. In other words we are now

looking for density criteria for

MΛ,Ω(f) = span{fλ(t)eiωt, λ ∈ Λ, ω ∈ Ω}.
Here we show that if Λ satisfies a Müntz-Szász type condition, two modulations suffice when f has
a single local maximum.

More precisely, our main results can be stated as follows (the general statement is more precise):

Theorem. Let Λ be a set of non-negative integers containing zero and write Λ = {0} ∪ Λe ∪ Λo
where Λe (resp. Λo) are the non-zero even (resp. odd) integers in Λ. Let θ1, θ2 ∈ R such that θ1−θ2
is an irrational algebraic number and let T = {θ1, θ2} and Ω = {0, ω} with |ω| < 1/2. Then the
following are equivalent:

(1)
∑

λ∈Λe

1

λ
= +∞ and

∑

λ∈Λo

1

λ
= +∞;

(2) MΛ,Ω

(
cosπt

)
is dense in Lp([0, 1]), 1 < p < +∞;

(3) TΛ,T (cos 2πt) is dense in Lp([0, 1]), 1 < p < +∞.

Moreover, the result stays true if Lp([0, 1]) is replaced by C([0, 1]).
For MΛ,Ω, the function cosπt can be replaced by any C2 smooth function ψ : [0, 1] → R such

that ψ′ vanishes at a single point t0 ∈ (0, 1) and ψ′′(t0) 6= 0.

We conjecture that the density of TΛ,T (cos 2πt) is valid as soon as θ1 − θ2 is irrational, while we
prove that it is not valid when θ1 − θ2 is rational.

The remaining of the paper is organized as follows. In the next section, we present some back-
ground on the Müntz-Szász Theorem. We then devote a section to our results on modulations while
in Section 4 we prove our result concerning density of translates of the cosine function. In the last
section we conclude by establishing some links with the recently introduced concept of Heisenberg
Uniqueness Pairs.

2. Background and notations

Definition 1. Let Λ ⊂ N := {0, 1, 2, . . .} and I = [a, b], a < b be a bounded interval. We will denote
by Λe = Λ ∩ (2N \ {0}) and Λo = {0} ∪

(
Λ ∩ (2N+ 1)

)
.

Let us define an (I-MS) sequence in the following way:

• when either a = 0 or b = 0, then we call Λ an I-Müntz-Szász sequence, if 0 ∈ Λ and
∑

λ∈Λ\{0}

1

λ
= +∞;

• when either a > 0 or b < 0, then we call Λ an I-Müntz-Szász sequence, if
∑

λ∈Λ\{0}

1

λ
= +∞;
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• when a < 0 < b, then we call Λ an I-Müntz-Szász sequence, if 0 ∈ Λ,

∑

λ∈Λe

1

λ
= +∞ and

∑

λ∈Λo

1

λ
= +∞.

We will further use the following notation: for p ∈ [1,∞], we write Xp(I) = Lp(I) if 1 ≤ p < +∞
and X∞(I) = C(I). We then define p′ to be the usual dual index,

1

p
+

1

p′
= 1 with the convention

that 1/∞ = 0. Finally, we write X ′
p = Xp′ .

The classical Müntz-Szász Theorem [S, page 23], see also [BE, Section 6], states that

Theorem 2.1 (Müntz-Szász). Let Λ ⊂ N, 1 ≤ p ≤ +∞,
1

p
+

1

p′
= 1 and I ⊂ R be a bounded

interval. The following conditions are equivalent

(i) The set {xλ, λ ∈ Λ} is total in Xp(I).

(ii) If f ∈ X ′
p(I) is such that

∫

I

f(s)sλ ds = 0 for every λ ∈ Λ, then f = 0.

(iii) Λ is an I-Müntz-Szász sequence.

Moreover,
— if I ⊂ R+ or R− and

∑
λ∈Λ\{0}

1
λ < +∞, then every function in the closed linear span of

{xλ, λ ∈ Λ} is analytic in the interior of I;
— if I = [a, b] with a < 0 < b and

∑
λ∈Λe

1
λ < +∞ (resp.

∑
λ∈Λo

1
λ < +∞) then the even (resp.

odd) part of each function in the closed linear span of {xλ, λ ∈ Λ} is analytic on (a, b) \ {0}.

Of course, the equivalence of (i) and (ii) is a direct consequence of the Hahn-Banach Theorem.
The classical Müntz-Szász Theorem covers only the case I = [0, 1] (and thus I = [a, b] with ab = 0),
the more general case I = [a, b], ab 6= 0 is due to Clarkson-Erdős and Schwartz. The case where I
is no longer included in a half-line is an easy consequence of the classical Müntz-Szász Theorem by
writing f in (ii) as a sum of an even and odd function (after extending f by 0 so that it is defined
on a symmetric interval). Also, this theorem is usually stated for density in C(I) but the statement
is the same for Lp(I) when Λ ⊂ N, see e.g. [BE, Section 6].

Note that when I intersects both R+ and R− the statement can be reformulated in terms of the
Fourier transform that we normalize as

f̂(ζ) = F [f ](ζ) :=

∫

R

f(s)e−isζ ds

if f ∈ L1(R) and extended to L2(R) in the usual way. In this case, if ζ0 ∈ R, then (i),(ii),(iii) are
equivalent to

(iv)
dλ

dxλ
f̂(ζ0) = 0, for every λ ∈ Λ implies f = 0.

3. Density of powers of a fixed function and modulation

In this section I will still be a fixed bounded closed interval and ψ : I → R a C1-smooth function
(one may slightly weaken this condition). We will first prove the following result:

Proposition 3.1. Let a, b ∈ R and ψ : [a, b] → R be a C2 function such that ψ′ and ψ′′ do not vanish
simultaneously. Let p ∈ [1,+∞]. Let J = ψ([a, b]) and let Λ ⊂ N. The following are equivalent:

(i) {ψλ : λ ∈ Λ} is total in Xp(a, b).
(ii) ψ is one-to-one and Λ is a J-Müntz-Szász sequence.

Proof. Let us first assume that ψ is not one-to-one. Then ψ has a local extremum at a point x0 in
the interior of [a, b]. Therefore, there exists a ≤ a′ < x0 < b′ ≤ b and a map ϕ : [a′, x0] → [x0, b

′]
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such that ϕ is one-to-one and onto and ψ ◦ ϕ = ψ on [a′, x0]. Let f be any non-zero C1 function on
[x0, b

′] and extend f to [a′, x0] by setting

f(x) = −ϕ′(x)f
(
ϕ(x)

)

and then extend f further to [a, b] \ [a′, b′] by setting f(x) = 0. Then f ∈ Lp
′

(a, b) (1/p+ 1/p′ = 1)
is non-zero and

∫ b

a

f(x)ψλ(x) dx =

∫ b′

a′
f(x)ψλ(x) dx =

∫ x0

a′
+

∫ b′

x0

f(x)ψλ(x) dx.

Changing variable x = ϕ(t) in the first integral we obtain
∫ b

a

f(x)ψλ(x) dx =

∫ x0

b′
f
(
ϕ(x)

)
ψλ
(
ϕ(x)

)
ϕ′(x) dx+

∫ b′

x0

f(x)ψλ(x) dx = 0.

It follows that {ψλ : λ ∈ Λ} is not total in Xp(a, b).
Let us now assume that ψ is one-to-one so that ψ′ does not vanish (otherwise, if ψ′(x0) = 0

then, by assumption, ψ′′(x0) 6= 0 so that ψ′ changes sign at x0 and ψ would not be one-to-one). In
particular, |ψ′| is bounded below. For a function f on (a, b) we define the function ψ∗f on J by

ψ∗f(t) =
f
(
ψ−1(t)

)

ψ′
(
ψ−1(t)

) . Then, as |ψ′| is bounded below, f ∈ X ′
p(a, b) if and only if ψ∗f ∈ X ′

p(J).

Further, changing variable t = ψ(x) we get
∫ b

a

f(x)ψλ(x) dx =

∫

J

f
(
ψ−1(t)

)

ψ′
(
ψ−1(t)

) tλ dt.

Applying the Müntz-Szász Theorem, the above proposition follows. �

The question now arises on how to modify the set {ψλ, λ ∈ Λ} in order to obtain a total set
when ψ is not one-to-one. In our opinion, there are two natural ways to do so, if one considers the
Müntz-Szász theorem as a statement about the cancellation of the Fourier transform of a compactly
supported function in a point. The first one consists of adding modulations the second one consists
of adding translations. The following result deals with modulations and shows the equivalence
(1) ⇔ (2) of the theorem stated in the introduction.

Theorem 3.2. Let a, b ∈ R, ψ be a C2 function [a, b] → R such that ψ′ changes sign in a single

point x0 ∈ (a, b). Let − 1

b− a
< α <

1

b− a
and define eα(t) = eiαt. Let Λ,Λ′ ⊂ N and p ∈ (1,+∞].

The following are equivalent.

(i) {ψλ, λ ∈ Λ} ∪ {ψλeα, λ ∈ Λ′} is total in Xp.
(ii) Λ and Λ′ are both ψ([a, b])-Müntz-Szász sequences.

Example 1. Typical examples we have in mind are the functions ψ(t) = cosπt and ψ(t) = 1−cosπt
on [−1/2, 1/2] or equivalently ψ(t) = sinπt and ψ(v) = 1− sinπt on [0, 1].

Further examples are ψ(t) = t2 on [−1, 1], ψ(t) = 1− t2 on [0, 1]. A translation and dilation then
gives a density criteria for the family {[t(1− t)]λ, [t(1− t)]λeit : λ ∈ Λ} in Lp([0, 1]).

Remark 1. The function eα can be replaced by any function of the form eiϕ(t) where the real valued

function ϕ is chosen such that, if ψ(v) = ψ(v′) with v 6= v′, then ei
(
ϕ(v)−ϕ(v′)

)
6= 1.

If one chooses ϕ such that, if ψ(v) = ψ(v′) with v 6= v′ implies ei
(
ϕ(v)−ϕ(v′)

)
6= ±1, then the

same result stays true for the system {ψλ cosϕ, λ ∈ Λ} ∪ {ψλ sinϕ, λ ∈ Λ′}. We leave the necessary
adaptation of the proof below to the reader.

Proof. Let p′ be given by
1

p
+

1

p′
= 1. We will only prove the theorem for p ∈ (1,∞) as no change

is needed for p = +∞.
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We will use the following notation: set J = ψ([a, b]), J+ = ψ([x0, b]) and J− = ψ([a, x0]) and
ψ−1
+ : J+ → [x0, b] be the inverse of ψ on [x0, b] while ψ

−1
− : J− → [x0, b] is the inverse of ψ on

[a, x0]. Then
∫ b

a

f(x)ψ(x)λ dx =

∫ x0

a

f(x)ψ(x)λ dx+

∫ b

x0

f(x)ψ(x)λ dx

=

∫

J−

f
(
ψ−1
− (y)

)

ψ′
(
ψ−1
− (y)

)yλ dy +
∫

J+

f
(
ψ−1
+ (y)

)

ψ′
(
ψ−1
+ (y)

)yλ dy

=

∫

J

(
1J−(y)

f
(
ψ−1
− (y)

)

ψ′
(
ψ−1
− (y)

) + 1J+(y)
f
(
ψ−1
+ (y)

)

ψ′
(
ψ−1
+ (y)

)
)
yλ dy.

But then if we set∗

g(y) = 1J−(y)
f
(
ψ−1
− (y)

)

ψ′
(
ψ−1
− (y)

) + 1J+(y)
f
(
ψ−1
+ (y)

)

ψ′
(
ψ−1
+ (y)

)

we get ∫ b

a

f(x)ψ(x)λ dx =

∫

J

g(y)yλ dy.

Similarly, if we set

g̃(x) = 1J−(y)
f
(
ψ−1
− (y)

)
eiαψ

−1
− (y)

ψ′
(
ψ−1
− (y)

) + 1J+(y)
f
(
ψ−1
+ (y)

)
eiαψ

−1
+ (y)

ψ′
(
ψ−1
+ (y)

)

we get ∫ b

a

f(x)eiαxψ(x)λ dx =

∫

J

g̃(y)yλ dy.

Let us now prove (ii)⇒(i). Assume that 0 is not in the interior of J and that Λ and Λ′ are both
J-Müntz-Szász sequences (the proof when 0 is in the interior of J and Λe,Λo and Λ′

e,Λ
′
o are all

Müntz-Szász sequences is similar). Notice that if f ∈ Lp(a, b), then g, g̃ ∈ L1(J). According to the
Müntz-Szász Theorem, if

∫ b

a

f(x)ψ(x)λ dx =

∫ b

a

f(x)ψ(x)λ
′

eiαx dx = 0

for every λ ∈ Λ, λ′ ∈ Λ′, then g = g̃ = 0. But, writing

f−(y) = 1J−(y)
f
(
ψ−1
− (y)

)

ψ′
(
ψ−1
− (y)

) and f+(y) = 1J+(y)
f
(
ψ−1
+ (y)

)

ψ′
(
ψ−1
+ (y)

)

and u± = eiαψ
−1
± (y), g = g̃ = 0 is equivalent to

{
f−(y) + f+(y) = 0
u−f−(y) + u+f+(y) = 0

.

As u− 6= u+, this implies f+ = f− = 0 thus f = 0.

Conversely, for (i)⇒(ii), assume that one of Λ,Λ′ is not a J-Müntz-Szász sequence. Let p̃ = 3p′

3p′−1

so that
1

p̃
+

1

3p′
= 1. Applying the Müntz-Szász Theorem in Lp̃(J), there exist g, g̃ ∈ L3p′ , one of

them non zero and the other 0, such that
∫

J

g(y)yλ dy =

∫

J

g̃(y)yλ
′

dy = 0

∗with the obvious abuse of notation when y /∈ J
−

or y /∈ J+.
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for every λ ∈ Λ, λ′ ∈ Λ′. If we find f ∈ Lp
′

([a, b]) such that the associated f± are solution of

(3.1)

{
f−(y) + f+(y) = g
u−f−(y) + u+f+(y) = g̃

then also ∫ b

a

f(x)ψ(x)λ dx =

∫ b

a

f(x)ψ(x)λ
′

eiαx dx = 0.

But, the system (3.1) has as solution

f+(y) =
u−g − g̃

u− − u+
and f−(y) = − u+g − g̃

u− − u+

that is

1J+(y)f
(
ψ−1
+ (y)

)
= ψ′

(
ψ−1
+ (y)

) eiαψ−1
− (y)g(y)− g̃(y)

eiαψ
−1
− (y) − eiαψ

−1
+ (y)

and

1J−(y)f
(
ψ−1
− (y)

)
= −ψ′

(
ψ−1
− (y)

) eiαψ
−1
+ (y)g(y)− g̃(y)

eiαψ
−1
− (y) − eiαψ

−1
+ (y)

.

From this, we get

f(x) =





ψ′(x) e
iαψ

−1
+

◦ψ(x)
g◦ψ(x)−g̃◦ψ(x)

e
iαψ

−1
+

◦ψ(x)
−eiαx

for x ∈ [a, x0]

ψ′(x) e
iαψ

−1
− ◦ψ(x)

g◦ψ(x)−g̃◦ψ(x)

e
iαψ

−1
− ◦ψ(x)

−eiαx
for x ∈ [x0, b]

.

But now, as exactly one of g, g̃ is zero, f is not the zero function. It remains to prove that f ∈
Lp

′

(a, b). For this, define f− on [a, x0] and f+ on [x0, b] by

f±(x) = ψ′(x)
eiαψ

−1
∓ ◦ψ(x)g ◦ ψ(x)

eiαψ
−1
∓ ◦ψ(x) − eiαx

and f̃± = f − f±. It is enough to show that f−, f̃− ∈ Lp
′

(a, x0) and f+, f̃+ ∈ Lp
′

(x0, b).
Next, changing variable x = ψ−1

− (t), we get

∫ x0

a

|f−(x)|p
′

dx =

∫ x0

a

∣∣∣∣∣ψ
′(x)

eiαψ
−1
+ ◦ψ(x)g ◦ ψ(x)

eiαψ
−1
+ ◦ψ(x) − eiαx

∣∣∣∣∣

p′

dx

=

∫

J−

|ψ′
(
ψ−1
− (t)

)
|p′−1

∣∣∣eiαψ
−1
+ (t) − eiαψ

−1
− (t)

∣∣∣
p′
|g(t)|p′ dt

=
1

2p′

∫

J−

|ψ′
(
ψ−1
− (t)

)
|p′−1

∣∣sin α
2

(
ψ−1
+ (t)− ψ−1

− (t)
)∣∣p′

|g(t)|p′ dt.

But now, as ψ′′(x0) 6= 0, ψ(x) = ψ(x0)+
ψ′′(x0)

2 (x−x0)2+o
(
(x−x0)2

)
. From this, one immediately

gets that

Φ(t) =
|ψ′
(
ψ−1
− (t)

)
|p′−1

∣∣sin α
2

(
ψ−1
+ (t)− ψ−1

− (t)
)∣∣p′

≈ C
(
t− ψ(x0)

)−1/2

when t → ψ(x0) one of the end points of J−. Further, the assumption on ψ implies that Φ is C2

smooth on J− \ {ψ(x0)}. In particular, Φ ∈ L3/2(J−) (say). Thus, from Hölder’s inequality,
∫ x0

a

|f−(x)|p
′

dx ≤ 1

2p′
‖Φ‖L3/2(J−)‖g‖

p′

L3p′(J−)
< +∞.

The proof for f+ and f̃± is similar. �
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4. Density of translates of powers of the cosine function

In this section, functions on [0, 1] will be identified with 1-periodic functions, so that even and
odd functions on [0, 1] make sense. We are interested in the density of translates of powers of the
cosine (or sine) function, {cosλ 2π(t− θ), λ ∈ Λ}. According to Proposition 3.1, this system is never
dense in Lp(0, 1). Actually, for this function, it is easy to describe the “orthogonal”:

Lemma 4.1. Let p ∈ [1,+∞], Λ ⊂ N, θ ∈ [0, 1) and

Tp,Λ,θ = span{cosλ 2π(t− θ), λ ∈ Λ}
be the closed subspace of Xp(0, 1) spanned by {cosλ 2π(t− θ), λ ∈ Λ}. Let

T ⊥
p,Λ,θ =

{
f ∈ X ′

p(0, 1) :

∫ 1

0

f(t) cosλ 2π(t− θ) dt = 0 ∀λ ∈ Λ

}
.

If Λ is a [−1, 1]-Müntz-Szász sequence, then

Tp,Λ,θ = {f ∈ Xp(0, 1) : f(θ + t)− f(θ − t) = 0 a.e. on [0, 1]}
and

T ⊥
p,Λ,θ = {f ∈ X ′

p(0, 1) : f(θ + t) + f(θ − t) = 0 a.e. on [0, 1]}.

Proof of Lemma 4.1. Up to translating by θ, we may assume that θ = 0. We thus want to prove
that T ⊥

p,Λ,θ is the space of odd functions in X ′
p(0, 1). Once this is established, it is obvious that Tp,Λ,θ

is the space of even functions in Xp(0, 1).
Note that

∫ 1

0

f(t) cosℓ 2πt dt =

∫ 1/2

−1/2

f(t) cosℓ 2πt dt =

∫ 1/2

0

(
f(t) + f(−t)

)
cosℓ 2πt dt.

We can now change variable u = cos 2πt to get

(4.2)

∫ 1

0

f(t) cosℓ 2π(t) dt =

∫ 1

−1

g(u)uℓ du

where

(4.3) g(u) =
1

2π
√
1− u2

[
f
(arccosu

2π

)
+ f

(
−arccosu

2π

)]
.

Now g ∈ L1(−1, 1) since
∫ 1

−1

|g(u)| du ≤ 1

2π

∫ 1

−1

∣∣∣f
(arccosu

2π

)∣∣∣+
∣∣∣f
(
−arccosu

2π

)∣∣∣ du

(1 − u2)1/2

=

∫ 1/2

0

(
|f(t)|+ |f(−t)|

)
dt < +∞

as f ∈ Xp(0, 1) ⊂ L1(0, 1). If Λ is a [−1, 1]-Müntz-Szász sequence we deduce that g = 0 which is
equivalent to f(t) + f(−t) = 0 i.e. f is odd. �

Lemma 4.2. Let p ∈ [1,+∞], Λ ⊂ N, θ ∈ [0, 1). Assume that Λ is not a [−1, 1]-Müntz-Szász
sequence. Let f ∈ Tp,Λ,θ, that is, f is even with respect to θ, f(θ + t) = f(θ − t) a.e., and assume
further that

— if
∑

λ∈Λe

1

λ
= +∞, then f(θ + 1/2− t) = f(θ + t)

— if
∑

λ∈Λo

1

λ
= +∞, then f(θ + 1/2− t) = −f(θ + t).

Then f is analytic on [0, 1) except possibly at two points.
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Remark 2. Write ck(f) for the k-th Fourier coefficient of f and note that f(θ − t) = f(θ + t) is
equivalent to c−k(f)e

−2iπkθ = ck(f)e
2iπkθ for all k. On the other hand, f(θ + 1/2− t) = ±f(θ + t)

is equivalent to c−k(f)e
−2iπkθ = ±(−1)kck(f)e

2iπkθ so that ck = 0 when k is odd — resp. ck = 0
when k is even.

Proof. Up to translating by θ, we may assume that θ = 0 i.e., f is even. Let f ∈ Tp,Λ,0 be even and
define h on [−1, 1] by

h(x) = f
(arccosx

2π

)

so that, when f(1/2− t) = f(t), h is even, while f(1/2− t) = −f(t) implies that h is odd.
Let F ⊂ Λe when h is even (resp. F ⊂ Λo when h is odd) be a finite set.
Changing variable t = arccosx

2π , we get

∫ 1/2

−1/2

∣∣∣∣∣f(t)−
∑

λ∈F

cλ cos
λ 2πt

∣∣∣∣∣

p

dt = 2

∫ 1/2

0

∣∣∣∣∣f(t)−
∑

λ∈F

cλ cos
λ 2πt

∣∣∣∣∣

p

dt

=
1

π

∫ 1

−1

∣∣∣∣∣h(x)−
∑

λ∈F

cλx
λ

∣∣∣∣∣

p
dx√
1− x2

=
2

π

∫ 1

0

∣∣∣∣∣h(x)−
∑

λ∈F

cλx
λ

∣∣∣∣∣

p
dx√
1− x2

≥ 1

π

∫ 1

0

∣∣∣∣∣h(x)−
∑

λ∈F

cλx
λ

∣∣∣∣∣

p

dx.

so that h ∈ Pp,Λe (resp. h ∈ Pp,Λo) where we denote by

Pp,A = span{ta, a ∈ A}
the closed subspace of Xp(−1, 1) spanned by {xa, a ∈ A}.

As Λe (resp. Λo) does not satisfy the Müntz-Szász condition, h is analytic on (0, 1) so that h is
analytic in (−1, 1) \ {0}. As f(t) = h(cos 2πt), the result follows. �

As one system {cosλ 2π(t − θ), λ ∈ Λ} is not total in Lp(0, 1), we may ask if adding a second
system of this kind improves the situation. Let us first show that the second system can not be
arbitrary:

Lemma 4.3. Let p ∈ [1,∞], θ1, θ2 ∈ [0, 1) and Λ,Λ′ ⊂ N. Assume that the system

{cosλ 2π(t− θ1), λ ∈ Λ} ∪ {cosλ′

2π(t− θ2), λ
′ ∈ Λ′}

is total in Xp(0, 1), then θ1 − θ2 /∈ Q.

Proof. Let us write θ1 − θ2 = m
n ∈ Q. Let ϕ be a continuous, odd and 1/n-periodic function and

f(t) = ϕ(t− θ2). Then, for every ℓ ∈ N, as f is also 1-periodic,
∫ 1

0

f(t) cosℓ 2π(t− θ2) dt =

∫ 1/2

−1/2

ϕ(t) cosℓ 2πt dt = 0

since ϕ is odd. Next, write θ1 = θ2 +
m

n
then, as ϕ is 1/n-periodic,

f(t) = ϕ(t− θ2) = ϕ(t− θ2 −m/n) = ϕ(t− θ1),

therefore, for each ℓ ∈ N,
∫ 1

0

f(t) cosℓ 2π(t− θ1) dt =

∫ 1

0

ϕ (t− θ1) cos
ℓ 2π (t− θ1) dt =

∫ 1/2

−1/2

ϕ(t) cosℓ 2πt dt = 0,
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using 1-periodicity again. It follows that {cosλ 2π(t−θ1), λ ∈ Λ}∪{cosλ′

2π(t−θ2), λ′ ∈ Λ′} is never
total in Xp(0, 1). �

We will also need the following lemma which provides a (non-orthogonal) decomposition trigono-
metric polynomials into a sum of two trigonometric polynomials with specific parity. In a sense, this
generalizes the decomposition of a function into an even and an odd function. Unfortunately, it is
only valid in full generality for trigonometric polynomials.

Lemma 4.4. Let P be a 1-periodic trigonometric polynomial with zero-mean and θ1, θ2 ∈ R such
that θ1 − θ2 /∈ Q. Then there exists a unique pair (P1, P2) of 1-periodic trigonometric polynomials
with zero-mean such that P1(θ1 − t) = P1(θ1 + t), P2(θ2 − t) = P2(θ2 + t) and P = P1 + P2.

Proof. By expanding P, P1, P2 in Fourier series, one sees that the existence of the desired decompo-
sition is equivalent to the systems

{
ck(P ) = ck(P1) + ck(P2)
c−k(P ) = e4iπkθ1 ck(P1) + e4iπkθ2 ck(P2)

, ∀k ∈ Z \ {0}.

As θ1−θ2 /∈ Q, the determinant of this system is non zero for every k 6= 0 and its solutions are given
by

(4.4) ck(P1) =
c−k(P )− ck(P )e

4iπkθ2

e4iπkθ1 − e4iπkθ2
, ck(P2) =

c−k(P )− ck(P )e
4iπkθ1

e4iπkθ2 − e4iπkθ1
.

which gives both existence and uniqueness. �

Remark 3. When θ1−θ2 = m
n ∈ Q, the lemma stays true with the same proof if we impose P, P1, P2

to have degree < n/2 for even n and < n for odd n.
Note also that the zero mean assumption is only used to guarantee uniqueness as constant

functions satisfy both parities P1(θ1 − t) = P1(θ1 + t), P2(θ2 − t) = P2(θ2 + t). Actually, the
proof shows that the P1, P2’s we obtain have both zero mean. If P has non-zero mean, we ap-
ply the lemma to P − c0(P ), which has zero mean. We may thus write P = c0(P ) + P1 + P2 =(
P1+λc0(P )

)
+
(
P2 +(1−λ)c0(P )

)
, λ ∈ R. Uniqueness would still be guaranteed if we ask for, say,

P2 to have zero mean which would imply that we take λ = 1 in the above decomposition.

Note that if P is no longer a trigonometric polynomial but a function in L1, the formula (4.4)
will in general lead to sequences that do not go to zero, so that they are not sequences of Fourier
coefficients of L1 functions.

Before going on with our main subject, let us elaborate a bit on this topic:

Lemma 4.5. Let θ1, θ2 ∈ R such that θ := θ1 − θ2 ∈ R \ Q. Let a > 0 and assume that θ is
a-approximable by rational numbers in the sense that there is a constant Cθ > 0 such that the set

{(m,n) ∈ Z : |m− nθ| < Cθn
−a}

is finite.
Let s ≥ a and f ∈ Hs(0, 1) with mean zero, then there exists a unique pair f1, f2 ∈ L2(0, 1) such

that f = f1 + f2, f1(θ1 − t) = f1(θ1 + t) and f2(θ2 − t) = f2(θ2 + t).
Moreover, if s > a+ 1/2 + j for some integer j, then f1, f2 are of class Cj.

Remark 4. From the Dirichlet Theorem, no irrational number is 1-approximable. However, ac-
cording to Khinchin’s theorem that for a > 1, almost every real number is a-approximable. Further,
from the Thue-Siegel-Roth Theorem, every algebraic number is 1 + ε-approximable for every ε > 0.
On the other hand, Liouville numbers are not a-approximable for any number. See e.g. [HS, Sc, Wa]
and references therein for more on the subject.

Proof. As previously, if the decomposition exists then the Fourier coefficients of f1, f2 are given by

ck(f1) =
c−k(f)− ck(f)e

4iπkθ2

e4iπkθ1 − e4iπkθ2
, ck(f2) =

c−k(f)− ck(f)e
4iπkθ1

e4iπkθ2 − e4iπkθ1
.
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Conversely, if these two sequences are in ℓ2 (resp. if kjck(f1), k
jck(f2) ∈ ℓ1) then the corresponding

Fourier series define f1, f2 as functions in L2(0, 1) (resp. in Cj(0, 1)).
Since f ∈ Hs, (1 + |k|)sck(f) ∈ ℓ2. On the other hand

|e4iπkθ1 − e4iπkθ2 | = 2| sinπk2θ| = 2| sinπ dist(2kθ,Z)| ≥ 4 dist(2kθ,Z).

But, dist(2kθ,Z) > 2−aCθk
−a for all but finitely many k’s so that |e4iπkθ1 − e4iπkθ2 | > 22−aCθ|k|−a

for all but finitely many k’s, thus for all |k| ≥ kθ for some kθ ∈ N.
Now, if f ∈ Hs, for |k| ≥ kθ,

|ck(f)|
|e4iπkθ1 − e4iπkθ2 | ≤

2a−2

Cθ
|k|a|ck(f)| ∈ ℓ2(Z)

if s ≥ a. Further

∑

|k|≥kθ

|k|j |ck(f)|
|e4iπkθ1 − e4iπkθ2 | ≤

∑

|k|≥kθ

|k|s|ck(f)|
22−aCθ|k|s−j−a

≤ 2a−2

Cθ



∑

|k|≥kθ

1

|k|2(s−j−a)




1/2

∑

|k|≥kθ

|k|2s|ck(f)|2



1/2

which is finite as soon as s > j + a+ 1/2. The result follows immediately. �

Remark 5. Note that if f is such that ck(f) = 0 when k is odd — resp. ck(f) = 0 when k is
even— then the same is true for f1, f2. Thus, for j = 1, 2, fj(θ + 1/2 − t) = fj(θ + t) —resp.
fj(θ + 1/2− t) = −fj(θ + t).

We are now in position to prove the following result:

Theorem 4.6. Let p ∈ [1,+∞]. Let θ1, θ2 ∈ [0, 1) be such that θ1 − θ2 /∈ Q and Λ,Λ′ ⊂ N. If Λ,Λ′

are [−1, 1]-Müntz-Szász sequences, then the system {cosλ 2π(t−θ1), λ ∈ Λ}∪{cosλ′

2π(t−θ2), λ′ ∈ Λ′}
is total in Xp(0, 1).

We will give two proofs of this theorem. The first one is “constructive” while the second one
relies on the Hahn-Banach theorem. The advantage of the second one is that it is more illustrative
for our conjecture.

Direct proof. Let f ∈ Xp(0, 1) and ε > 0. There exists a trigonometric polynomial such that
‖f − P‖p < ε (such polynomials can be given explicitly via Fejér sums). Write P = P1 + P2 with

P1, P2 given by Lemma 4.4 (those are again explicit).
Finally, as Λ,Λ′ are [−1, 1]-Müntz-Szász sequences, P1 ∈ T∞,Λ,θ1 and P2 ∈ T∞,Λ′,θ2 . Therefore,

there exists Q1, Q2 two polynomials such that, if we set πj = Qj
(
cos 2π(t−θj)

)
, then ‖Pj − πj‖p < ε

(Q1, Q2 can be explicitly given with the help of the constructive proofs of the Müntz-Szász theorem).
But then

‖f − π1 − π2‖p ≤ ‖f − P‖p + ‖P1 − π1‖p + ‖P2 − π2‖p < 3ε

as expected. �

Indirect proof. If Λ,Λ′ are [−1, 1]-Müntz-Szász sequences and f ∈ (Tp,Λ,θ1 + Tp,Λ′,θ2)
⊥ then f ∈

T ⊥
p,Λ,θ1

∩ T ⊥
p,Λ′,θ2

. Lemma 4.1 then implies that
{
f(θ1 + t) + f(θ1 − t) = 0
f(θ2 + t) + f(θ2 − t) = 0

.

This implies that f = 0 (see e.g. [Sj, Le]). For sake of completeness, here is a simple proof: looking
at Fourier coefficients, this system is equivalent to

{
e2iπkθ1ck(f) + e−2iπkiθ1c−k(f) = 0
e2iπkθ2ck(f) + e−2iπkiθ2c−k(f) = 0

, ∀k ∈ Z.
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When k = 0 we get c0(f) = 0. For k 6= 0, the system has determinant 2i sin 2kπ(θ1 − θ2) 6= 0 since
θ1 − θ2 /∈ Q. Therefore ck(f) = 0 for every k ∈ Z and thus f = 0. �

We conjecture that the reverse of this theorem is true as well:

Conjecture 1. Let p ∈ [1,+∞]. Let θ1, θ2 ∈ [0, 1) be such that θ1 − θ2 /∈ Q and Λ,Λ′ ⊂ N. If the

system {cosλ 2π(t − θ1) : λ ∈ Λ} ∪ {cosλ′

2π(t − θ2) : λ′ ∈ Λ′} is total in Xp(0, 1), then Λ,Λ′ are
[−1, 1]-Müntz-Szász sequences.

We can now prove the following partial version of the conjecture:

Theorem 4.7. Let p ∈ [1,+∞] and Λ ⊂ N. Let θ1, θ2 ∈ [0, 1) be such that θ1 − θ2 is irrational and
a-approximable for some a > 0. If the system {cosλ 2π(t − θ1), cos

λ 2π(t − θ2) : λ ∈ Λ} is total in
Xp(0, 1), then Λ is a [−1, 1]-Müntz-Szász sequence.

Proof. If Λ is not a [−1, 1]-Müntz-Szász sequence, then at least one of the series
∑

λ∈Λe
λ−1 or∑

λ∈Λo
λ−1 diverges, say the first one.

Let j > a + 1/2 and f be a Cj 1-periodic function with zero-mean and assume that f is not
analytic in at least 5 points. Assume further that ck(f) = 0 when k is odd.

Write f = f1+f2 be the decomposition given by Lemma 4.5. Note that, from the remark following
its proof, f1, f2 satisfy fℓ(θℓ + 1/2− t) = fℓ(θℓ + t), ℓ = 1, 2.

Now, as functions in Tp,Λ,θ2 satisfy ϕ(θ2 − t) = ϕ(θ2 + t), and f1(θ1 − t) = f1(θ1 + t), necessarily,
f1 ∈ Tp,Λ,θ1 since otherwise f1 would be constant. Similarly, f2 ∈ Tp,Λ,θ2 . From Lemma 4.2 we
therefore know that f1, f2 are analytic except possibly at two points each. Finally f = f1 + f2 is
analytic except at 4 points, a contradiction. �

5. A link with Heisenberg Uniqueness Pairs

The original idea behind this paper comes from an other problem, namely the notion of Heisenberg
Uniqueness Pairs recently introduced by Hedenmalm and Montes-Rodŕıguez [HMR] and further
investigated e.g. in [JK, Le, Sj]:

Definition 2. Let Λ ⊂ R2 and Γ a smooth curve. Then (Γ,Λ) is a Heisenberg Uniqueness Pair if
the only finite measure µ that is supported on Γ, absolutely continuous with respect to arc length

on Γ and such that µ̂
∣∣∣
Λ
= 0 is the measure µ = 0.

Take for instance Γ = {(cos 2πt, sin 2πt), t ∈ [0, 1)} to be the unit circle and Λ to be a set
of two lines through the origin, Λ = {(t cos θ1, t sin θ1), t ∈ R} ∪ {(t cos 2πθ1, t sin 2πθ1), t ∈ R},
θ1 6= θ2 ∈ [0, 1).

Then Lev [Le] and Sjölin [Sj] independently proved that (Γ,Λ) is a Heisenberg Uniqueness Pair
if and only if θ1 − θ2 is irrational.

But, a measure µ that is supported on Γ and absolutely continuous with respect to arc length on
Γ is determined by a density f ∈ L1(0, 1) in the following way

〈µ, ϕ〉 =
∫ 1

0

ϕ(cos 2πt, sin 2πt)f(t) dt f ∈ C(R2).

In particular, µ̂(η, ξ) =

∫ 1

0

f(t)e2iπ(η cos 2πt+ξ sin 2πt) dt so that µ̂ = 0 on Λ means that

∫ 1

0

f(t)e2iπr cos 2π(t−θ1) dt =

∫ 1

0

f(t)e2iπr cos 2π(t−θ2) dt = 0, r ∈ R.

In particular, differentiating λ times with respect to r at r = 0 leads to

(5.5)

∫ 1

0

f(t) cosλ 2π(t− θ1) dt =

∫ 1

0

f(t) cosλ 2π(t− θ2) dt = 0
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for each λ ∈ Λ. From Theorem 4.6, if (5.5) holds for every λ in some [−1, 1]-Müntz-Szász set, then
f = 0. Note that the fact that f ∈ L1 and the fact that the circle Γ is compact makes it easy to
justify all computations.

The first author’s paper [JK] contains many more examples of compact curves Γ and pairs of
lines Λ such that (Γ,Λ) is a Heisenberg Uniqueness Pair. Each such example leads to new pairs of
functions for which the sufficient part of our Müntz-Szász Theorem 4.6 holds. However, the converse
seems much more difficult to establish.
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E-mail address: ilonasimon7@gmail.com


