
HAL Id: hal-01338688
https://hal.science/hal-01338688

Submitted on 29 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A PEG-like LDPC code design avoiding short trapping
sets

Madiagne Diouf, David Declercq, Samuel Ouya, Bane Vasic

To cite this version:
Madiagne Diouf, David Declercq, Samuel Ouya, Bane Vasic. A PEG-like LDPC code design avoiding
short trapping sets. IEEE International Symposium on Information Theory (ISIT), Jun 2015, Hong
Kong, China. �10.1109/ISIT.2015.7282621�. �hal-01338688�

https://hal.science/hal-01338688
https://hal.archives-ouvertes.fr

A PEG-like LDPC code design avoiding short
Trapping Sets

Madiagne DIOUF, David DECLERCQ
ETIS, ENSEA

Univ. Cergy-Pontoise
CNRS UMR-8051

95014 Cergy-Pontoise Cedex, France
{madiagne.diouf, declercq}@ensea.fr

Samuel OUYA
LIRT, ESP

Univ. Cheikh Anta DIOP
Dakar, Senegal

samuel.ouya@gmail.com

Bane Vasic
Department of Elec.

and Comp. Eng.
University of Arizona

Tucson, AZ, 85721, USA
vasic@ece.arizona.edu

Abstract— In this paper, we propose a predictive method to
construct regular column-weight-three LDPC codes with girth
g = 8 so that their Tanner graphs contain a minimum number of
small trapping sets. Our construction is based on improvements
of the Progressive Edge-Growth (PEG) algorithm. We first show
how to detect the smallest trapping sets (5, 3) and (6, 4) in
the computation tree spread from variable nodes during the
edge assignment. A precise and rigorous characterization of
trapping sets (5, 3) and (6, 4) are given, and we then derive
a modification of the Randomized Progressive Edge-Growth
(RandPEG) algorithm [1] to take into account a new cost function
that allows to build regular column-weight dv = 3, girth 8 LDPC
codes free of (5,3) and with a minimization of (6,4). We present
the construction and the performance results in the context of
quasi-cyclic LDPC (QC-LDPC) codes.

Index Terms—Trapping sets, Error floor, Progressive Edge-
Growth (PEG), Low Density Parity Check (LDPC) codes, Tanner
graphs.

I. INTRODUCTION

The design of binary LDPC codes with very low error floors
is still a significant problem [2]–[4], not fully solved in the
literature, and of practical importance for some applications,
e.g for point-to-point satellite communication, magnetic or
optical recording [5]. For such noisy channels, the error floor
of LDPC decoders is due to the presence of certain topologies
in the Tanner graph [6], [7] such as cycles and trapping sets
(TS). In this paper, we provide a solution to build LDPC
codes using a modified version of the Progressive Edge-
Growth (PEG) algorithm, with the objective of avoiding the
most harmful/problematic structures in the Tanner graph of the
LDPC code.

In original PEG algorithm [8] is a greedy algorithm, which
was proposed to maximize the local girth of the LDPC Tanner
graph. Since then, improvements of the PEG algorithms have
been proposed to avoid small stopping sets [9], or to minimize
the number of cycles [1] with a non-greedy generalization.

So far, no attempt has been made to detect and avoid
trapping sets using a PEG-like algorithm. Since LDPC de-
coders experience error floor problems mainly because of
small trapping sets, we will focus in this paper on the smallest
trapping sets that can be considered for a given girth, i.e. the
trapping sets (5, 3) and (6, 4) for regular column-weight-three

LDPC codes with girth g = 8 [10]. The first step of our
work is to provide a characterization on how trapping sets can
be detected in the computation tree that is used in the PEG
algorithm. With this characterization, it is possible to predict
which candidate edges will effectively create trapping sets. A
cost function is then included in a Randomized-PEG algorithm
[1] such that (5, 3) TS are completely removed and the number
of (6, 4) TS is minimized.

Using this approach, we can constructively build LDPC
codes with a given girth and free of small trapping sets, which
generalizes the ideas presented in [1], [9]. We moreover focus
on the design of quasi-cyclic LDPC (QC-LDPC) codes, which
are the most largely used LDPC codes in practical applications.

The remainder of the paper is organized as follows. In
Section II we introduce the basic concepts and notations. Then,
the characterization of (5,3) TS and (6,4) TS is presented in
Section III, and the constraints to detect those structures in
the computation tree are derived. Finally, in Section IV we
describe our design algorithm using Randomized PEG and we
demonstrate the efficiency of our approach for small LDPC
codes, which we compare to existing designs through Monte
Carlo simulations. Section V concludes the paper.

II. PRELIMINARIES AND NOTATION

Let G denote the Tanner graph of an (N,K) binary LDPC
code C of rate R = K/N , which consists of the set of N
variable nodes V and the set of M check nodes C. We will
use roman alphabet to denote variable nodes and Greek letters
for check nodes. Two nodes are neighbors if there is an edge
between them. The degree of a node in G is the number of its
neighbors in G. A code C represented by the graph G is said
to be have a regular column-weight dv if all variable nodes in
V have the same degree dv . Equivalently, such code is said to
be dv-variable-node regular or just dv-variable regular. The set
of neighbors of a node u is denoted as Nu and NU denotes the
set of neighbors of all u ∈ U . A path in G is a finite sequence
of distinct vertices (variables or checks) u0, . . . , ul such that
ui−1 and ui are neighbors for 1 ≤ i ≤ l. Two paths are distinct
if they differ in at least one node. A l-cycle or cycle of length
l in G is a path u0, . . . , ul in G with u0 = ul and if ui is a
variable node then ui+1 is a check node inversely. Clearly in

a bipartite graph G, l must be even. The girth g of G is the
length of shortest cycle in G. Cdv,g denotes an ensemble of
dv-variable regular codes with girth g.

We begin by providing the definition of a trapping set as
originally defined by Richardson in [6].

Definition 1: Given a decoder input y, a trapping set (TS)
for an iterative decoder denoted by T(y) is a non-empty set
of variable nodes in G that are not corrected at the end of a
given number of iterations.
A common notation used to denote a TS is (a, b), where
a = |T|, and b is the number of odd-degree check nodes
in the subgraph induced by the set of variable nodes T. Let
T (a, b) denote the bipartite graph associated with an (a, b)
TS, where a is the number of variable nodes and b is the
number of odd-degree check nodes present in the graph. A
graph G contains an (a, b) TS of type T if there exists a
subset of variable nodes T in G whose induced subgraph
is isomorphic to T (a, b). A TS is said to be elementary if
T contains only degree-one and/or degree-two check nodes.
Otherwise it is non-elementary. Throughout this paper, we
restrict our focus to elementary trapping sets, since they
are known to be dominant in the error floor [6], [7], [11].
Henceforth, for convenience, whenever we refer to a TS, we
will implicitly refer to its topological structure T . Clearly
the (a, b) notation is not sufficient to describe a topology of
a trapping set as there can be many non-isomorphic graphs
with a variable nodes and b odd-degree check nodes. However
listing all non-isomorphic graphs is intractable when a is large,
thus in this paper we use the notation which enumerates the
distinct cycles in a subgraph [12]. Let T contains g2k (2k)-
cycles, where k ≥ 2, then the trapping set associated with
T is said to be of type (a, b,

∏
k≥2(2k)

g2k). We also use the
notation T (a, b,

∏
k≥2(2k)

g2k) to say that a graph G contains
an (a, b,

∏
k≥2(2k)

g2k) TS of type T if there exists a subset of
variable nodes T in G whose induced subgraph is isomorphic
to T (a, b,

∏
k≥2(2k)

g2k). An alternative method to describe
accurately trapping sets is described in [11].

An very efficient method for constructing Tanner graphs
having a large girth is by using the Progressive-Edge-Growth
(PEG) algorithm [8]. In the PEG algorithm, a new edge for
a variable node v has to be created, based on the expansion
of a subgraph from v within depth k as shown in Fig.1, also
called the neighboring tree or computation tree. It is a tree with
2(k + 1) levels, labeled from [0, 2k + 1], where the 0th level
consists only of the root node v, even-numbered levels contain
only variable nodes represented by ◦, and odd-numbered levels
contain only check nodes represented by �.

The depth of the tree k depends of the target girth [1], and
the subgraph is called depth-k tree. We denote the set of all
check nodes neighbors in depth-k tree by Mk

v , and Mk

v the
complementary set.

We introduce in the rest of this section some useful defini-
tions on the structure of the depth-k tree for the characteriza-
tion of trapping sets.

Definition 2: Let T kv (G) be a depth-k tree for the variable
node v of a Tanner graph G. The variable nodes of T kv (G)

Fig. 1. A subgraph spreading from variable node v: depth-k tree

are copies of the variable nodes of G, and the check nodes of
T kv (G) are copies of the check nodes of G.
When there is no ambiguity we will shorten the notation
and use T kv when the graph is specified, Tv when the depth
is specified. In a systematic expansion of the depth-k tree,
different copies of the same variable node can appear at
different levels of Tv . Let Tv contain m copies of a node
u, we will denote those copies as ulii , 1 ≤ i ≤ m, where li is
the level of the i-th copy.

Definition 3: A node w ∈ Tv(G) is said to be an ascendant
of a node u ∈ Tv(G) if there exists a path starting from the
node u to the root v that traverses through node w. The set of
all ascendants variable nodes of the node u in Tv is denoted
as A(u). For a given node set U , ATv(G)(U) denotes the set
of ascendants variable nodes of all u ∈ U .
When there is no ambiguity, we will shorten the notation and
use A(u) or ATv (u) instead of ATv(G)(u). We use A(U) in
a similar fashion.

Definition 4: A node w ∈ Tv is said to be a parent of a
node u ∈ Tv if w is directly connected to u along the path
traversing to the root. Again, it is clear that w ∈ Nu.

Definition 5: A node w ∈ Tv(G) is said to be a descendant
of a node u ∈ Tv(G) if there exists a path starting from node
w to the root v that traverses through node u. The set of all
descendants of the node u in Tv is denoted as D(u). For a
given node set U , DTv(G)(U) denotes the set of descendants
of all u ∈ U . A node w ∈ Tv is said to be a child of a node
u ∈ Tv if w is directly connected to u along the path traversing
to the root. Clearly, w ∈ Nu. A node that does not have any
child nodes in Tv is called a leaf node.

III. COMBINATORIAL CHARACTERIZATION OF (5, 3) AND
(6, 4) TRAPPING SETS

A. Characterization of (5, 3) and (6, 4) Trapping Sets

In this paper, we only consider the case of Cdv,g codes, with
column weight dv = 3 and girth g = 8. The trapping sets are
formed by combination of several cycles, and (a, b) TS can be
differentiated by the number of distinct cycles that form the
TS. The elementary trapping sets are known to be dominant
in the error floor [4], [6], [7], [11] and among the most
harmful are the TS with a small number a of variable nodes.

For C3,8, the (4, 4) TS denote the 8-cycles, and following
the ontology of trapping sets for regular column-weight-tree
codes in [10] the smallest TS are (5, 3), and (6, 4). The
following theorems restrict possible topologies of (5, 3) and
(6, 4) trapping sets. These characteristics are used to define
the criteria for detecting trapping set in the depth-k tree.

The proofs in this section are omitted because of lack of
space, but will be reported in a future paper.

Lemma 1: There are no non-elementary trapping sets of the
type T (5, 3, 83).

Theorem 1: Let T be a subgraph associated with an ele-
mentary (5, 3, 83). Then any two 8-cycles in T have exactly
three variable nodes in common.

Theorem 2: Let T be a subgraph associated with an el-
ementary (6, 4, 82, 121). Then the two 8-cycles in T have
exactly two variable nodes in common.

Theorem 3: Let T be a subgraph associated with an el-
ementary (6, 4, 81, 102). Then the two 10-cycles in T have
exactly four variable nodes in common.

The topologies of interest in this paper are characterized
by the above theorems, and depicted in figures Fig. 2(a)
to Fig. 2(c). Fig. 2(a) shows a T

(
5, 3, 83

)
where the sets

of three 8-cycles are:{v1, v2, v3, v4}, {v2, v3, v4, v5}, and
{v1, v2, v4, v5}, any two sets have three variables nodes
in common. Similarly, Fig. 2(b) shows T

(
6, 4, 82, 121

)
where the sets of two 8-cycles are:{v1, v2, v5, v6} and
{v2, v3, v4, v5}, they have v2 and v5 in common. For
T
(
6, 4, 81, 102

)
represented by Fig. 2(c), {v1, v2, v3, v4, v5}

and {v1, v2, v3, v4, v6} are two 10-cycle where {v1, v2, v3, v4}
are the variable nodes in common.

(a) (b) (c)

Fig. 2. T (5, 3, 83) ; T (6, 4, 82, 12) ; T (6, 4, 81, 102) respectively

B. Criteria to Detect trapping set (5,3) and (6,4) in PEG

In a PEG algorithm, the cycles can be easily predicted by
the level at which each check node appears in the depth-k
tree. However, detecting complex structures such as TS is
more tedious. In the depth-k tree, TS can be predicted by
using copies of check nodes c with the knowledge of their
appearance levels and of the variable nodes in common on the
distinct paths v,, clii in Tv . The following theorem gives the
maximum number of cycles that are created by a new edge
between v and a check node c that has m copies in Tv .

Theorem 4: Let Tv contain m copies of a check node c, the
maximum number of cycles that contains c is
η =

(
m
2

)
. If we chose to connect v and c for the new edge

then the maximum number of cycles for a new structure is
η +m = m(m+1)

2 .

Proof: Let Tv contains m copies of check node c, the
maximum number of cycles that contains c is η =

(
m
2

)
=

m(m−1)
2 , if we chose to connect v and c we have m new

cycles hence η + m = m(m−1)
2 + m = m(m+1)

2 cycles at
maximum.

The trapping sets (5, 3) and (6, 4) are formed by three
cycles. To be able to detect those structures in the depth-k
tree, we provide a characterization of the number of copies of
a check node required to form a combination of α cycles.

Lemma 2: A new combination of α cycles is detected in
Tv , if a check node c has m copies with m = b−1+

√
1+8α

2 c.
As a consequence, for a combination of three cycles, a check

node c needs to have at least two copies in Tv .
Finally, using the theorems and lemmas introduced earlier

in the paper, we can now state the following theorems which
describe how to detect the trapping set (5, 3) and (6, 4) in Tv .

Theorem 5: Let C3,8, for each and every variable node v
a new trapping-set (5, 3, 83) is detected in Tv if and only
if there exists at least 2 copies of check node c denoted by
c71, c

7
2 with the same parent, for which the path v, ..., c71 and

the path v,, c72 in Tv have three common variable nodes (ie.
|A(c71)

⋂
A(c72)| = 3).

Proof: See Appendix A
Theorem 6: Let C3,8, for each and every variable node v a

trapping-set (6, 4, 82, 121) is detected in Tv if and only if we
have one of two cases:

1) there exists at least 2 copies of check node c denoted by
c71, c

11
2 with the same parent, for which the path v, ..., c71

and the path v,, c112 in Tv have four common variable
nodes (ie. |A(c71)

⋂
A(c112)| = 4).

2) there exists at least 2 copies of check node c denoted by
c71, c

7
2 with the same parent, for which the path v, ..., c71

and the path v,, c72 in Tv have two common variable
nodes (ie. |A(c71)

⋂
A(c72)| = 2).

Proof: See Appendix B
Theorem 7: Let C3,8, for each and every variable node v a

trapping-set (6, 4, 81, 102) is detected in Tv if and only if we
have one of two cases:

1) there exists at least 2 copies of check node c denoted by
c71, c

9
2 with the same parent, for which the path v, ..., c71

and the path v,, c92 in Tv have three common variable
nodes (ie. |A(c71)

⋂
A(c92)| = 3).

2) there exists at least 2 copies of check node c denoted by
c91, c

9
2 with the same parent, for which the path v, ..., c91

and the path v,, c92 in Tv have four common variable
nodes (ie. |A(c91)

⋂
A(c92)| = 4).

Proof: See Appendix C

IV. DESIGN ALGORITHM USING RANDPEG

A. Description of Algorithm

In this section, we briefly review the RandPEG algorithm
proposed by Venkiah and al. [1], then describe our improve-
ment, which consists essentially in adding a new constraint
in the objective function of the RandPEG. The additional
constraint consists in detecting the trapping set (5, 3), (6, 4),

removing all candidate check nodes that create trapping sets
(5,3) and select only the check nodes that minimize the number
of trapping sets (6, 4).

Let us consider LDPC codes in C3,8. We seek to construct
LDPC codes without trapping sets (5,3). When the depth-k
tree is spread up to kmax ≥ 3, the cost function restricts the
set of check nodes candidates as follows:
• Let Mkmax

v denote the set of check nodes that are
possible candidates for connecting a new edge from the
root of the computation tree. The first step if to remove
from Mkmax

v all check nodes that appear at least once
in the depth-3 computation tree. This removes all check
nodes that would create cycles of size < 8.

• For each remaining check node cm in Mkmax

v , compute
nbtrappingm[i]0≤i≤1, the number of trapping set (5,3)
and (6,4) that would be created if cm is selected, using
the characterization of theorems 5 and 6. Remove all
check nodes that would create trapping sets (5,3) i.e
check-nodes cm for which nbtrappingm[0] 6= 0 and
in order to minimize the global number of trapping
sets (6,4), remove check nodes that create more than
minm(nbtrappingm[1]).

• If Mkmax

v 6= ∅, randomly select a check node cm and
connect a new edge between the root variable node and
cm. If Mkmax

v = ∅, a design failure is declared.

B. Simulation Result

We focus on the design of quasi-cyclic LDPC (QC-LDPC)
codes, which are the most largely used LDPC codes in
practical applications. The specificity of PEG for QC-LDPC
code design is to expand only the computation tree of the
variable node v = nL, where L is the size of circulant
permutation matrix, and assign L edges in one PEG step,
by assigning a whole circulant. In table I, we present the
statistics of several constructions for regular QC-LDPC codes
with (dv = 3, dc = 5) and (dv = 3, dc = 9). For the L = 31
case, we also give the statistics of the Tanner code proposed
in [13].

For the PEG algorithm with L = 18 the obtained girth
is g = 6 hence we have no (5, 3) and (6, 4), but it also
demonstrate the need for more efficient PEG-like construc-
tions, as girth g = 8 is achievable for this rate and length.
The statistics in this table clearly show that our new constraint
in the design constructively avoid all TS (5,3), while it also
minimize the number of TS (6,4), compared to the original
RandPEG construction.

Fig.3 and Fig.4 show the performance on the BPSK-AWGN
channel of several regular LDPC codes listed in table I. We
can see that the PEG algorithm can greatly be improved by
using the RandPEG algorithm, and even more with our new
improvements. Note that for these small codeword lengths,
we have not reached the error floor region in our simulation
(except for the PEG, L = 18 code which has girth 6), but the
slope improvement is significant and shows that we removed
many dominant fixed point of the iterative decoder.

Fig. 3. Performance comparison of QC-LDPC with L=31, dv = 3, dc = 5

Fig. 4. Performance comparison of QC-LDPC with L=18, dv = 3, dc = 5

V. CONCLUSIONS

In this paper, we have proposed a predictive method
to construct regular column-weight-three LDPC codes with
girth g = 8 so that their Tanner graphs have not trapping
set (5, 3) and a minimum number of trapping sets (6, 4).
Our construction is based on Randomized Progressive Edge
Growth (RandPEG) algorithm. Both statistics on the cycles
and smallest TS and Monte Carlo simulations demonstrate the
advantage of our approach for small lengths QC-LDPC codes,
compared to existing designs.

ACKNOWLEDGEMENTS

This work has been partially funded by AVAGO Technolo-
gies, the NSF (grants CCF-0963726 and CCF-1314147) as
well as the United States Department of State Bureau of
Educational and Cultural Affairs through the Fulbright Scholar
Program.

L = 18, dc = 5 L = 31, dc = 5 L = 52, dc = 9
PEG RandPEG RandPEG no (5,3) PEG RandPEG RandPEG no (5,3) Tanner PEG RandPEG no (5,3)

#cycle− 6 36 0 0 0 0 0 0 0 0
#cycle− 8 684 774 720 682 620 527 465 11518 9776
#cycle− 10 3402 3402 3582 3255 3348 3689 3720 51064 50596
#(5, 3; 83) 0 144 0 62 31 0 155 1196 0
#(6, 4; 82, 12) 0 2286 1998 1271 930 434 0 52624 36504
#(6, 4; 8, 102) 0 1530 1872 620 992 620 930 50492 41184

TABLE I
COMPARISON OF THE NUMBER OF CYCLES AND THE NUMBER OF TRAPPING SETS FOR SEVERAL PEG CONSTRUCTIONS

APPENDIX A
PROOF THEOREM 6

A (5, 3, 83) is composed by three cycles. Let C3,8 and Tv
contain m copies of a check-node c such as two copies are
denoted by cl11 and cl22 . For the elementary trapping set all
check nodes have two degree two neighbors at maximum
hence if cl11 and cl22 have not the same parent the trapping
set is not elementary.
Let g1 = l1 + 1, g2 = l2 + 1, and n the number of
variable nodes in common between A(cl11) and A(cl22) ie.
n = |A(cl11)

⋂
A(cl22)|.

• if l1 6= 7 (resp. l2 6= 7) then g1 6= 8 (resp. g2 6= 8). There
is no only 8-cycle, hence no (5, 3, 83).

• For l1 = 7 and l2 = 7, the length of cycle formed by two
distinct paths v, ..., c71 and v, ..., c72 is g = 7+7+6− 4n
(see Theorem5), finally g = 20− 4n, if n 6= 3 ⇒ g 6= 8
and if n = 3 ⇒ g = 8, and |A(c71)

⋃
A(c72)| = 5.

Hence we have a (5, 3, 83), if l1 = l2 = 7, and n = 3.

APPENDIX B
PROOF THEOREM 7

A (6, 4, 82, 121) is composed of three cycles. Let C3,8 and
Tv contain m copies of a check-node c such as two copies
are denoted by cl11 and cl22 . For the elementary trapping set
all check nodes have two degree two neighbors at maximum
hence if cl11 and cl22 have not the same parent the trapping set
is not elementary.
Let g1 = l1 + 1, g2 = l2 + 1, and n the number of
variable nodes in common between A(cl11) and A(cl22) ie.
n = |A(cl11)

⋂
A(cl22)|. (6, 4, 82, 121) contains two 8-cycles

and one 12-cycle hence there is two case levels for c:
1) Case one: (l1 = 7, l2 = 11) hence (g1 = 8, g2 = 12) or

(l1 = 11, l2 = 7) hence (g1 = 12, g2 = 8), the length of
cycle formed by two distinct path v,, cl11 and v, ..., cl22
is: g = 7 + 11 + 6− 4n = 24− 4n. If n 6= 4 ⇒ g 6= 8
else n = 4 ⇒ g = 8 and |A(cl11)

⋃
A(cl22)| = 6.

2) Case two: (l1 = l2 = 7) hence (g1 = g2 = 8), the
length of cycle formed by two distinct path v,, cl11 and
v, ..., cl22 is: g = 7+ 7+ 6− 4n = 20− 4n, if n 6= 2 ⇒
g 6= 12 else n = 2⇒ g = 12 and |A(cl11)

⋃
A(cl22)| = 6.

The only case where there are a (6, 4, 82, 121) is
|A(c71)

⋂
A(c112)| = 4 or |A(c71)

⋂
A(c72)| = 2.

APPENDIX C
PROOF THEOREM 8

The proof of Theorem 8 is similar to the one of Theorem
7.

REFERENCES

[1] A. Venkiah, D. Declercq, and C. Poulliat, “Design of cages with a
randomized progressive edge growth algorithm,” in IEEE Commun.
Letters, vol. 12, April 2008, pp. 301–303.

[2] T. Tian, C. Jones, J. D. Villasenor, and R. Wesel, “Construction of
irregular ldpc codes with low error floors,” in Proc. IEEE Int. Conf.
on Communications, vol. 5, May 2003, pp. 3125–3129.

[3] X. Zheng, F. C. M. Lau, and C. K. Tse, “Constructing short-length
irregular ldpc codes with low error floor,” in Proc. IEEE Commun.,
vol. 58, Oct. 2010, pp. 2823–2834.

[4] R. Asvadi, A. Banihashemi, and M. Ahmadian-Attari, “Lowering the
error floor of ldpc codes using cyclic lifting,” in IEEE Trans. Inf. Theory,
vol. 57, no. 4, Apr. 2011, pp. 2213–2224.

[5] H. Xinde, L. Zongwang, B. V. K. V. Kumar, and R. Barndt, “Error floor
estimation of long ldpc codes on magnetic recording channels,” in Mag.
IEEE Trans., vol. 46, no. 6, June 2010, pp. 1836–1839.

[6] T. J. Richardson, “Error floors of LDPC codes,” in Proc. 41st Annual
Allerton Conf. on Communications, Control and Computing, 2003,
pp. 1426–1435. [Online]. Available: http://www.hpl.hp.com/personal/
Pascal\ Vontobel/pseudocodewords/papers

[7] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of
LDPC codes on the binary symmetric channel,” in Proc. Int. Conf. on
Communications, vol. 3, 2006, pp. 1089–1094.

[8] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular
progressif edge-growth tanner graphs,” in IEEE Trans. Inf. Theory,
vol. 51, no. 01, Jan. 2005, pp. 386–398.

[9] G. Richter and A. Hof, “On a construction method of irregular ldpc
codes without small stopping sets,” in Proc. IEEE Int. Conf., vol. 3,
June 2006, pp. 1119–1124.

[10] V. Vasic, S. K. Chilappagari, D. V. Nguyen, and S. K. Planjery, “Trap-
ping set ontology,” in Proc. 47th Annual Allerton Conf. on Commun.,
Control, and Computing, Sept. 2009.

[11] M. Karimi and A. Banihashemi, “On characterization of elementary
trapping sets of variable-regular ldpc codes,” in IEEE Trans. Inf. Theory,
vol. 60, no. 09, Sept. 2014, pp. 5188–5203.

[12] D. Declercq, B. Vasic, S. K. Planjery, and E. Li, “Finite alphabet iterative
decoders, Part II: Improved guaranteed error correction of LDPC codes
via iterative decoder diversity,” in IEEE Trans. Commun., vol. 61, no. 10,
Nov. 2013, pp. 4046–4057.

[13] M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured ldpc
codes,” 2001. [Online]. Available: citeseer.ist.psu.edu/tanner01class.html

