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Abstract: The regenerative chatter limits productivity of many cutting processes due to 

the presence of violent high amplitude vibrations. This self-excited vibration is due to a 

complex phenomenon defined by the combination of machine and process parameters. 

Consequently, there are many alternative strategies to avoid these self-excited 

vibrations. The focus of this study is on the exploitation of the possibilities offered by 

variable stiffness tuneable mass dampers (VSTMD). These devices are able to dampen a 

flexible mode to which the dampers are tuned using a mechanism that varies the 

stiffness. In this work, three different modes of the use of the VSTMD are investigated. 

First of all, these devices are used like an ordinary passive damper tuned with constant 

stiffness according to Den Hartog‟s theory. Secondly, they are tuned on the basis of the 

so-called Sims‟ parameters. In the third application, self-tuning algorithm is used to 

suppress chatter, which is a semi active solution. The idealistic optimal response 

behavior, what the self-tuning algorithm can achieve, is also derived and verified. 
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1. INTRODUCTION  

New self-acting and self-characterizing functions of a future machine tool require 

integrated equipments to improve precision, productivity and remote maintenance 

capabilities [Monostori, 2014]. This trend in the machine tool industry intends to 

decrease human interaction in large manufacturing lines and helps further optimizing 

machining processes taking into account the overall dynamic behavior of the machine 

tool/tool/workpiece system. 

Embedded solutions are becoming cheaper and increasingly affordable for machine 

tool constructors, which results in the design of independent active [Lu et al., 2014, 

Munoa et al., 2013] and semi-active [Aguirre et al., 2013] mechatronic devices to 

attenuate machine tool vibrations. Variable stiffness tuneable mass dampers (VSTMD) 

dampers offers promising advantages since they can be tuned during the machining 

process even remotely, and therefore they are excellent candidates to be included in 

embedded semi-active [Aguirre et al., 2013] and cyber-physical systems.  



The original tuned mass dampers (TMD) provide a classical cheap and effective 

classical solution to increase damping in a mechanical structure. Exact analytical 

solution exists to optimize the parameters of TMD when the original structure is 

considered with a single undamped mode by [Den Hartog, 1934]. The above mentioned 

classic theory provides a sufficiently good approximation if the cutting performance of 

the machine tool is limited basically by a single dominant mode with low damping in 

the structure. If the machine has high damping, the exact tuning of the TMD requires 

semi-analytical or numerical solutions even for a single mode [Asami, et al. 2002]. 

Several variations of the primary idea have been proposed in the literature. In recent 

years, a single TMD with multiple degrees of freedom (MDOF) [Zuo, et al. 2006] and 

multiple TMDs (MTMD) [Li, et al. 2007] and even nonlinear ones [Habib, et al. 2015] 

have been developed to damp a single mode.  

However, the tuning requirements of chatter suppression in machining processes 

are quite different. The repeating surface pattern on the workpiece causes regeneration 

that often leads to self-excited vibrations in a given cutting process. This effect can 

drive the cutting process to loss of its stability leading to large amplitude chatter 

vibration, which clearly must be prevented. The effect of this regeneration was 

recognized by pioneers in the field like Tlusty and Tobias [Tlusty et al., 1954, Tobias et 

al., 1958]. They demonstrated that the minimum stability of a certain process limited by 

a single mode is directly related to the real part of the frequency response function (FRF) 

of the system in the cutting point. Mathematically, regenerative chatter is described by 

delay differential equations DDE [Hale et al., 1977]. Chatter vibrations can grow when 

the dynamic stiffness of the machine/tool/part system is lower than the cutting stiffness 

of the cutting process [Merrit, 1965]. Therefore, the higher is the damping of the system 

is, the stronger stability against chatter vibrations is [Munoa, et al. 2015].  

The application of TMD dampers to increase the damping of the machine tool was 

one of the first proposed solutions for chatter avoidance [Koegnisberger and Tlusty, 

1970]. Some experimental studies were performed to find the ideal tuning of TMDs. For 

instance, [Koegnisberger and Tlusty, 1970] were proposing to build an electrical circuit 

equivalent to the mechanical system in order to optimize the real part of the FRF. [Rivin, 

et al. 1992] dealt with the improvement of stability in boring bars considering TMD. 

Also as an experimental work [Tarng, et al. 2000] and [Rashid, et al. 2008] tuned the 

natural frequency of their TMD to match with the natural frequency of the structure 

target mode of the structure. Finally, [Sims, 2007] found an analytical expression for the 

optimal tuning of a single TMD for chatter avoidance. The damper was tuned to 

maximize the negative real part of the main frequency response function (FRF) creating 

two equal peaks. The parameters of a viscoelastic cantilever beam was tuned in 

[Saffury, et al. 2009] by maximizing the most negative real part of the corresponding 

FRF. [Yang, et al. 2010] optimizes the MTMD for one dominant mode considering the 

real part of the FRF. 

Recently, new self-tuneable TMD have been proposed based on variable stiffness 

concepts [Aguirre et al., 2013]. These VSTMD dampers offer the possibility to change the 

tuning of the damper depending on the cutting conditions.  



 
Figure 1;Rotary spring a), the magnets producing Eddy current and their guiding 

system b). The assembled passive damper block c). 

 

The aim of this study is to find the ideally best tuning to suppress chatter vibrations 

by taking the advantage of the variable values of the spring of a VSTMD concept (see 

Figure 1a). The optimal performance of the VSTMD is to be comparable with the results 

obtained with the best tuning of a single TMD. 

In practice, the design of a VSTMD is not an obvious task. In fact, several concepts 

have been proposed in the literature [Aguirre et al., 2013]. For instance, [Aguirre et al., 

2013] created this damper using a movable mass guided by means of a flexures and a 

rotary spring controlled by a stepped motor. Changing the angular position of the rotary 

spring, the natural frequency and therefore, the tuning of the damper, could be modified. 

In parallel, pure viscous damping was introduced in the system by means of the eddy 

current effect (see Figure 1). 

The paper is divided into three parts, which include model development, the 

determination of the optimal tuning for a rotary spring self-tuning damper using the 

method of zeroth order approximation (ZOA) [Altintas et al., 1995, Zatarain, et al. 2004] 

and the verification part. Finally, the concept is verified by using time domain 

simulations and by using semi-discretization method (SDM) [Insperger et al., 2011]. The 

model presented in the paper represents an idealistic situation, which needs further more 

development to fit a in real case scenario. 

2. STABILITY MODEL FOR MILLING OPERATIONS WITH A VSTMD 

A simple milling model is introduced here in order to describe the dynamic behavior 

of a VSTMD concept. The model is adequate for applying semi SDM and ZOA with and 

without taking time averaging in the tooth passing period of the milling operation. The 

ZOA permits to obtain a fast analytical parametric solution with a good accuracy for 

continuous milling processes. In the case of interrupted cutting, the presence of double 

period chatter and mode couplings reduces the precision of the ZOA [Munoa, et al. 

2009].  

The VSTMD is especially interesting for structural chatter cases in heavy duty 

operations. In these cases, tools with a high number of flutes and large engagements are 

used [Iglesias, et al. 2014].  



 

a) b) 

 
 

Figure 2; a) sketch of the simple one dimensional milling model. Panel b) shows the 

effect of mass dampers (MD) by [Den Hartog, 1934] (blue) and [Sims, 2007] (red). 

 

Therefore, the periodic excitation is close to “flat” (almost constant) and the system 

can be roughly considered roughly as a time independent autonomous system. This 

way, the ZOA can also serve acceptable results, and simple assumptions can be made 

regarding the stability limits (see Figure 2a).  

The first step to optimize the VSTMD is to develop a milling model that includes the 

effect of a passive damper. For simplicity, it is assumed that the damper is located at the 

point where the cutting force is acting. Two different points can also be considered with 

modal parameters [Munoa et al., 2013] but this increases the complexity of the main 

expressions and does not help to explain the main innovation in the present work. A 

single dominant mode parallel to the cutting plane has been considered, too. Finally, a 

lead angle of 90º has also been assumed. With this set of assumptions, a 2 DOF model 

has been formed to describe the stability of the milling process. 

By assuming linear cutting force characteristics, the resultant cutting force can 

be derived in the following way for the simple straight fluted milling operation 

 ))(())(())(()( ce

1

p thttgat iii

Z

i

ii KKTF  


 , (1) 

where ap and Z are the depth of cut and the number of teeth, respectively. The cutting 

force is taken into account by using Ke = col(Ke,t, Ke,r) edge coefficients and Kc = Kc,t κc 

(κc = col(1, r)) cutting coefficients [Altintas, 2000]. A ratio r has been defined 

between the radial and the tangential force components.  

The instantaneous chip thickness is a function of the chip thickness direction 

si (t) = col(sin φi(t), cos φi(t)) of the i
th

 tooth: 
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where x(t) and y(t) are the relative spatial vibration of the center of the milling tool 

compared to its secondary motion described by the feed per tooth fZ. The instantaneous 

chip thickness is considered at the angle 

 Zi itt π2)1()(   (3) 

for each ith teeth. The milling tool rotates with Ω = 2 π n / 60 angular spindle frequency.  

The cutting force is transformed back from local (tr) to tool (xy) system by Ti (φi (t)) 

in (1) considering gi (φi (t)) screen function [Dombovari, et al. 2010b]. This takes into 

account the radial immersion by the entrance (φen) and exit angles (φex).  

The dominant mode direction is considered under the angle ψ relative to the y axis 

(see Figure 2a), which results in x(t) = q1(t) sin ψ and y(t) = q1(t) cos ψ. By means of 

the modal mass m1, damping c1 and stiffness k1 of the relevant mode, the one degree of 

freedom (DOF) milling system has governing equation in the form 
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Assuming that the passive damper has the same vibration mode defined by angle 

ψ, the equation of motion (4) is modified to 
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Linearizing around the periodic stationary solution (forced vibration) 

qp(t) = qp(t + T) (T = 2π/Ω/Z), the following linearized system can be derived for the 

perturbation u(t) = q(t)  qp(t): 
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where  

 






 















0

))()(()(

)(

)(
)(

11pc,

2

1 tututBaK

tQ

tQ
t

t
Q   (7) 

and
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 A time dependent factor B(t) has been obtained in the expression of the 

perturbed force. This coefficient is named time domain directional factor and it is a 

periodic function that collects the projections of the cutting force generated by the 

different flutes onto the direction of the single vibration mode and the projection of the 

generated vibration onto the chip thickness direction (si) [Zatarain, et al. 2010]. 

3. CALCULATION METHODS 

This time-periodic directional factor can be averaged to obtain a zero order 

approximation (ZOA) that permits an analytical solution. This approximation is going to 

be used to investigate the optimal tuning of the different TMDs. 

Since ZOA gives back the borders of stability, the SDM is used to calculate exact 

stability properties on the exact model of milling, which, although it is hardly usable for 

analytical calculations. 

  Non-smooth time domain simulation was used on the fly-over [Stepan, et al. 

2011] DDE model of milling to determine the real chatter frequency which is defined as 

the dominant frequency of the large amplitude threshold vibration. 

These three methods have been combined to explore the potential of the VSTMD. 

3.1 Time averaged model for ZOA 

 

In order to find an optimal tuning for the passive damper, analytical ZOA is used, 

which is based on the time averaged model of the milling operation. Due to the 

periodicity of the directional factor, it can be developed in Fourier series. ZOA is 

obtained when this periodic function is approximated by the average value. Milling 

operation can be approximated really well by ZOA if the operation is near to full 

immersion (not interrupted) milling. By the introduction of an equivalent cutting 

coefficient [Opitz et al., 1970] 
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the periodicity is averaged out from the describing milling model. The averaged 

directional factor is 
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The force variation (6) is in the direction of q1 and can be written as 
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From [Tlusty et al., 1954] to [Altintas, 2000], this leads to the following conditions for 

the border of asymptotic exponential stability 
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where k = 1, 2, … and H11(ω) is originated from the equation defined at (6) as 

 )()()(  QHU  ,  (13) 

and 

)]([)i()( 12  jiH 
KCMH , if i, j = 1, 2, 

while ψ (ω)[  π, 0] is the phase of H11(ω).  

This classical approach relates the stability of the cutting process to the value of 

real part of the FRF [Mancisidor, et al. 2014]. Therefore, equations at (12) open the way 

for using simple optimization based on the analytical representation of the FRF H11(ω) 

supposing c1  0 [Sims, 2007]. The stability of regenerative cutting process requires a 

special tuning where the real part should be shrunk. The average directional factor β0 

can be positive or negative value depending on the engagement and the cutting 

characteristics. Therefore, if the directional factor is positive, the negative side of the 

real part should be maximized creating two equal peaks. On the other hand, if the 

directional factor is negative the positive side should be minimized. 

 

TMD / VSTMD Structure 
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Table 1; definition of dimensionless dynamic parameters. 

 

The real part of a FRF dominated by a single mode can be given by means of 

several dimensionless parameters (see Table 1): 
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where f  is the tuning of the absorber, μ  is the mass ratio, g  is the dimensionless 

frequency and χ = c2 / ccr is the damping ratio relative to ccr = 2 m2 ω1 “critical” damping 

defined in [Den Hartog, 1934]. 

3.2 Linear stability of stationary cutting determined by SDM 

 

The SDM is used in this work to obtain the linear stability borders. The complete 

description of this method can be found in the literature [Insperger et al., 2011]. It 

compiles the discrete representation of the solution operator (step matrix) of 

autonomous (time independent) DDEs. The step matrix Bl is derived for one single 

arbitrary chosen time step Δt = Δθ = τmax/m. Time periodicity is taken into account by 

the use of Floquet theory [Farkas, 1994] over the tooth passing period T by simply 

multiplying the corresponding step matrices, that is for 
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In equation (15) r = T/Δt represents the resolution of the approximation, while 

θ[ τmax, 0] is the relative „delayed time‟ to describe a state of the delayed system 

considering the following solution definition x(t + θ) := col(u(t + θ), u (t + θ)). The 

eigenvalues of the so-called Floquet multipliers determine if the resulting periodic 

stationary solution is stable: | μk | < 1. The multiplications at (15) can be accelerated by 

using spare matrices or using special techniques like in [Henninger, et al. 2008] or 

determining efficiently the eigenvalue problem itself [Zatarain et al. 2014]. 

3.3 Time domain solution 

The final verification of the optimal tuning has been performed using pure time 

domain simulation. The simulation of the milling process was performed by using the 

original milling model as a base, (5) is supplemented by the non-smooth behavior of the 

fly-over effect. Fly-over appears if the local instantaneous chip thickness  
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is less than zero considering all possible previous cuts. 

Considering all possible fly-overs and cuts, the effective chip thickness can be 

determined as a minimum hie(t):= minl hi (t; l ). If hie(t)  0 the corresponding ith tooth 

flies-over at the time instant t and the cutting force switches off. This results in the 

following force definition after (1) 

 ))(())(())(()( ce

1

fop thttgat ieii

Z

i

ii KKTF  


 , (17) 



where the switching function gfoi = 1, if the corresponding ith edge is in radial 

immersion and if that edge is not in fly-over state, that is, hie(t) > 0. Formulating the first 

order form using the dynamics from (5) with the excitation at (17), the simulation was 

performed by standard dde23 introducing special initial function (IF). The IF is the 

corresponding stationary solution y0(θ) = col( )(),( pp  qq  ) in order to avoid the effect 

of weak attraction zones appearing in the non-smooth fly-over system [Dombovari, et 

al. 2010].  

4. VARIABLE STIFFNESS TUNEABLE MASS DAMPER (VSTMD) 

In the literature, there are two main analytical results for the ideal tuning of passive 

dampers. On the one hand, the work of [Den Hartog, 1934] uses two invariant analytical 

points to achieve the decrease of the receptance magnitude in all frequencies. On the 

other hand, the work of [Sims, 2007] shows three invariant points to achieve the best 

possible real parts of the corresponding FRF considering alim by ZOA (12) as an 

objective.  

A case study described by [Aguirre et al., 2013] has been used to compare the 

performance of the different strategies. In this case, the moving mass was m2 = 7 kg and  

the mass ratio is μ = 4.7 %. 

 
D (mm) φen (deg) φex (deg) ψ (deg) 

32 20.36 180 0 

Material Kc,t (MPa)  Kc,r (MPa) fZ (mm/tooth) 

C45 1459 257 0.1 

ω1 (Hz) ξ1 (%) m1 (kg) p1 

94 0.35 150 [0 1 0]
T 

Table 2; Milling process parameters. 

 

The optimal tuning f (14), the optimal stiffness k2 and damping c2 can be 

determined for both methods by considering initial process parameters presented in 

Table 2 and the optimal parameters described in Table 3. The results are presented in 

Figure 2b about a near full immersion milling process (see Table 2) without any passive 

damper, a passive damper tuned according to [Den Hartog, 1934], and a passive damper 

tuned according to [Sims, 2007].  

However, all of these theories work with fixed and invariant stiffness of the 

damper (see k2 at (5)) for the different spindle speeds, which is not the case for VSTMD. 

This tuning procedure and the design of the rotary spring (see Figure 1a) allow setting 

the stiffness value iteratively or even continuously between a minimum and a maximum 

stiffness values, which means different optimal tuning can be realized along the stability 

limits.  
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Table 3; Optimal tuning analytical expressions. 

 

By the modification of (6), the equation of motion has the form  
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Here j represents the jth set stiffness of the iteration described in [Aguirre et al., 

2013]. The iteration is only performed if unstable stationary cutting appears, that is, 

when the chatter frequency ωch and its modulations raise up-to a previously defined 

level compared to the harmonics of the forced vibration. In this case, the embedded 

VSTMD system acts by rotating the specially designed spring. It tunes the system to the 

dominant chatter frequency if it is possible without the violations of the bounds (19). 

The idea is behind to set the “resonant” stable pockets (see Figure 2b) to the used 

spindle speed zone by changing the stiffness of the tunable damper to k2, j = ωch
2
m2.  

4.1 Ideal tuning of VSTMD 

 

Regardless of the tuning iteration procedure applied on the VSTMD, it can only be 

successful if the system can be stabilized at all. This means that there is a special 

stiffness value where the cutting process (stationary cutting) is stable.  



 
Figure 3; Optimal tuning w.r.t. the dimensionless frequency g. 

 

This fact is convenient because the ideal tuning can be found by means of linear 

theories presented at (12) and (15). The ZOA and the FRF at (14) can be used for the 

analytical derivation. In order to ease the notation the magnifying function 

M11(g, f ) : = H11(g) k1 is introduced. 

According to the derivation of ZOA [Altintas, et al. 2008] the arising chatter 

frequency ωch can be considered as sampling on the corresponding FRF. Consequently, 

considering non-interrupted case the FRF can be optimized at each dimensionless 

frequency g = ωch / ω1. This means finding an extremum of Re(M11(g, f )) by taking 

dRe(M11(g, f ))/df, which leads to five roots for tuning including one at f0 = 0 and four 

others symmetrically placed. Thus, these latter four can be considered as two 

extremums as f+ and f- 
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This new formula shows the best tuning of a damper to have the maximum 

stability for a certain spindle speed represented indirectly (see (12)) by the 

dimensionless value (g). This formula can improve the result of Sims‟ proposal for a 

single spindle speed. 

In Figure 3, Sims‟ locked frequencies are gp(f ), gn(f ) and gi(f ) = f and their 

limits are gplim and gnlim. Among the solutions presented at (20), it is always f+(g) that 

gives the maximum and f(g) that gives the minimum for Re(M11(g, f )). Keeping in 

mind the results of the ZOA depending on the sign of the directional factor β0> 0 (β0 < 0) 

at (10) Re(M11(g, f)) needs to be maximized (minimized). Namely, the best solution for 

the tuning is always given by f+(g) (f-(g)), except between the values of gplim and gnlim 

where the optimum values determined at (20) are extremes. 
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Figure 4; Real parts of the optimally tuned magnifying function for positive directional 

factor (β0 > 0) a), and the same for negative directional factor (β0 < 0) compared to 

Sims’ optimal tuning (red) [Sims, 2007]. 

 

In this region, depending on β0 > 0 (β0 < 0) a minimum fmin (maximum fmax) tuning is 

limiting not realizable stiffness values on the rotary spring (see (21) and (22)). 

In Figure 3, one can realize that Sims‟ constant optimal tuning fopt,p (fopt,n) for 

β0 > 0 (β0 < 0) is only optimal at two dimensionless frequencies g, below and above 

g = 1. Although, along the lobes limited frequencies are possible, usually g>~1 (g<~1) 

if β0 > 0 (β0 < 0). This means one point along the lobe is optimal for a VSTMD in this 

simple case (see Figure 4). 

4.2 Ideal stability behavior of VSTMD 

 

Based on the calculated optimal tuning function f(g), piecewise smooth definition can 

be defined, which take into account the physical limitation of the rotary spring. The 

limitations are only active close to the original natural frequency ω1 of the structure.  

 When β0 > 0, }),({max)( minpopt, fgfgf  , (21) 

 while β0 < 0, }),(min{)( maxnopt, fgfgf  . (22) 

Using these piecewise smooth definitions, the stability boundaries can be 

depicted (see Figure 5) by simply applying ZOA shown at (12). For both cases of 

negative and positive directional factors, the stability is improved by using VSTMD 

solution. In these ideal examples, one can realize there is a point in the stability limits 

where the stability is not improved with respect to the Sims‟ optimal tuning values (see 

Figure 3). It can be also noticed that the “double lobe” shape is disappears and in this 

ideal solution the lobes are simple shaped stability boundaries. 
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Figure 5; ZOA stability limits based on the optimal FRF for positive directional factor 

(β0> 0) a), and the same for negative directional factor (β0< 0) b) compared with Sims’ 

solutions (red). 

 

4.3 Iterative algorithm for optimal tuning VSTMD 

 

It has been demonstrated that if the tuning of the damper is changed for each 

spindle speed using a VSTMD, the stability of the process can be improved more than an 

ordinary TMD with the same mass tuned according to Sims‟ parameter. However, it is a 

complex procedure to implement it in practice. In this section, an iterative method to 

approach this optimal solution is going to be proposed. 

The first step towards chatter suppression is to detect whether chatter is 

occurring or not during the machining process. The vibration measured by the 

accelerometer installed on the structure of the damper is processed in order to find its 

main frequency components. Here it is important to distinguish between forced 

vibrations, induced directly by the cutting forces, and chatter, which is due to an 

unstable regenerative process generated only under certain working conditions. 

Forced vibrations appear at harmonics of the tooth passing frequency, but are 

stable, and thus are usually not a problem for machining, except in finishing operations 

where surface roughness needs to be improved. Chatter appears at other frequencies 

than tooth passing frequencies. It is an unstable cutting process, meaning that the cutting 

forces and vibrations increase with time, leading to unacceptable machining conditions, 

since they produce very bad surface quality and can lead to damage in the machine. 

The chatter detection and suppression algorithm is presented in Figure 6 



 

Figure 6; Chatter detection and suppression algorithm. 

This algorithm is implemented on a real-time controller. It is running 

continuously during the machining process, calculating the spectrum of the measured 

vibration of the machine, as shown in Figure 7b. The algorithm detects the frequency of 

the maximum vibration peak, and compares it with the tooth passing frequency: if it is 

an integer multiple of the tooth passing frequency, it is considered to be a forced 

vibration, and no corrective action is taken. If it is not an integer multiple, it is 

considered to be chatter, and the angular position in the damper is modified in order to 

tune it to the chatter frequency. 

It is very important to clearly distinguish clearly chatter from forced vibrations, 

so that the damper is only tuned to chatter frequencies. Otherwise, once the damper is 

tuned to the chatter frequency, the vibration level at this frequency will drop, and the 

algorithm will detect a forced vibration as main frequency. If the damper is tuned to this 

new frequency, chatter generation could start again, which needs to be avoided. 

The detection algorithm first filters the acquired acceleration signal with a low 

pass filter. Then the FFT of the filtered signal is calculated, finding the frequency of the 

highest peak. When the highest peak‟s frequency does not match any harmonic of the 

spindle speed, chatter detection is considered positive.  
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5. SIMULATION RESULTS 

In this section, real case simulations are presented by the real tuning procedure of 

the modelled VSTMD solution. Time domain simulations are only performed if the 

technological parameters set result in unstable cutting determined by SDM (15). The 

time domain simulations are started from the perturbed stationary solution qp to reach 

threshold fly-over [Stepan, et al. 2011] effect fast. Roughly 30-40 periods are simulated 

and 10-20 periods long of signal from the end of the simulation is taken for FFT 

analysis. With the removal of the DC component, the chatter frequency can be extracted 

easily since the stationary cutting solution qp is known and the harmonics of its 

amplitude can be used as a threshold for chatter. The maximum among the peaks 

overtaking the limiting amplitude is considered as chatter frequency and the VSTMD is 

tuned to this main frequency with k2, j = ωch
2
m2. This tuning is done subsequently until 

stability determined by SDM or a preset maximum number of iterations are reached.  

Sims‟ and the ideal tuning solutions are presented in Figure 7a for milling 

operation calculated by SDM in this case. Time domain calculations were performed for 

selected spindle speeds (A, B and C) listed in Table 2 in order to see the tuning 

iterations of the VSTMD. The time domain simulations combined with the fly-over effect 

must be performed because there is no sufficiently mature method that can determine 

the dominant frequency of the threshold periodic, quasi-periodic or completely chaotic 

motion [Dombovari, et al. 2010].  

The „originally stable‟ cases in Figure 7 and Table 4 are stable according to Sims‟, 

no tunings are necessary. The „tuned‟ cases are parameters, when the tuning was 

effective by using the simulated chatter frequencies. The „not tuneable‟ situations are 

the cases when even the VSTMD was not effective.  

 
A1: nA=1600 rpm, ap,1=30 mm B1: nB=1830 rpm, ap,1=30 mm C1: nC=2500 rpm, ap,1=30 mm 

Originally stable Originally stable Originally stable 

A2: nA=1600 rpm, ap,2=45 mm B2: nB=1830 rpm, ap,2=40 mm C2: nC=2500 rpm, ap,2=40 mm 

ωch,j = 96.7, 106.7, 94 Hz 

Stable in three tuning iterations. 

Originally stable ωch,j = 115.6, 111.5 Hz 

Stable in two tuning iterations 

A3: nA=1600 rpm, ap,3=70 mm B3: nB=1830 rpm, ap,3=50 mm C3: nC =2500 rpm, ap,3=60 mm 

ωch,j = 98.7, 97.3, 98.7, … Hz 

Unstable 

ωch,j = 106.0, 99.1, 99.9, 99.1, 

101.4, … Hz 

Unstable 

ωch,j =118.8, 113.5, 121.9, 111.5 

Hz 

Stable in four tuning iterations 

  C4: n=2500 rpm, ap,4=70 mm 

  ωch,j =119.8, 113.5, 124.0, 113.5, 

123… Hz 

Unstable 

Table 4;The detailed results of the time domain simulations of the selected points (see 

Figure 7a). 

 

 

 

 



a) 

 
b) 

A1 (originally stable) B1 (originally stable) C1 (originally stable) 

   
A2 (tuned) B2 (originally stable) C3 (tuned) 

   
A3 (not tuneable) B3 (not tuneable) C4 (not tuneable) 

   

Figure 7; a) shows ideal tuning solutions for VSTMD (red) performed by SDM  (β0 > 0) 

compared to Sims’ case (black). b) shows time domain solution at selected points. 



The specific parameters and tuning data of the simulated cases presented in Figure 

7 can be followed in Table 4. 

It is important to mention that the authors experienced small attraction zones at 

some parameter sets like C3 when the non-smooth fly-over effect introduced weak 

attraction zone. In this case the accurate selection of IF was of great importance, 

although this situation hardly appears in realistic cases.  

Summarizing, we can say that the time domain simulations confirm that VSTMD can 

improve the results obtained by a single VSTMD with the optimal design for chatter, and 

the proposed iterative algorithm can approach the optimal solution defined in the 

previous sections for a VSTMD. 

6. CONCLUSION 

In the presented work a variable stiffness tuneable mass damper concept was 

investigated. The real system is built as an embedded system that is capable to decouple 

the applied damping and stiffness.  

The paper deals with the idealized tuning of this semi-active damper. Sims‟ idea to 

use the real part of the corresponding frequency response function was used when but in 

this case the optimization was performed at each frequency. This way, a new tuning 

method has been proposed to maximize the stability in a certain spindle speed. Using 

this concept, the frequency dependent tuning function was derived analytically and the 

best possible stability for a VSTMD has been obtained. Later the concept was confirmed 

by using the mathematical model of the tuned mass damper performing semi-

discretization and time domain simulations.  

An iterative method to approach the optimal solution has been proposed and verified 

by means of time domain simulations. It can be seen that the method together with the 

VSTMD solution is able to improve the stability behavior by simply retuning the damper 

to the best optimal stiffness value in each spindle speed. Time domain simulations 

sometimes showed weak attraction behavior which effect must be checked more closely 

in the future.  
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