Skip to Main content Skip to Navigation
Journal articles

Planar graphs with maximum degree Δ≥9 are (Δ+1)-edge-choosable—A short proof

Nathann Cohen 1 Frédéric Havet 2
2 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We give a short proof of the following theorem due to Borodin (1990). Every planar graph G with maximum degree at least 9 is (Δ(G)+1)-edge-choosable.
Complete list of metadata
Contributor : Nathann Cohen <>
Submitted on : Tuesday, June 28, 2016 - 3:01:48 PM
Last modification on : Saturday, May 1, 2021 - 3:39:55 AM



Nathann Cohen, Frédéric Havet. Planar graphs with maximum degree Δ≥9 are (Δ+1)-edge-choosable—A short proof. Contributions to Discrete Mathematics, University of Calgary, 2010, 310 (21), ⟨10.1016/j.disc.2010.07.004⟩. ⟨hal-01338378⟩



Record views