Jumplets
Roman Andreev

To cite this version:

Roman Andreev. Jumplets. 2016. hal-01338101

HAL Id: hal-01338101
https://hal.archives-ouvertes.fr/hal-01338101
Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
functions are designed towards the following observation.

\[f(t) \text{ if } (3) \]

\[\epsilon_{-0} f(t_n \pm |\epsilon|) \text{ for all } f \in F \text{ and } n = 1, \ldots, N. \]

\[(\psi^{-}_n, f)_J = \lim_{\epsilon \to 0} f(t_n \pm |\epsilon|) \text{ for all } f \in F \text{ and } n = 1, \ldots, N. \]

Proof. If \(f \in F \) then \(q : t \mapsto f(t_{n-1} + s/a_n) \) is a polynomial of degree \(p_n \) on the unit interval \([0, 1]\). Since \(\psi^{-}_n \) is supported on \(J_n \), we employ the definition of \(\psi^{-}_n \) and the properties of \(R_d \) to obtain \((\psi^{-}_n, f)_J = (R_{p_n}, q)_{[0,1]} = q(1) = \lim_{\epsilon \to 0} f(t_n - |\epsilon|). \) The proof for \(\psi^{+}_n \) is analogous. \(\square \)
The announced basis for the discontinuous part of F is now defined by

\[\psi_n := \frac{\psi_n^- - \psi_n^+}{\sqrt{\beta_n^- + \beta_n^+}}, \quad n = 1, \ldots, N. \]

Proposition 2.2. Assume that $p_n \geq \frac{p_{\text{min}}}{2} \geq 1$ in (2). Then, $\Psi := \{\psi_n : n = 1, \ldots, N\}$ is a Riesz basis for the L_2-orthogonal complement of E in F. More precisely, for all vectors $c \in \mathbb{R}^N$,

\[C_- |c|^2 \leq \|\Psi^T c\|^2 \leq C_+ |c|^2 \quad \text{with} \quad C_{\pm} = 1 \pm \frac{1}{1 + p_{\text{min}}}. \]

Proof. Set $\psi_n^o := \psi_n^- - \psi_n^+$. Then $(\psi_n^o, e)_J = \lim_{e \to 0} e(t_n - |e|) - \lim_{e \to 0} e(t_n + |e|) = 0$ for any $e \in E$ by continuity of e. Hence, each ψ_n is L_2-orthogonal to E. By definition, $\psi_n \in F$. Therefore, once (5) has been established, the fact that the L_2-orthogonal complement of E in F is N-dimensional shows that Ψ is a basis for it. Now we compute

\[\gamma_{n,n-1}^o := (\psi_n^o, \psi_{n-1}^o)_J = -(\psi_n^-, \psi_{n-1}^+)_J = -\lim_{e \to 0} \psi_n^-(t_n-1 + |e|) = a_n(-1)^{1+p}(1 + p_n), \]

and similarly

\[\beta_n^o := (\psi_n^o, \psi_n^o)_J = \|\psi_n^o\|^2 = \beta_n^- + \beta_n^+. \]

Set $\delta_n := \gamma_{n,n-1}^o / \sqrt{\beta_n^- \beta_{n-1}^+}$. Then the Gramian of Ψ is the tridiagonal symmetric $N \times N$ matrix

\[M_{\Psi} := \begin{pmatrix} 1 & \delta_2 & \delta_3 & \cdots \\ \delta_2 & 1 & \delta_3 & \cdots \\ \delta_3 & \delta_2 & 1 & \cdots \\ \vdots & \vdots & \cdots & \ddots \end{pmatrix}. \]

Note $c^T M_{\Psi} c = |c|^2 + \sum_{n=2}^N 2\delta_n c_n c_{n-1}$ for any $c \in \mathbb{R}^N$, so we wish to compare the magnitude of the second term to $|c|^2$. Observe

\[|2\delta_n c_n c_{n-1}| = |\gamma_{n,n-1}^o| \times 2 \frac{|c_n|}{\sqrt{\beta_n^-}} \frac{|c_{n-1}|}{\sqrt{\beta_{n-1}^+}} \leq \frac{\beta_n}{1 + p_{\text{min}}} \left(\frac{c_n^2}{\beta_n^-} + \frac{c_{n-1}^2}{\beta_{n-1}^+} \right), \]

so that $\sum_{n=2}^N |2\delta_n c_n c_{n-1}| \leq \frac{1}{1 + p_{\text{min}}} |c|^2$. Therefore, $C_- |c|^2 \leq c^T M_{\Psi} c \leq C_+ |c|^2$, with $C_{\pm} = 1 \pm \frac{1}{1 + p_{\text{min}}}$. \hfill \Box

On a uniform mesh T and with uniform polynomial degree p one obtains $\delta_n = -\frac{1}{2}(-1)^p$ for each n in the Gramian (8). It is a tridiagonal symmetric Toeplitz matrix with eigenvalues $\{1 + \frac{1}{1+p} \cos \frac{k\pi}{N+1} : k = 1, \ldots, N\}$. Letting $N \to \infty$ shows that the constants in (5) cannot be improved in general.

The fact that the Gramian (8) is well-conditioned (5), together with Lemma 2.1, allows for fast computation of the discontinuous part of a function $f \in F$. Let $\Delta \in \mathbb{R}^N$ denote the vector of jumps of f, whose components are $\Delta_n = \lim_{e \to 0} \{f(t_n - |e|) - f(t_n + |e|)\}$ for $n = 1, \ldots, N$. Then Lemma
The coefficients $c \in \mathbb{R}^N$ of the discontinuous part of f with respect to the basis (4) satisfy the linear system $M_c b = h$, which can be quickly solved approximatively by the conjugate gradient method. This may be cheaper than projecting onto E and then taking the difference because the dimension of E is significantly larger than N when the polynomial degrees p_n in (2) are large.

3. Application: Adaptive Approximation

As an application of the above construction we describe an algorithm for the adaptive approximation of a given function $g \in L^2(J)$. Suppose \mathcal{T}_i, $i = 0, 1, 2, \ldots$, is a sequence of meshes as in the introduction, which are nested, $\mathcal{T}_i \subset \mathcal{T}_{i+1}$. Let $E_i \subset Y$ be the space of piecewise affine splines on with respect to \mathcal{T}_i, and set $E_i := E_i \cap H^1(J)$, which is then the space of continuous piecewise affine splines. Note that $E_i = E_i + E_i$, where the prime denotes the derivative. Let E_i^\perp denote the L^2-orthogonal complement of E_i in E_i, and let $Q_i: L^2(J) \to E_i^\perp$ be the surjective L^2-orthogonal projection.

Suppose $g_i \in E_i$ is an approximation of g. Then we consider $g_i^\perp := Q_i^\perp g_i \in E_i^\perp$, and use the coefficients of g_i^\perp with respect to the Riesz basis (4) for E_i^\perp as error indicators for the marking of subintervals to be adaptively refined. The adaptive algorithm is as follows. Let \mathcal{T}_0 be given. Fix a threshold parameter $\theta \in (0, 1]$. For each $i = 0, 1, 2, \ldots$, do: 1) Compute the L^2-orthogonal projection g_i of g_i onto E_i, or an approximation thereof. 2) Compute the projection $g_i^\perp := Q_i^\perp g_i$. Set $N_i = \#(\mathcal{T} \cap (0, T))$ for the number of interior nodes in \mathcal{T}_i, and $[N_i] := \{1, \ldots, N_i\}$. Let $c \in \mathbb{R}^{N_i}$ be the vector of the coefficients of $g_i^\perp \in E_i^\perp$ with respect to the Riesz basis (4) for E_i^\perp. Select $M_i \subset [N_i]$ of minimal size such that $\sum_{n \in M_i} c_n^2 \geq \theta^2 |c|^2$. 3) If $\mathcal{T}_i = \{0 = t_0 < t_1 < \ldots < t_{N_i} < t_{N_i+1} = T\}$, let the new mesh \mathcal{T}_{i+1} contain \mathcal{T}_i, and the new nodes $\frac{1}{2}(t_{n-1} + t_n)$ and $\frac{1}{2}(t_n + t_{n+1})$ for all $n \in M_i$.

The Riesz basis property guarantees that the part of the indicator g_i^\perp corresponding to the marked subset M_i carries a fraction of its total $L^2(J)$ norm that is comparable to θ.

As an example we take $g : t \mapsto t^{-1/3}$ on $J := [0, 1]$ with $T := 1$. We set $\mathcal{T}_0 := \{0, 1/4, 1/2, 3/4, 1\}$ for the initial mesh. Instead of the L^2-orthogonal projection we use the 4-point Gauss–Legendre quadrature rule on each subinterval to obtain g_i. The error $\|g - g_i\|_J$ for the above adaptive is shown in Figure 2. Due to the lack of smoothness of the given function g, it is approximated by piecewise constant functions on a uniform mesh with a rate of $\approx 1/6$ with respect to the mesh size $\# \mathcal{T}_i$, while adaptivity recovers the asymptotic rate of one.