Quasi-optimality of approximate solutions in normed vector spaces
Roman Andreev

To cite this version:
Roman Andreev. Quasi-optimality of approximate solutions in normed vector spaces. 2016. hal-01338040

HAL Id: hal-01338040
https://hal.archives-ouvertes.fr/hal-01338040
Submitted on 27 Jun 2016
QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV

ABSTRACT: We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined either by Petrov–Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let \(X \) and \(Y \) be real normed vector spaces. Let \(B : X \to Y \) be a linear operator. Fix \(u \in X \) – the “unknown”. Let \(X_h \times Y_h \subset X \times Y \) be nontrivial finite-dimensional subspaces. Abbreviate

\[
\gamma_h := \inf_{w \in X_h \setminus \{0\}} \frac{\|Bw\|_{Y_h}}{\|w\|_X} \quad \text{and} \quad \|B\| := \sup_{w \in (u+X_h)\setminus\{0\}} \frac{\|Bw\|_{Y_h}}{\|w\|_X}.
\]

Throughout, we assume the “discrete inf-sup condition”: \(\gamma_h > 0 \). We define \(B_h : X_h \to Y_h \) by \(w \mapsto (Bw)|_{Y_h} \). In the first proposition we require \(\dim X_h = \dim Y_h \). In the second we admit \(\dim Y_h \geq \dim X_h \).

Proposition 1. Suppose \(\dim X_h = \dim Y_h \). Then there exists a unique \(u_h \in X_h \) such that

\[
\langle Bu_h, v \rangle = \langle Bu, v \rangle \quad \forall v \in Y_h.
\]

The mapping \(u \mapsto u_h \) is linear with \(\|u_h\|_X \leq \gamma_h^{-1}\|Bu\|_{Y_h} \) and satisfies the quasi-optimality estimate:

\[
\|u - u_h\|_X \leq (1 + \gamma_h^{-1}\|B\|) \inf_{w \in X_h} \|u - w\|_X.
\]

Proof. The map \(B_h \) is linear and injective by (1). It is bijective due to finite \(\dim X_h = \dim Y_h = \dim Y_h' \). Thus a unique \(u_h := B_h^{-1}(Bu)|_{Y_h} \) exists and \(u \mapsto u_h \) is linear. By (1), \(\gamma_h\|u_h\|_X \leq \|B_h u_h\|_{Y_h'} = \|Bu\|_{Y_h'} \). From \(\|u - u_h\|_X \leq \|u - w_h\|_X + \|w_h - u_h\|_X \) and \(\gamma_h\|w_h - u_h\|_X \leq \|B(u - w_h)\|_{Y_h'} \), we obtain (3). \(\square \)

Proposition 2. The set \(U_h := \arg\inf_{w \in X_h} \|Bu - Bw_h\|_{Y_h'} \subset X_h \) of residual minimizers is nonempty, convex and bounded. Any \(u_h \in U_h \) satisfies the quasi-optimality estimate

\[
\|u - u_h\|_X \leq (1 + 2\gamma_h^{-1}\|B\|) \inf_{w \in X_h} \|u - w\|_X.
\]

Proof. The first statement is elementary: consider the metric projection of \((Bu)|_{Y_h} \in Y_h' \) onto \(B_h X_h \subset Y_h' \). Quasi-optimality is obtained as above, except that \(\|B(u-u_h)\|_{Y_h'} \leq \|B(u-w)\|_{Y_h'} + \|B(u-w_h)\|_{Y_h'} \leq 2\|B(u-w_h)\|_{Y_h'} \). \(\square \)

The set \(U_h \) of minimizers is a singleton if the unit ball of \(Y_h' \) is strictly convex. Since \(Y_h \) is finite-dimensional, this is the case if and only if the norm of \(Y_h \) is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take \(X = Y = \mathbb{R}^2 \) with the \(\|\cdot\|_1 \) norm. Then \(\|\cdot\|_\infty \) is the norm of \(Y' \). Take \(u := (0,1) \) and \(B(w_1, w_2) := (w_1 + w_2, w_2) \). Set \(X_h := \mathbb{R} \times \{0\} \) (→ \(B \) is identity on \(X_h \)). Observe \(\|B\| = 1 \).

• For (3) let \(Y_h := \mathbb{R} \times \{0\} \). Then \(\|Bw_h\|_{Y_h'} = \|w_h\|_X \) for all \(w_h \in X_h \) gives \(\gamma_h = 1 \). Now, \(u_h := (1,0) \in X_h \) solves (2). In the quasi-optimality estimate we have \(\|u - u_h\|_X = 2 \) while \(\|u - w_h\|_X = 1 \) for \(w_h = 0 \).

• For (4) let \(Y_h := Y \). Again, \(\gamma_h = 1 \). Since \(Bu = (1,1) \), the set of minimizers \(U_h \) is the segment \([0,2] \times \{0\} \).

For \(u := (2,0) \in U_h \) we have \(\|u - u_h\|_X = 3 \) while \(\|u - w_h\|_X = 1 \) for \(w_h = 0 \). With a slight perturbation of the norms, say, we can achieve \(U_h = \{u_h\} \) without essentially changing the distances.

If \(X \) and \(Y \) are Hilbert spaces and \(B : X \to Y' \) is bounded by \(\|B\| \) then in both propositions the mapping \(P_h : X \to Y', u \mapsto u_h, \) is a well-defined bounded linear projection with \(\|P_h\| \leq \gamma_h \|B\| \). The argument of

then improves the quasi-optimality estimate to \(\|u - u_h\|_X \leq \|P_h\| \inf_{w \in X_h} \|u - w\|_X \).

\(^1 \text{Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France.} \)

E-mail address: roman.andreev@upmc.fr