QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV[†]

ABSTRACT. We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined either by Petrov–Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let X and Y be real normed vector spaces. Let $B: X \to Y'$ be a linear operator. Fix $u \in X$ – the "unknown". Let $X_h \times Y_h \subset X \times Y$ be nontrivial finite-dimensional subspaces. Abbreviate

Throughout, we assume the "discrete inf-sup condition": $\gamma_h > 0$. We define $B_h : X_h \to Y_h'$ by $w \mapsto (Bw)|_{Y_h}$. In the first proposition we require $\dim X_h = \dim Y_h$. In the second we admit $\dim Y_h \ge \dim X_h$.

Proposition 1. Suppose $\dim X_h = \dim Y_h$. Then there exists a unique $u_h \in X_h$ such that

$$\langle Bu_h, \nu \rangle = \langle Bu, \nu \rangle \quad \forall \nu \in Y_h.$$

The mapping $u \mapsto u_h$ is linear with $||u_h||_X \leq \gamma_h^{-1} ||Bu||_{Y_h'}$ and satisfies the quasi-optimality estimate:

(3)
$$||u - u_h||_X \le (1 + \gamma_h^{-1} |||B|||) \inf_{w_h \in X_h} ||u - w_h||_X.$$

Proof. The map B_h is linear and injective by (1). It is bijective due to finite $\dim X_h = \dim Y_h = \dim Y_h'$. Thus a unique $u_h := B_h^{-1}(Bu)|_{Y_h}$ exists and $u \mapsto u_h$ is linear. By (1), $\gamma_h ||u_h||_X \le ||B_h u_h||_{Y_h'} = ||Bu||_{Y_h'}$. From $||u - u_h||_X \le ||u - w_h||_X + ||w_h - u_h||_X$ and $\gamma_h ||w_h - u_h||_X \le ||B(u_h - w_h)||_{Y_h'} = ||B(u - w_h)||_{Y_h'} \le ||B|| ||u - w_h||_{Y_h'}$ we obtain (3). \square

Proposition 2. The set $U_h := \operatorname{argmin}_{w_h \in X_h} \|Bu - Bw_h\|_{Y_h'} \subset X_h$ of residual minimizers is nonempty, convex and bounded. Any $u_h \in U_h$ satisfies the quasi-optimality estimate

(4)
$$||u - u_h||_X \le (1 + 2\gamma_h^{-1} ||B||) \inf_{w_h \in X_h} ||u - w_h||_X.$$

Proof. The first statement is elementary: consider the metric projection of $(Bu)|_{Y_h} \in Y_h'$ onto $B_h X_h \subset Y_h'$. Quasi-optimality is obtained as above, except that $\|B(u_h - w_h)\|_{Y_h'} \le \|B(u - u_h)\|_{Y_h'} + \|B(u - w_h)\|_{Y_h'} \le 2\|B(u - w_h)\|_{Y_h'}$. \square

The set U_h of minimizers is a singleton if the unit ball of Y'_h is strictly convex. Since Y_h is finite-dimensional, this is the case if and only if the norm of Y_h is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take $X = Y = \mathbb{R}^2$ with the $|\cdot|_1$ norm. Then $|\cdot|_{\infty}$ is the norm of Y'. Take u := (0,1) and $B(w_1, w_2) := (w_1 + w_2, w_2)$. Set $X_h := \mathbb{R} \times \{0\}$ ($\Longrightarrow B$ is identity on X_h). Observe ||B|| = 1.

- For (3) let $Y_h := \mathbb{R} \times \{0\}$. Then $||Bw_h||_{Y_h'} = ||w_h||_X$ for all $w_h \in X_h$ gives $\gamma_h = 1$. Now, $u_h = (1,0) \in X_h$ solves (2). In the quasi-optimality estimate we have $||u u_h||_X = 2$ while $||u w_h||_X = 1$ for $w_h = 0$.
- For (4) let $Y_h := Y$. Again, $\gamma_h = 1$. Since Bu = (1, 1), the set of minimizers U_h is the segment $[0, 2] \times \{0\}$. For $u_h := (2, 0) \in U_h$ we have $||u u_h||_X = 3$ while $||u w_h||_X = 1$ for $w_h = 0$. With a slight perturbation of the norms, say, we can achieve $U_h = \{u_h\}$ without essentially changing the distances.

If *X* and *Y* are Hilbert spaces and $B: X \to Y'$ is bounded by ||B|| then in both propositions the mapping $P_h: X \to X$, $u \mapsto u_h$, is a well-defined bounded linear projection with $||P_h|| \le \gamma_h^{-1} ||B||$. The argument of

[1] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numer. Math., 94(1), 2003.

then improves the quasi-optimality estimate to $||u - u_h||_X \le ||P_h|| \inf_{w_h \in X_h} ||u - w_h||_X$.

†Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France. E-mail address: roman.andreev@upmc.fr

Date: June 27, 2016. MSC (2010): 65N30. Support: Swiss NSF #164616.