QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV ${ }^{\dagger}$

Abstract. We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined either by Petrov-Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let X and Y be real normed vector spaces. Let $B: X \rightarrow Y^{\prime}$ be a linear operator. Fix $u \in X-$ the "unknown". Let $X_{h} \times Y_{h} \subset X \times Y$ be nontrivial finite-dimensional subspaces. Abbreviate

$$
\begin{equation*}
\gamma_{h}:=\inf _{w \in X_{h} \backslash\{0\}}\|B w\|_{Y_{h}^{\prime}} /\|w\|_{X} \quad \text { and } \quad\|B\|:=\sup _{w \in\left(u+X_{h}\right) \backslash\{0\}}\|B w\|_{Y_{h}^{\prime}} /\|w\|_{X} . \tag{1}
\end{equation*}
$$

Throughout, we assume the "discrete inf-sup condition": $\gamma_{h}>0$. We define $B_{h}: X_{h} \rightarrow Y_{h}^{\prime}$ by $\left.w \mapsto(B w)\right|_{Y_{h}}$. In the first proposition we require $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}$. In the second we admit $\operatorname{dim} Y_{h} \geq \operatorname{dim} X_{h}$.

Proposition 1. Suppose $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}$. Then there exists a unique $u_{h} \in X_{h}$ such that

$$
\begin{equation*}
\left\langle B u_{h}, v\right\rangle=\langle B u, v\rangle \quad \forall v \in Y_{h} \tag{2}
\end{equation*}
$$

The mapping $u \mapsto u_{h}$ is linear with $\left\|u_{h}\right\|_{X} \leq \gamma_{h}^{-1}\|B u\|_{Y_{h}^{\prime}}$ and satisfies the quasi-optimality estimate:

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{X} \leq\left(1+\gamma_{h}^{-1}\|B\|\right) \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X} \tag{3}
\end{equation*}
$$

Proof. The map B_{h} is linear and injective by (1). It is bijective due to finite $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}=\operatorname{dim} Y_{h}^{\prime}$. Thus a unique $u_{h}:=\left.B_{h}^{-1}(B u)\right|_{Y_{h}}$ exists and $u \mapsto u_{h}$ is linear. By (1), $\gamma_{h}\left\|u_{h}\right\|_{X} \leq\left\|B_{h} u_{h}\right\|_{Y_{h}^{\prime}}=\|B u\|_{Y_{h}^{\prime}}$. From $\left\|u-u_{h}\right\|_{X} \leq$ $\left\|u-w_{h}\right\|_{X}+\left\|w_{h}-u_{h}\right\|_{X}$ and $\gamma_{h}\left\|w_{h}-u_{h}\right\|_{X} \leq\left\|B\left(u_{h}-w_{h}\right)\right\|_{Y_{h}^{\prime}}=\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq\|B\|\| \| u-w_{h} \|_{Y_{h}^{\prime}}$ we obtain (3).
Proposition 2. The set $U_{h}:=\operatorname{argmin}_{w_{h} \in X_{h}}\left\|B u-B w_{h}\right\|_{Y_{h}^{\prime}} \subset X_{h}$ of residual minimizers is nonempty, convex and bounded. Any $u_{h} \in U_{h}$ satisfies the quasi-optimality estimate

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{X} \leq\left(1+2 \gamma_{h}^{-1}\|B\| \|\right) \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X} . \tag{4}
\end{equation*}
$$

Proof. The first statement is elementary: consider the metric projection of $\left.(B u)\right|_{Y_{h}} \in Y_{h}^{\prime}$ onto $B_{h} X_{h} \subset Y_{h}^{\prime}$. Quasioptimality is obtained as above, except that $\left\|B\left(u_{h}-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq\left\|B\left(u-u_{h}\right)\right\|_{Y_{h}^{\prime}}+\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq 2\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}}$.

The set U_{h} of minimizers is a singleton if the unit ball of Y_{h}^{\prime} is strictly convex. Since Y_{h} is finite-dimensional, this is the case if and only if the norm of Y_{h} is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take $X=Y=\mathbb{R}^{2}$ with the $|\cdot|_{1}$ norm. Then $|\cdot|_{\infty}$ is the norm of Y^{\prime}. Take $u:=(0,1)$ and $B\left(w_{1}, w_{2}\right):=\left(w_{1}+w_{2}, w_{2}\right)$. Set $X_{h}:=\mathbb{R} \times\{0\}\left(\rightsquigarrow B\right.$ is identity on $\left.X_{h}\right)$. Observe $\|B\|=1$.

- For (3) let $Y_{h}:=\mathbb{R} \times\{0\}$. Then $\left\|B w_{h}\right\|_{Y_{h}^{\prime}}=\left\|w_{h}\right\|_{X}$ for all $w_{h} \in X_{h}$ gives $\gamma_{h}=1$. Now, $u_{h}=(1,0) \in X_{h}$ solves (2). In the quasi-optimality estimate we have $\left\|u-u_{h}\right\|_{X}=2$ while $\left\|u-w_{h}\right\|_{X}=1$ for $w_{h}=0$.
- For (4) let $Y_{h}:=Y$. Again, $\gamma_{h}=1$. Since $B u=(1,1)$, the set of minimizers U_{h} is the segment $[0,2] \times\{0\}$. For $u_{h}:=(2,0) \in U_{h}$ we have $\left\|u-u_{h}\right\|_{X}=3$ while $\left\|u-w_{h}\right\|_{X}=1$ for $w_{h}=0$. With a slight perturbation of the norms, say, we can achieve $U_{h}=\left\{u_{h}\right\}$ without essentially changing the distances.
If X and Y are Hilbert spaces and $B: X \rightarrow Y^{\prime}$ is bounded by $\|B\|$ then in both propositions the mapping $P_{h}: X \rightarrow X, u \mapsto u_{h}$, is a well-defined bounded linear projection with $\left\|P_{h}\right\| \leq \gamma_{h}^{-1}\|B\|$. The argument of
[1] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numer. Math., 94(1), 2003.
then improves the quasi-optimality estimate to $\left\|u-u_{h}\right\|_{X} \leq\left\|P_{h}\right\| \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X}$.

[^0]Date: June 27, 2016. MSC (2010): 65N30. Support: Swiss NSF \#164616.

[^0]: ${ }^{\dagger}$ Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France.
 E-mail address: roman. andreev@upmc.fr

