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Our research focuses on the difficulties students encounter with the learning of 

calculus, considering that they have to cope with much more mathematical objects 

but also with new ways of reasoning – not only algebraic calculation, but also the 

practice of approximation, and a scaffolding way of using functions, limits, 

derivative, integrals, etc. for proving. The semiotic facet of new objects, and the way 

to manage it, is also a source of great difficulties. We use a model (Bloch & Gibel, 

2011) to describe students' work when they have to deal with the resolution of 

exercises about parametric curves and differential equations.  

Keywords: Calculus, students' understanding of mathematical signs and objects, 

reasoning processes, parametric curves, differential equations. 

INTRODUCTION 

Every researcher knows that mathematical work in the field of Calculus is usually 

very difficult for even good students when they are entering the University. We have 

studied the transition between the secondary mathematical organisation in teaching 

(pre)calculus, and the University one; in this perspective we aim at classifying the 

different 'things' students have to cope with when they are practicing Calculus.  

The organisation at Secondary school takes into account some mathematical objects, 

as functions, derivatives, integrals: but a number of researchers underline the fact 

that the way these objects are introduced leads to algebraic calculation and not to 

analytic work. For instance, students are supposed to calculate an integral but not to 

justify why it exists; to study the variations of functions with derivative, but not to 

have a knowledge about which functions get derivatives at which points, or not. So 

we can see that the raison d'être of a mathematical concept is not highlighted.  

We notice that, even if teachers think of the structural level, in most cases they 

confront students only with the operational one. For instance, Ghedamsi (2015) 

analyses a first year regular course at University and she concludes that:  

the teacher does not intervene to enrich (the work) by emphasizing relationships among 

notions, by changing the setting of semiotic representations, by leaving openings to 

organize knowledge, by making assessments of knowledge, etc. (So) students employ 

methods used at the secondary school and do not succeed to shift to the university ones. 

In our case, the problem seems not to be the way the notions have been taught; we 

got an access to the students' course notes, and they show relevant justifications and 



  

explanations. The didactical repertoire of the class has been elaborated by suitable 

exercises and situations, leading to highlight the operating mode of these concepts. 

But to better explain the students' work, it is necessary to classify the objects, signs 

and reasoning processes they have to cope with during resolution of calculus 

problems.  

I. THE LEARNING OF CALCULUS: OBJECTS, SIGNS AND REASONING  

Mathematical objects and signs: complexification 

At the beginning of University studies, students meet functions as in Secondary 

school like rational ones as polynomials, or sinus or cosine; they have to solve 

problems with exponentials, logarithms, but the derivatives can also generate new 

functions, and integrals too, or series: so objects may have different status, and signs 

become polysemic. With respect to these signs, we notice that at Secondary school 

students operate frequently by implementing isolated techniques: they can calculate 

on a rather straightforward way. But at University, they face complex signs and they 

have to associate different kinds of symbols, sometimes through a long proving 

process, for example to calculate an rather complex integral or to prove that a 

theorem is valid, which is not their responsibility at Secondary school. At University 

too, signs are multiform: for instance derivative can be written f' but also df/dx; or x 

can be the function, so it will appear as dx/dt; a letter can nominate a variable, a 

function, or a parameter, which status is sometimes difficult to understand.  

Moreover, rules about the use of signs are imbricated, so if you try to calculate cos
2
x 

dx you have to linearize cos
2
x because you cannot apply the rule of the primitive of 

x
2
, just 'mixed' with the primitive of cos x, to cos

2
x… and find 1/3.sin

3
x, as we saw 

once a student. This evolution of signs is even more evident considering the 

procedures for proving within the calculus work: students have to understand and 

use new analytic methods, as it is well known, for limits with  and α, and to master 

quantifiers, which reveals to be rather hard (see Chellougui & Kouki, 2013).  

Reasoning processes 

This complexity requires that students adapt themselves to improve and perfect their 

reasoning processes: they have to become able to deal with all the facets of 

knowledge and to adapt their "way of doing", taking into account all the aspects of a 

question and the requirements of the proofs.  

We can say that throughout the reasoning processes, signs (and then objects) work in 

a strong interaction, as seen above: integrals with the primitive of sine and squares, 

but also techniques and technologies to prove. Among these technologies it is very 

important that students learn how to manage the new tools, as quantifiers and the 

way to perform a valid reasoning up to its end.  



  

II. A MODEL TO ANALYZE STUDENTS' PRODUCTIONS 

We need then a tool for modelling students' reasoning processes and try to seize how 

they manage with this complexity at each level of a situation. This tool takes its 

origin in the TDS (Theory of Didactical Situations, see Gonzalez-Martin, Bloch, 

Durand-Guerrier, and Maschietto 2014). Let us recall that TDS is trying to 

implement situations with an adidactical component, that is, situations that allow 

students to live a heuristic phase of research. Then they can validate their conjectures 

through a confrontation to the elements of an adequate milieu. Eventually, a phase of 

institutionalization is managed by the teacher. The whole model can be found in 

Bloch & Gibel, 2011.  

The theoretical tools used in the elaboration of the model  

We want to take into account the semantic dimension – the meaning of the aimed 

knowledge – to analyse reasoning processes: this contributes to justify our choice of 

the TDS as a basis of our model. TDS organizes adidactical situations with three 

phases (corresponding to levels of the milieu): a heuristic one (students' action) 

grounded with a question; a formulation and validation one; and a last one, 

institutionalization by the teacher. In this configuration reasoning processes we take 

into account are as well valid or erroneous ones. This theoretical frame allows 

developing also an analysis of the functions of the reasoning processes within the 

situation (Gibel, 2004; 2015). So in our model we consider signs, functions of 

reasoning, and levels of argumentation.  

The semiotic dimension of the analysis  

In order to complete and enhance this theoretical framework we add a semiotic 

content to TDS. In a previous research (Bloch & Gibel 2011; Gibel 2015) we 

highlighted the fact that reasoning processes elaborated by the pupils and the teacher 

during a lesson can occur in various ways: linguistic, calculative, scriptural, and 

graphic elements (see also Bloch 2003). Consequently the semiotic analysis 

constitutes one of the dimensions of our model, completing those previously 

presented: on the one hand the function of the reasoning processes and on the other 

hand the corresponding level of the didactical milieu. Let us notice that signs can be 

either formal or linguistic: both will be taken into account. What is significant are the 

arguments embodied in those signs. This is why Pierce’s semiotics seems particularly 

appropriate for our research and will enable us to study more precisely the evolution 

and the transformations in the signs used by the different actors within the situation.   

In our application of Pierce’s semiotics we use the three usual designations: icon, 

index-sign and symbol-argument. Yet we do not consider the whole intricacy of 

Peirce’s theory: it would be too complex to take into account and not necessary to 

correctly interpret students’ actions in the situation. So we just correlate icons with 

students’ intuitions, drawings, examples, resolution attempts; indexical signs with 

local proofs, first tools for validation, more accurate reasoning, formulations of 



  

mathematical objects; and symbols-arguments with the concluding validation and 

mathematical formulation of the rules, and of the aimed knowledge.  

The didactical repertoire and the repertoire of representations  

The work in the students group leans first on the existing repertoire: all the semiotic 

means used by a teacher, and those he expects from his pupils through his teaching, 

establish the didactical repertoire of the class – as defined by Gibel (2004). The 

didactical repertoire of the class can be identified as being part of the mathematical 

knowledge the teacher has chosen to explain, namely during validation and 

institutionalization phases of previous situations or previous lessons. The repertoire 

of representations is a constituent part of the didactical repertoire. It is made up of 

signs, diagrams, symbols and shapes and also linguistic elements (oral and/or written 

sentences), which make it possible to name the objects encountered and to formulate 

properties and results.  

A model to analyse reasoning processes  

The model of structuration of the didactical milieu used in this construction is that of 

Bloch (2006). The chart below (Table 1) sums up the levels of milieu – from M1 to 

M-3 – corresponding to the experimental situation.  

M1 Didactical milieu E1: reflexive subject P1: P. planner S1: sit. of project 

M0 Learning milieu : 

institutionalization 

E0: generic student  P0: professor 

teaching 

S0: Didactical  

situation  

M-1 Reference milieu : 

Formulation and validation 

E-1: The subject as 

learner 

P-1: Professor 

Regulator  

S-1:Learning 

situation  

M-2 Heuristic milieu : 

action, research 

E-2: The subject as 

an actor 

P-2: P devolves 

and observes 

S-2: Situation of 

reference 

M-3  

Material milieu  

E-3: epistemological 

subject 

 S-3: Objective 

situation  

Table 1 –Structuration of the didactical milieu 

The negative levels are of particular interest in the sequences we frequently study 

since they allow describing the emergence of a proof process in the setting up of an 

adidactical situation. The place where we hope to see the expected reasoning 

processes appear and develop is located at the articulation between the heuristic 

milieu and the reference milieu.  

In our previous research (Bloch & Gibel, ibid.), we decided to focus our didactical 

analysis on three main axes to study the reasoning processes. The first axis is linked 

to the nature of the situation: in a situation involving a research dimension, students 

produce reasoning processes which depend to a great extent on the involved phase of 

the situation, that is, the level of milieu (heuristic milieu, milieu of formulation or 

validation) (Table 1). 



  

The second axis of our study is the analysis of the functions of reasoning. We aim at 

linking these two axes, showing how the reasoning functions are linked specifically 

to the levels of milieu and how these functions also manifest these levels of milieu.  

The third axis concerns noticeable signs and representations. These elements can be 

observed through different forms which affect the way the situation unfolds.    

The application of this model to a situation will then include an analysis of the milieu 

and semiotic analysis of the students and teacher’s productions. We will interpret the 

conjectures, intuitions, signs and reasoning processes as an evolution of the 

didactical repertoire of the class, knowing that the situation aims at developing a 

mathematical knowledge in the field of calculus. This is summarized in Table 2: 

 Milieu M-2 

Heuristic level 

Milieu M-1 

Formulation, validation 

Milieu M0 

Institutionalization 

 

Nature and 

functions of 

reasoning  

R1.1  SEM 

- Intuitions on a drawing 

- Decision of calculation 

- Heuristic tools; errors 

- Exhibition of an 

example /a counter ex. 

R1.2  SYNT/SEM 

- Generic calculations 

and conjectures (right 

or wrong) 

- Decision on a 

mathematical objet  

R1.3  SYNT 

- Formalization of 

proofs within the 

mathematics 

involved theory 

Level of use 

of symbols 

R2.1  SEM  

Icons or indices 

depending on the context 

(schemas, intuitions…) 

R2.2  SYNT/SEM 

Local or more generic 

arguments: indices, 

calculations 

R2.3  SYNT 

Formal and specific 

arguments: symbols  

hypoicons 

Actualisation 

of the 

repertoire 

R3.1  SYNT/SEM 

- Ancient knowledge  

- Enrichment at the 

heuristic level: 

calculations, conjectures 

R3.2  SYNT/SEM 

Enrichment at the 

argumental level:  

- statements, reasoning 

R3.3  SYNT 

- Formalized proofs 

- Signs within the 

relevant theory 

- theoretical elements  

Table 2 – A model to analyse situations 

Table 2 then includes levels of milieu, nature of signs, functions of reasoning, level 

of the repertoire. We have also pointed out that some formulations are made on a 

semantic mode (SEM), as more evolved (in a mathematical sense) ones can also be 

formulated on a syntactic mode (SYNT). Let us notice that this model allows not 

only the study of adidactical situations, but also to analyse students' productions 

while solving 'ordinary' problems: in this text we choose to develop this feature of 

our work (see examples in III.). The matrix notation R1.1 etc. allows to quickly 

situating the level of arguments where students are located.  

We want to underline the fact that an a priori analysis is necessary for each situation 

we choose to study: the model we built is also useful and efficient to perform this a 

priori analysis, as it allows anticipating resolution processes and difficulties. In this 

perspective, we classify reasoning, calculations, formulas, the nature of signs 



  

produced, and knowledge(s) expressed by students in the different phases, reflecting 

the situation in which they are located.  

The use of the model to analyse 'ordinary' teaching  

Our model can also be used to analyse 'ordinary' secondary or university teaching, as 

it allows detecting students' reasoning processes, use of symbols, and understanding 

of mathematical objects involved. We can analyse the students' templates while they 

try to solve a problem: they are first in a heuristic milieu M-2, trying to find a 

resolution process. Then they decide to undertake calculations, use of theorems, and 

a final issue. They are then in a milieu M-1. This can be seen also in the context of 

an evaluation which we present in part III.  

III. TWO EXAMPLES: HOW STUDENTS COPE WITH PARAMETRIC 

CURVES AND DIFFERENTIAL EQUATIONS 

We consider the productions of fourteen students in the context of a first year 

terminal exam at the University of Pau, in May 2014. The teaching unit involved is 

named: "Mathematics of the movement", which is interesting because a link is made 

between mathematical knowledge and physics problems. The exam includes three 

exercises, the first one on polar and parametric functions, the second and the third 

ones on differential equations. Parametric curves and differential equations are 

especially interesting to study as they involve complex new signs, unusual processes 

for secondary students, and new kinds of reasoning. These reasoning encompass also 

mathematical objects, as functions, limits, derivatives, but in a new way of thinking.  

1. Parametric curves 

A parametric curve is of the type: x = f(t), y = g(t). There are two functions x and y 

to study; students must understand that what is required finally is to describe the 

variations of y with respect to x, in the case of a movement for instance; so the study 

of the two functions f and g (including the calculation of their derivatives) is just a 

step (of R1.2 type) to interpret what happens with the curve of y while x being the 

final variable. Sketching the graph needs to give values to t, being sure that we got 

the ‘whole’ curve; or eliminating the parameter t, which may reveal to be complex.  

Another difficulty comes from the existence of tangents: in contrast to what happens 

with algebraic curves, parametric ones can have two tangents at the same point: this 

is a singular point that students did not meet before. They are expected to identify the 

nature of this singular point, for instance a cusp. It needs to first apply a formula 

(x’(t)=0, y’(t)=0) and then try to find the tangents at this point to be able to identify 

the nature of the singular point (a calculation and reasoning of successive derivatives 

that takes place at R2.3 or R3.2 level at least and involves specific interpretation 

about the objects at stake).  

We classified students' productions from S1 to S14. In May 2014 students were 

confronted to the following question:  



  

Let us study the parametric curve defined by x(t) = a t
2
/(1+t

2
) , y = a t

3
/(1+t

2
) 

with tIR. Show that it is sufficient to study for t≥0. Determine the variations 

and confirm that the curve gets symmetry, an asymptote and a singularity.  

Students have to calculate x(-t) and y(-t) and conclude about the kind of symmetry; 

calculate the derivatives, build the variation table and do not forget the limits; and 

they must undertake pertinent interpretations of these results. The curve has a 

singularity, a cusp: they must find its coordinates and its nature. We expect that a 

difficulty can occur in the interpretation of derivatives: students are accustomed to 

calculate such derivatives but for algebraic functions one derivative is enough to find 

the variation of f. The asymptote can be a problem too, as t +∞ when x a and 

y+∞. So the asymptote is vertical, but nevertheless when t+∞, which can be a 

source of misunderstanding: for algebraic curves a limit where the variable tends to 

infinite corresponds to a horizontal asymptote.  

Analysis of students' productions 

Student S1 does perfectly all what is expected: she calculates the derivatives, the 

behaviour of the function, draws the graph with the asymptote, and determines the 

cusp with its tangent, which needed to calculate x
(3)

(t) and y
(3)

(t) for t=0. S1 reaches 

the level R1.3, she makes a formalization of proofs within the required theory. 

Student S14 cannot do anything; five other students encounter difficulties to 

calculate derivatives, to interpret the symmetry, and to find the singular point. One 

student says that a should be the parameter. One other writes that the equation of the 

curve is x(t)+y(t)... So we can see that even in M-2, some students do not reveal to be 

able to undertake local adequate calculations, as they do not understand that they are 

no more in the case of a Cartesian function. There are errors about the nature of the 

asymptote, for instance: only six students calculate the limits and conclude about the 

asymptote, reaching the R2.2 level, but among these six two of them write a wrong 

equation: y=a instead of x=a. Students’ productions also show calculation mistakes, 

especially in derivatives and primitives. The handling of singular points is not 

properly integrated: students are unsettled with the conditions for being a singularity, 

with the ways of finding the tangent... For instance S6 tries to find the point by 

calculating x=0 and y=0 instead of their derivatives; S2, who succeeds in the exam, 

writes that: "every non collinear vector to the curve is tangent to the curve"…  

Some students who calculate without mistakes encounter problems with the 

interpretation of their calculations: their use and interpretation of signs do not exceed 

the R2.1 or R2.2 level. Those who succeed very well (four from the twelve) write 

sentences to explain that a singular point is given by x’(t)=0, y’(t)=0, applying a 

R2.2 or even R2.3 knowledge; one student says that it means that the speed is equal 

to zero; but only the first one S1 is able to calculate the tangent and identify the 

nature of the singularity, being clearly in the position R2.3 for all needed symbols.  



  

2. Differential equations 

In the exam students had to cope with the solving of these two differential equations: 

Exercise 3: Given the first order differential equation: e
x
yy' – x

2
(y

2
-9) = 0  

After separating the variable, solve the equation. Then solve the Bernoulli 

differential equation:  

  
A priori analysis 

First, we consider the first order differential equation. Separating the variables 

implies preserving the initial shape, that is, not to develop the term )9( 22 yx , to 

obtain the following shape: 
xe

x

y

yy 2

2 9

'



. This requires analysing preliminarily the 

features, the characteristics of the different mathematical signs appearing in the 

equation to anticipate the expected form. To solve this equation, students have then 

to transform y’ as 
dx

dy
y ' ; then they can produce an algebraic form allowing to 

integrate the terms.  

Dealing with the term dx
e

x
x
2

 requires necessarily applying two times integration by 

parts. Considering the second part of the exercise, solve the Bernoulli equation gives 

rise to a number of difficulties: the first one consists in being able to make the 

substitution leading to the equation xzz
x

zz  24
'2 . After simplification it can then be 

written: xz
x

z 
4

'2  . 

Students must solve first the homogeneous differential equation associated, and then 

they have to solve the inhomogeneous differential equation by variation of the 

constant, which can be source of new difficulties. The technique of variation of the 

constant is a part of the new technical and technological tools of first year University 

course, so it is of Level R3.3 in our model.  

Analysis of students productions 

First we analyze main difficulties encountered by students to solve the differential 

equation e
x
yy' – x

2
(y

2
-9) = 0. The first one is to separate the variable to obtain 

xe

x

y

yy 2

2 9

'



  : among fourteen students only eight of them accomplished this task; for 

two of them this task was difficult and required several attempts as we expected. The 

next step of the resolution needs to compute  
dy

y

y

92
. Seven students out of eight 

were able to fulfil this task, but two of them represented the quotient as a sum of 

rational functions, because they did not acknowledge the derivative of the function 



  

)9( 2 yLn . Recognize this primitive is of Level R2.2 because students have to 

identify a schema – a hypoicon according to Peirce – of different 'models' of 

derivatives/primitives, which variable is not always 'x'. It supposes that the students' 

repertoire encompasses a lot of 'forms' that at this level they did not meet often 

enough.  

We notice that only five students were able to deal with the term dx
e

x
x
2

applying two 

times integration by parts. Then, only four students resolved this equation and obtain 

the whole solution. 

As regards the Bernoulli equation, half of the students recognized an equation such 

as nyxbyxay )()('  , with 
2

1
n  and 

x
xa

4
)(   , xxb )(  . They have been able to 

make the substitution 2

1

yz  . But only five of them succeeded in obtaining 

xz
x

z 
4

'2 ; two students did not allow themselves to reduce the equation, they could 

not admit the possibility of dividing each term by z. Among these five students, the 

three other students implemented successful method of solving. 

CONCLUSION  

We can conclude that it is really difficult for students to access to Level 3 of our 

model, although this level being the 'expert' one required: they frequently keep 

blocked at Level 1 with old non-adapted knowledge or false calculations, or they try 

to work at Level 2 but do not succeed in more complex calculations, especially when 

schemas are involved; or they make the expected calculation but are no more able to 

interpret it within the problem.  

We can notice that the involved activities, at this level, imply a very rich assortment 

of technics, procedures, and a variety of occasions to apply formulas. Yet the 

familiarity with this knew field of knowledge is not established for a majority of 

students, and their algebraic skills are undersupplied. Then the students' productions 

highlight their numerous attempts to try to calculate and recognize well-known 

shapes within the heuristic milieu. We think that the difficulties highlighted in this 

study are not linked with the teacher's didactical choices, but they are common 

within the population of mathematical students, due to the reasons we evoked in the 

first part of this paper.  

We want to point out the missing knowledge also in the (French) secondary 

curriculum: students study no more the composition of functions. Yet recognize the 

kind of schemas we see in a differential equation as above implies to detect which 

functions are at stake and how they appear in the formula. As students have no 

familiarity with 'the whole formula' they try to interpret each element separately, 

which has no meaning. So, most of them do not achieve the level R3.  



  

We could also formulate these obstacles by saying that students fail in doing a 

pertinent association between syntactic and semantic methods: they are stressed with 

calculations and cannot control the meaning of the operations they have done. The 

next step of our work should be finding relevant situations for the teaching of 

Calculus, both in an introductory way at Secondary school, and at University.  
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