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Abstract. Given a permutation π = π1π2 · · ·πn in the symmetric group, we say an index i is a peak if πi−1 <
πi > πi+1. Let P (π) denote the set of peaks of π. Billey-Burdzy-Sagan showed that for all fixed subsets of positive
integers S and sufficiently large n, the number of permutations on n elements with peak set S is pS(n)2n−|S|−1 for
some polynomial pS(x) depending on S. They conjectured that the coefficients of pS(x) expanded in a binomial
coefficient basis centered at max(S) are all positive. We show that this is a consequence of a stronger conjecture that
bounds the modulus of the roots of pS(x). Furthermore, we give an efficient explicit formula for peak polynomials in
the binomial basis centered at 0, which we use to identify many integer roots of peak polynomials along with certain
inequalities and identities.

Résumé. Étant donné une permutation π = π1π2 · · ·πn du groupe symétrique, nous disons qu’un indice i est un
sommet si πi−1 < πi > πi+1. Soit P (π) l’ensemble des sommets de π. Billey-Burdzy-Sagan ont montré que,
pour tout sous-ensemble d’entiers positifs S et n suffisamment grand, le nombre de permutations de n éléments avec
ensemble de sommets S est pS(n)2n−|S|−1 pour un certain polynôme pS(x) dépendant de S. Ils ont fait la conjecture
que les coefficients du polynôme pS(x) exprimé dans une base de coefficients binomiaux centrée en max(S) sont tous
positifs. Nous montrons que cela découle d’une conjecture plus forte qui borne le module des racines du polynôme
pS(x). De plus, nous donnons une formule explicite efficace pour les polynômes sommets dans la base binomiale
centrée en 0, que nous utilisons pour identifier plusieurs racines entières de polynômes sommets, ainsi que certaines
inégalités et identités.

Keywords: binomial coefficient, combinatorics, peak, permutation

1 Introduction
Let Sn be the symmetric group of all permutations π = π1π2 . . . πn of [n] := {1, 2, . . . , n}. An index 1 <
i < n of π is a peak if πi−1 < πi > πi+1, and the peak set of π is defined as P (π) = {i : i is a peak of π}.
We are interested in counting the permutations of Sn with a given peak set, so let us definePS(n) = {π ∈
Sn : P (π) = S}. We say that a set S = {i1 < i2 < · · · < is} is n-admissible if |PS(n)| 6= 0. Note that
we insist the elements of S be listed in increasing order and that S is n-admissible if and only if 1 < i1,
no two ir are consecutive integers, and is < n. If we make a statement about an admissible set S, we
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mean that S is n-admissible for some n, and the statement holds for every n such that S is n-admissible.
Burdzy, Sagan, and the first author recently proved the following result in [3].

Theorem 1.1 ([3, Theorem 3]). If S is a nonempty admissible set and m = max(S), then

|PS(n)| = pS(n)2n−|S|−1

for n ≥ m, where pS(x) is a polynomial of degree m − 1 depending on S such that pS(n) is an integer
for all integral inputs n. If S = ∅, then |PS(n)| = 2n−1, so we can set p∅(n) = 1.

If S is not admissible, then |PS(n)| = 0 for all positive integers n, and one defines the corresponding
polynomial to be pS(x) = 0. Thus, for all finite sets S of positive integers, pS(x) is a well-defined
polynomial, which is called the peak polynomial for S.

In this paper, we study properties of peak polynomials such as their expansions into binomial bases,
roots, and related inequalities and identities. We also enumerate permutations with a given peak set using
alternating permutations and connect our results to other recent work about the peak statistic [3, 11, 14,
16]. Our primary motivation comes from combinatorics, information theory, and probability theory. Peaks
sets have been studied for decades going back to [17] and used more recently in a probabilistic project
concerned with mass redistribution [10]. Below are the primary results of this paper.

Theorem 1.2. Let S = {i1 < i2 < · · · < is = m} be admissible and nonempty. For 0 ≤ j ≤ m − 1,
define the coefficients

dSj = (−1)m−j−1(−2)|S∩(j,∞)|−1pS∩[j](j).

If there exists an index 1 ≤ r ≤ s − 1 such that ir+1 − ir is odd, let b = ir for the largest such r. Then
the peak polynomial pS(x) expands in the binomial basis centered at 0 as

pS(x) =

m−1∑
j=b

dSj

(
x

j

)
.

Otherwise, if there are no odd gaps, then

pS(x) =
(
dS0 − (−2)|S|−1

)
+

m−1∑
j=1

dSj

(
x

j

)
.

Theorem 1.1 implies that pS(m) = 0 using the fact that PS(m) is empty, but we may have pS(`) 6= 0
for ` < m even though |PS(`)| = 0. The next two theorems describe additional roots of pS(x).

Corollary 1.3. If S = {i1 < i2 < · · · < is} and ir+1 − ir is odd for some 1 ≤ r ≤ s − 1, then
0, 1, 2, . . . , ir are roots of pS(x).

Theorem 1.4. We have pS(i) = 0 for all i ∈ S.

In [3], they conjecture that the coefficients of any peak polynomial are nonnegative integers in the
shifted binomial basis

(
x−m

j

)
, where m is the maximum value in the corresponding peak set. We refer

to this as the “positivity conjecture”, and we show in this paper that it is a consequence of the following
conjecture. These two conjectures motivated our research, because they suggest that we look at the roots
of peak polynomials.
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Conjecture 1.5. The complex roots of pS(z) lie in {z ∈ C : |z| ≤ m and Re(z) ≥ −3} if S is admissible.

This conjecture is similar in nature to the Riemann Hypothesis. More specifically, our work fits into
a bigger context of studying roots for polynomials with integer coefficients in some basis. For example,
the roots of Ehrhart polynomials [2, 6, 9, 18], chromatic polynomials [7, 8], and Hilbert polynomials [19]
have all been shown to respect similar bounds on the complex plane. Additionally, we are investigating the
roots of peak polynomials, because they may encode properties of their peak set, similar to how the roots
of a chromatic polynomial P (G, k) encode the number of connected components, blocks, and acyclic
orientations of G.

2 Background

In this section, we state results from [3] that are used throughout this paper. Additionally, we discuss the
calculus of finite differences, specifically forward differences, and the positivity conjecture from [3]. Let
S be a nonempty admissible set of constants and m = max(S) throughout the section.

Corollary 2.1 ([3, Corollary 4]). We have

pS(x) = pS1(m− 1)

(
x

m− 1

)
− 2pS1(x)− pS2(x),

where S1 = S \ {m} and S2 = S1 ∪ {m− 1}.

Theorem 2.2 ([3, Theorem 6]). If S = {m}, then

pS(x) =

(
x− 1

m− 1

)
− 1.

In the calculus of finite differences, we define the forward difference operator ∆ to be (∆f)(x) =
f(x + 1) − f(x). Higher order differences are given by (∆nf)(x) = (∆n−1f)(x+ 1) − (∆n−1f)(x).
We use the definition of the Newton interpolating polynomial to expand pS(x) in the binomial basis
centered at k as

pS(x) =

m∑
j=0

(∆jpS)(k)

(
x− k
j

)
.

Notice its similarity to Taylor’s theorem. Below is an example of the forward differences of p{2,6,10}(x).
The k-th column in the table is the basis vector for the expansion of p{2,6,10}(x) in the binomial basis
centered at k. We consider these expansions centered at both 0 and m in this paper.
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j, k 0 1 2 3 4 5 6 7 8 9 10
0 -8 -4 0 2 4 6 0 -18 -72 -196 0
1 4 4 2 2 2 -6 -18 -54 -124 196 3094
2 0 -2 0 0 -8 -12 -36 -70 320 2898 12376
3 -2 2 0 -8 -4 -24 -34 390 2578 9478 26564
4 4 -2 -8 4 -20 -10 424 2188 6900 17086 36376
5 -6 -6 12 -24 10 434 1764 4712 10186 19290 33324
6 0 18 -36 34 424 1330 2948 5474 9104 14034 20460
7 18 -54 70 390 906 1618 2526 3630 4930 6426 8118
8 -72 124 320 516 712 908 1104 1300 1496 1692 1888
9 196 196 196 196 196 196 196 196 196 196 196
10 0 0 0 0 0 0 0 0 0 0 0

Tab. 1: Forward differences of p{2,6,10}(x).

We know from Theorem 1.1 that (∆0pS)(m) = 0, (∆m−1pS)(k) is a positive integer, and (∆jpS)(k) =
0 for all k ∈ Z and j ≥ m. Burdzy, Sagan, and the first author proposed the following positivity conjecture
in [3].

Conjecture 2.3 ([3, Conjecture 14]). Each coefficient (∆jpS)(m) is a positive integer for 1 ≤ j ≤ m− 1
and all admissible sets S.

It follows from Stanley’s text [21, Corollary 1.9.3] that pS(n) is an integer for all integral n if and only
if the coefficients in the expansion of pS(n) in a binomial basis are integral, so we only need to prove that
(∆jpS)(m) is positive for 1 ≤ j ≤ m− 1. In [4], we show that the positivity conjecture is a consequence
of Conjecture 1.5 using the following theorem.

Theorem 2.4. If S is admissible and pS(n) has no zero whose real part is greater than m, then each
coefficient (∆jpS)(m) is positive for 1 ≤ j ≤ m− 1.

It is worth noting that we have checked the zeros of the peak polynomials for all admissible sets S with
max(S) ≤ 15 in [13], and they agree with Conjecture 1.5.

3 Roots of peak polynomials
Our main theorems from the introduction are proved here in Subsection 3.1. In particular, we give an
explicit formula for pS(x) in the binomial basis centered at 0. In Subsection 3.2 we look at peak polyno-
mials with only integral roots, and the results in Subsection 3.3 show that if S has a gap of 3, then pS(x)
is independent of the peaks to the left of this gap up to a constant. All of the results in this section assume
that S is admissible, though not explicitly stated in the hypothesis. Also, note that m 6= max(S) in most
of the recurrences.

3.1 Main results
The following recurrence relation is very efficient for computation and is the foundation of every result in
this section.
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Lemma 3.1. If S = {i1 < i2 < · · · < is = m < m+ k} and k ≥ 2, then

pS(x) = −2pS1(x)χ(k even) +

k−1∑
j=1

(−1)k−1−jpS1(m+ j)

(
x

m+ j

)
.

Proof. We induct on k. Corollary 2.1 implies the base case when k = 2, and by induction,

pS(x) = pS1
(m+ k − 1)

(
x

m+ k − 1

)
− 2pS1

(x)− pS2
(x)

= pS1
(m+ k − 1)

(
x

m+ k − 1

)
− 2pS1

(x)

−

−2pS1
(x)χ(k − 1 even) +

k−2∑
j=1

(−1)k−2−jpS1
(m+ j)

(
x

m+ j

)
= −2pS1

(x)χ(k even) +

k−1∑
j=1

(−1)k−1−jpS1
(m+ j)

(
x

m+ j

)
.

Corollary 3.2. If S = {i1 < i2 < · · · < is = m < m+ k} and k ≥ 2, then

|PS(n)| = −χ(k even)|PS1(n)|+
k−1∑
j=1

(−1)k−1−j
(

n

m+ j

)
|PS1(m+ j)| · |P∅(n− (m+ j))|.

Proof. Apply Theorem 1.1 to Lemma 3.1.

We can interpret Corollary 3.2 combinatorially. Choose m+ k− 1 of the n elements and arrange them
such that their peak set is S1. Arrange the remaining n − (m + k − 1) elements so that there are no
peaks, and append this sequence to the previous one. In the combined sequence there is either a peak at
m+ k,m+ k − 1, or no peak after m. Since m+ k ∈ S,

|PS(n)| =
(

n

m+ k − 1

)
|PS1(m+ k − 1)| · |P∅(n− (m+ k − 1))| − |PS2(n)| − |PS1(n)|.

We repeat this procedure for |PS2
(n)| to count all the permutations whose peak set is S1 ∪ {m+ k − 1},

but this also counts permutations whose peak set is S1∪{m+k−2} and S1. We repeat this process until
we count permutations whose peak set is S1 ∪ {m + 1}, but this peak set is inadmissible and terminates
the procedure. Notice that |PS1

(n)| telescopes because it is included in each iteration with an alternating
sign.

We now present the proof of an explicit formula for peak polynomials with nonempty peak sets in the
binomial basis centered at 0. The results about roots due to odd gaps and peaks follow.

Proof of Theorem 1.2. The proof follows by iterating Lemma 3.1. In the case that there no odd gaps, we
have

pS(x) = (−2)|S|−1
[(

x− 1

i1 − 1

)
− 1

]
+

m−1∑
j=i1

dSj

(
x

j

)
,

and then use Vandermonde’s identity to shift the p{i1}(x) term to the binomial basis centered at 0.
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Corollary 3.3. If S = {i1 < i2 < · · · < is} and ir+1−ir is odd for some 1 ≤ r ≤ s−1, then 0, 1, . . . , ir
are roots of pS(x).

Proof. The proof follows from Theorem 1.2.

Corollary 3.4. If S contains an odd peak, then pS(0) = 0. Otherwise, pS(0) = (−2)|S|.

Proof. The proof follows from Theorem 1.2.

Theorem 3.5. We have pS(i) = 0 for i ∈ S.

Proof. We induct on |S| for all nonempty admissible sets S. In the base case |S| = 1, and p{m}(m) = 0
by Theorem 2.2. In the inductive step, let m = max(S). If i ∈ S1, then pS1(i) = 0 by the induction
hypothesis, so pS(i) = 0 by Lemma 3.1. We also know that pS(m) = 0 by Theorem 1.1, so pS(i) = 0
for all i ∈ S.

3.2 Peak polynomials with only integral roots
All of the peak polynomials in this subsection are completely factored and have all nonnegative integral
roots. As a result, they satisfy Conjecture 2.3 by Theorem 2.4, because we have bounded the real part of
their roots by max(S). In the next two lemmas, the leading coefficient is all that is recursively defined,
and it depends solely on the structure of {i1 < i2 < · · · < is}. In Conjecture 6.5 we classify all the peak
polynomials with only integral roots.

Lemma 3.6. If S = {i1 < i2 < · · · < is = m < m+ 3}, then

pS(x) =
pS1

(m+ 1)

2(m+ 1)!
(x− (m+ 3))

m∏
j=0

(x− j).

Lemma 3.7. If S = {i1 < i2 < · · · < is = m < m+ 3 < m+ 5}, then

pS(x) =
pS\{m+3,m+5}(m+ 1)

12(m+ 1)!
(x− (m+ 5))(x− (m+ 3))(x− (m− 2))

m∏
j=0

(x− j).

The next two corollaries show how pS(x) grows from x0 to x0+1 for any x0 ∈ R, and they demonstrate
how the roots shift when translating pS(x) to pS(x+ 1).

Corollary 3.8. If S = {i1 < i2 < · · · < is = m < m+ 3}, then

pS(x+ 1) = lim
t→x

(t+ 1)(t− (m+ 2))

(t−m)(t− (m+ 3))
pS(t).

Corollary 3.9. If S = {i1 < i2 < · · · < is = m < m+ 3 < m+ 5}, then

pS(x+ 1) = lim
t→x

(t+ 1)(t− (m− 3))(t− (m+ 2))(t− (m+ 4))

(t− (m− 2))(t−m)(t− (m+ 3))(t− (m+ 5))
pS(t).
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A limit is needed in Corollary 3.8 and Corollary 3.9, because pS(m + 1) is defined and nonzero by
Lemma 3.6 and Lemma 3.7, respectively. We now give closed-form formulas for pS(x) when S =
{m,m+ 3, . . . ,m+ 3k} and S = {m,m+ 3, . . . ,m+ 3k,m+ 3k + 2} for k ≥ 1. These formulas are
direct consequences of Lemma 3.6 and Lemma 3.7

Corollary 3.10. If S = {m,m+ 3, . . . ,m+ 3k} for k ≥ 1, then

pS(x) =
(m− 1)(x− (m+ 3k))

2(m+ 1)!(12k−1)

m+3(k−1)∏
j=0

(x− j).

Corollary 3.11. If S = {m,m+ 3, . . . ,m+ 3k,m+ 3k + 2} for k ≥ 1, then

pS(x) =
(m− 1)(x− (m+ 3k + 2))(x− (m+ 3k))(x− (m+ 3k − 5))

(m+ 1)!(12k)

m+3(k−1)∏
j=0

(x− j).

3.3 Gap of three independence
The following theorem shows that if S has a gap of three anywhere, then pS(x) is independent of the
peaks to the left of that gap up to a constant. Furthermore, the complex roots of pS(x) depend only on the
peaks to the right of the gap of three and where this gap occurs. Corollaries of this result follow.

Theorem 3.12. Let SL = {i1 < i2 < · · · < i` = m} and SR = {2 < j2 < · · · < jr}. If S = {i1 <
i2 < · · · < m < m+ 3 < (m+ 1) + j2 < · · · < (m+ 1) + jr}, then

pS(x) =
pSL

(m+ 1)

2(m+ 1)!
pSR

(x− (m+ 1))

m∏
k=0

(x− k).

We see that 0, 1, 2, . . . ,m are zeros of pS(z), and the roots of pSR
(z) are roots of pS(z) when translated

to the right by m + 1 in the complex plane. Note that deg(pS(x)) = m+ jr because max(S) = (m +
1) + jr, but we also see this by counting the m + 1 leftmost integer roots and then the jr − 1 roots of
pSR

(x). Theorem 3.12 also implies Lemma 3.6 when SR = {2} for all SL because p{2}(x) = x−2. The
plots and corollaries below demonstrate this independence.

Fig. 1: Roots of p{2,10}(z). Fig. 2: Roots of p{4,7,15}(z).
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Corollary 3.13. Let SL = {i1 < i2 < · · · < i` = m}, SR = {j1 = 2 < j2 < · · · < jr}, and
S = {i1 < i2 < · · · < m < m+ 3 < (m+ 1) + j2 < · · · < (m+ 1) + jr}. If SR has no zero with real
part greater than jr, then pS(x) has no zero with real part greater than max(S).

Proof. The proof follows from Theorem 3.12.

If we want to verify that Conjecture 2.3 holds for a peak set S with a gap of three, then it suffices to
check that it holds for SR by Corollary 3.13.

Corollary 3.14. Let SL = {i1 < i2 < · · · < i` = m}, SR = {j1 = 2 < j2 < · · · < jr}, and
S = {i1 < i2 < · · · < m < m + 3 < (m + 1) + j2 < · · · < (m + 1) + jr}. If we define
S + 1 = {i+ 1 : i ∈ S}, then

pS+1(x) = C(S)pS(x− 1)x,

where

C(S) =
pSL+1(m+ 2)

(m+ 2)pSL
(m+ 1)

is a constant depending only on S.

Observe that Corollary 3.14 shifts all of the zeros of pS(z) in the complex plane to the right by one and
then picks up a new root at 0 since C(S) is a constant. The plots below illustrate this behavior.

Fig. 3: Roots of p{3,5,8,14}(z). Fig. 4: Roots of p{4,6,9,15}(z).

4 Evaluating pS(x) at nonnegative integers
In the previous section, we identified integral roots of pS(x), so now we will try to understand the behavior
of pS(x) at nonnegative integers j when pS(j) 6= 0. We prove that there is a curious symmetry between
column and row 0 in the table of forward differences of pS(x) (see Table 2), and that the nonzero values
of |pS(j)| are weakly increasing for j ∈ [max(S) − 1] when min(S) ≥ 4. Again, assume that S is a
nonempty admissible set in the following hypotheses.

Theorem 4.1. Let S 6= ∅ and m = max(S). If j ∈ {0, 1, . . . ,m}, then

(∆jpS)(0) = (−1)m+jpS(j).
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For example, if j > 0 is between the largest odd gap and m, then by this symmetry property and
Theorem 1.2 one can observe that

pS(j) = (−1)m+j(∆jpS)(0) = −(−2)|S∩(j,∞)|−1pS∩[j](j).

If S has no odd gaps, then the equation above holds for all j ∈ [m].

Lemma 4.2. If S 6= ∅ and m = max(S), then pS(j) < pS(j + 1) for j ≥ m.

Theorem 4.3. Let S = {i1 < i2 < · · · < is = m}. For integers 1 ≤ j < k, we have |pS(j)| ≤ |pS(k)|
provided pS(k) 6= 0, except for the case {2} ( S where pS(1) = 2pS(3) = −(−2)|S|−1.

Corollary 4.4. Let S be a set of positive integers and j be a positive integer such that pS(j) 6= 0. Let
k ≥ j integer. If pS(k) = 0 then k ∈ S.

5 Connections to alternating permutations
In this section, we enumerate permutations with a given peak set using alternating permutations and
tangent numbers instead of the recurrence given by Lemma 3.1. Alternating permutations allow us to
easily count the number of permutations whose peak set is a superset of S, so we combine this idea with
the inclusion-exclusion principle to evaluate |PS(n)|.

Assume that S is a nonempty admissible peak set and that m = max(S). Let QS(n) = {π ∈ Sn :
S ⊆ P (π)} be the set of permutations π ∈ Sn whose peak set contains S = {i1 < i2 < · · · < is}, and
let us partition S into runs of alternating substrings. An alternating substring is a maximal size subset Ar

such that Ar = {ir, ir + 2, . . . , ir + 2(k− 1)} ⊆ S, where ir − ir−1 ≥ 3 if ir−1 ∈ S, and we call Ar an
alternating substring because

πir−1 < πir > πir+1 < πir+2 > · · · < πir+2(k−1) > πir+2(k−1)+1

is an alternating permutation in S2k+1 under an order-preserving map. Alternating permutations have
peaks at every even index, and there are E2k+1 of them in S2k+1. The numbers E2k+1 are the tangent
numbers given by the generating function

tanx =

∞∑
k=0

E2k+1

(2k + 1)!
x2k+1

= x+
1

3
x3 +

2

15
x5 +

17

315
x7 + . . .

In 1879, André proved this result in [1] using a generating function that satisfies a differential equation.
See [20] for more background on alternating permutations.

Call an index i a free index of peak set S if i ∈ [m + 2] and i is neither a peak nor adjacent to a
peak in S. The following theorem gives us a closed-form expression of tangent numbers for |P(m + 1)|
and |P(m + 2)| when S has no free indices. Note that if S has no free indices, then it can be thought
of as separate independent alternating permutations that are concatenated to each other, similar to the
independence in Theorem 3.12.

Lemma 5.1. If S has no free indices and k ∈ [2], then

|PS(m+ k)| = (m+ k)!
∏

Ar∈A(S)

E2|Ar|+1

(2|Ar|+ 1)!
.
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6 Related work and conjectures
In this final section, we relate our work to other recent results about permutations with a given peak set,
and we also restate some conjectures that stemmed from our work. Kasraoui characterized in [16] which
peak sets S maximize |PS(n)| for n ≥ 6 and explicitly computed |PS(n)| for such sets S. We compute
the maximum |PS(n)| in a different way using alternating permutations.

Theorem 6.1 ([16, Theorem 1.1, 1.2]). For n ≥ 6, the sets S that maximize |PS(n)| are

S =


{3, 6, 9, . . . } ∩ [n− 1] and {4, 7, 10, . . . } ∩ [n− 1] if n ≡ 0 (mod 3),

{3, 6, 9, . . . , 3s, 3s+ 2, 3s+ 5, . . . } ∩ [n− 1] for 1 ≤ s ≤ bn3 c if n ≡ 1 (mod 3),

{3, 6, 9, . . . } ∩ [n− 1] if n ≡ 2 (mod 3).

Theorem 6.2 ([16, Theorem 1.2]). Suppose n ≥ 6 and S maximizes |PS(n)|. Set ` = bn3 c. Then we have

|PS(n)| =


1
532−`n! if n ≡ 0 (mod 3),
2
531−`n! if n ≡ 1 (mod 3),

3−`n! if n ≡ 2 (mod 3).

Alternative proof. We work by cases using Theorem 6.1. When n ≡ 0 (mod 3), there is only one admis-
sible superset of S, which we call T . Using Lemma 5.1 and the inclusion-exclusion principle,

|PS(n)| = |QS(n)| − |QT (n)|

= n!

(
1

3

)`−1

− n!

(
1

3

)`−2(
2

15

)
=

1

5
32−`n!,

as desired. We also use Lemma 5.1 to prove the cases n ≡ 1, 2 (mod 3), which are simpler because there
are no admissible supersets of S.

Another new result in [11] shows that the number of permutations with the same peak set for signed
permutations can be enumerated using the peak polynomial pS(x) for unsigned permutations. Again, we
present an alternate proof, and it can be used to reduce many signed permutation statistic problems to
unsigned permutation statistic problems. We denote the group of signed permutations as Bn.

Theorem 6.3 ([11, Theorem 2.7]). Let |P∗S(n)| be the number of signed permutations π ∈ Bn with peak
set S. We have |P∗S(n)| = pS(n)22n−|S|−1, where pS(x) is the same peak polynomial used to count
unsigned permutations π ∈ Sn with peak set S.

Alternative proof. We naturally partitionBn by the signage of the permutations, which gives us 2n copies
of Sn under an order-preserving map, and then we work in each copy of Sn separately. For example,
B3 = {S+++,S++−,S+−+,S+−−S−++,S−+−,S−−+,S−−−}, and S++− are the permutations
of {1, 2,−3}. It follows that |P∗S(n)| = 2n|PS(n)|, so |P∗S(n)| = pS(n)22n−|S|−1 by Theorem 1.1.
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Now we restate some conjectures. In [13] we checked Conjecture 6.4 for all admissible peak sets S
where max(S) ≤ 15, and this conjecture implies the truth of Conjecture 2.3. We have also shown in
Subsection 3.2 that the peak sets listed in Conjecture 6.5 have only integral roots, but we have not proven
the other direction. Conjecture 6.6 is an observation that is related to Conjecture 6.4, and we have proved
it for all integral x0 using Lemma 4.2, but not all real x0.

Conjecture 6.4. The complex roots of pS(n) lie in {z ∈ C : |z| ≤ m and Re(z) ≥ −3} if S is admissible.

Conjecture 6.5. If S = {i1 < i2 < · · · < is} is admissible and all of the roots of pS(n) are real, then all
of the roots of pS(n) are integral. Furthermore, pS(n) has all real roots if and only if S = {2}, S = {2, 4},
S = {3}, S = {3, 5}, S = {i1 < i2 < · · · < is < is+3}, or S = {i1 < i2 < · · · < is < is+3 < is+5}.
Conjecture 6.6. Let S be admissible and |S| ≥ 2. If pS(x0) = 0 for x0 ∈ R, then x0 > max(S1) if and
only if x0 = max(S).

Question 6.7. What does pS(n) count for n > max(S)?
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[1] D. André, Développement de secx and tgx, Comptes Rendus Mathématique 88 (1879), 965–979.
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